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Abstract:

This paper presents a basis for the space of hyperbolic polynomials 7,,=span{1, sht, cht, sh2¢, ch2, ..., shmt, chmt} on

the interval [0,a] from an extended Tchebyshev system, which is analogous to the Bernstein basis for the space of polynomial used
as a kind of well-known tool for free-form curves and surfaces in Computer Aided Geometry Design. Then from this basis, we
construct quasi Bézier curves and discuss some of their properties. At last, we give an example and extend the range of the pa-

rameter variable ¢ to arbitrary close interval [r, s] (r<s).
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INTRODUCTION

As we all know, the Bézier model is widely used
in constructing free-form curves and surfaces because
of'its good properties. But since the Bernstein basis is
a basis for the space of degree-n algebraic polynomi-
als T,=span{l, ¢, t2, ..., 1"}, it has many shortcomings,
especially in representing transcendental curves, such
as the helix and the hyperbola. Many articles report
finding of new Bernstein-like bases in new space.

Zhang (1996) investigated curves in the space
span{l, ¢, cost, sint}. Pefia (1997) gave a basis for
span{l, cost, cos2t, ..., cosmt}. Sdnchez-Reyes (1998)
found a basis for the space of trigonometric polyno-
mials span{1, sint, cost, sin2t, cos2t, ..., sinnt, cosnt}.
Chen and Wang (2003) constructed a basis in the
space span{l, ¢, tz, ..., 1", sint, cost}. These bases are
similar to the Bernstein basis in that they have many
of the properties of Bernstein basis and are all in the
space of trigonometric polynomials and the space of
hyperbolic polynomials must have analogous basis.
Li et al.(2002) introduced hyperbolic polynomial
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B-splines, generated over the space span{l, ¢, t2, e
2, sht, chs} which is mixed with the polynomials {1,
t, £, ..., 7%} and the hyperbola {sht, ch¢}, and we will
show the hyperbolic polynomials space.

In this paper, we give a new basis on the interval
[0, a], for the space of hyperbolic polynomials
I,=span{l, sht, cht, sh2¢, ch2t, ..., shmt, chmt} in-
stead of the space of trigonometric polynomials
span{l, sint, cost, sin2¢, cos2t, ..., sinnt, cosnt}.

DEFINITION OF THE BASIS

As we all know, the Bernstein basis is the term of
binomial expansion of the identity 1=(1—¢)+¢, and we
can use the analogous method to construct the quasi
Bernstein basis in the space of hyperbolic polynomi-
als. Supposing o>0 and ¢€[0, a], we firstly take cog-
nizance of an identical equation:

shif(a—0/2] | 2ch(@2)shl(e—1)/2Jsh(e2) | sh'(e/2)
sh’(a/2) sh*(at/2) sh*(at/2)
)

1=

Then, by raising Eq.(1) to the mth power, we get
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o {shz[(a—t)/z]

sh®(a/2)
, 2ch(a2)shi(a ~1)/2]sh(1/2) sh’(t/2) |
sh’(a/2) sh’(a/2)

~ m \(sh’[(a-1)/2])
_;m{(z j,kJ[ sh*(a/2) j

8 2ch(a/2)sh[(« —t)/2]sh(t/2) : sh®(¢/2) ‘

sh®(a/2) sh®(a/2)

- 3y "
Csh @)= & \m=G+D/2,0,6-1)/2

(i+1) is even

x(2ch(a/2))l} sh™[(a —1)2]sh’ (¢/2)

2m 1 LI/ZJ m
Z sh?(a/2) ,Z(; m—i+ji—2j,j

x(2¢ch(a/2)) }shz””[(a —1)/2]sh’( /2)}

!
where | n - , 7, k>0 and i+j+k=n. If
l,J,k Jlkr

n
one of i, j, k is negative, set ( ) ] =0 and it always
i,J,

holds in the whole paper. Thus, the definition of the
new basis for the space I,=span{l, shz, chz, sh2z,
ch2t, ..., shmt, chmt} is as follows.

Definition 1 Let a>0, t€[0, o] and m be a
non-negative integer. Note that

U, @)= alQm(sh[(a t)/2])2m7i(sh(t/2))i,
i=0,1,2,---,2m,

2)
where the coefficient

](zch(a/z))”"
3

1 LI/QJ m
@ om :zm—z S e
sh™(a/2) T\ m—i+j,i=2j,]

It is an extended Tchebyshev system (Schumaker,

1981) and we only need to prove that {U iom (t)}’_z:m0 are

all in the space [,. Firstly, a lemma is given.

Lemma 1 H(/ii +n,sht + 6,cht) espan{l, sht, chy,
i=0

sh2t, ch2t, ..., shmt, chmt} for any real number 4;, #;,

0, m=0,1,2,...

Theorem 1  For any i€[0, 2m], U;,,(?) is in the

space [ ,=span{l, sht, cht, sh2¢, ch2¢, ..., shmt, chmt}.

Proof We only need to show that sh[(a—1)/2]

xsh'(#/2) is in the space [, for any i€[0, 2m]. The

problem is discussed respectively for the parity of i.
(1) When i is even,

a_tshii— chachr —shashz )" cht 72
2 2 2

sh2mfi

(2) When i is odd,

sh® ™ ((a —t)/2)sh'(t/2)

m—(i+1)/2 (i-1)/2
e N
2 2

tshij
2
2 2

y [ch(a /2)—ch(et/2)cht +sh(a / 2)sht}
2

Using Lemma 1, we conclude that U;,,(f) can
always be linear represented by {1, sht, cht, sh2¢,

ch2t, ..., shmt, chmt}, and the theorem is proved.
Fig.1 gives the images of {UI.’Zm (t)}f:; when

m=2 and m=3 respectively.

PROPERTIES OF THE BASIS

The basis for the space I, defined in Section 2
has many Bernstein-like properties.

Some of characters of B-base
Proposition 1 { 2 (t)} has following properties

of B-base (Carnicer and Pefia, 1994):
(1) linear independence;
(2) Up2m(0)=Usimom(2)=1,
U2 (0)=U% (a)=0,

i2m i2m
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0 o
(a)
1
0 a
(®)
Fig.1 The images of {U, ()]  (a) and{U, (0}’  (b)
7=0,1, .., i-1,k=0, 1, ..., 2m—i—1;

2m
(3) Unaw()>0, 0<t<a, D U,,, (1) =1, Vte[0, al;
i=0
@) Uiom(&y=Usp-iom(0—t) for Vte[0, a, i=0, 1,
2,...,2m.
Proof The anterior three characters are obvious

from Definition 1 and we only need to prove the last
i AT i 1 o
one. From the symmetry of {sh TSh E}
i=0
and the normalization of {Uum (t)}f:;, we have

2m 2m
D a,,,sh* [(a—1)2]sh'(t/2)= Y U,,,(t) =
i=0 i=0

2m — 2m . — .

= a,,sh™" T2t Dty pysh™ ol
i 2 2 i=0 . 2 2
Because {shz’"’i[(a —1)/2]sh’ (¢/ 2)}2:; is a basis,

@i 2m=02m-i2m, and the proposition is proved.

Recurrence formula
Proposition 2

U, ()= sh’(t/2)
N R 7))
. 2ch(a/2)sh[(ax —t)/2]sh(z/2)
sh*(at/2)
. sh’[(a—1)/2]
sh’(a/2)

+2ch(a/2)a; +a;
) ( ) i-1,2(m-1) 1,2(m-1) (4)

Ui72.2(m71) (t)

UH.z(nH) (0

l][,Z(m—])(t)

;5 2(m-1
and 4,5, = s (a/2)

It is easy to prove from the definition of the basis by
induction on m.

Degree-elevation

Using Definition 1, we can easily get the de-
gree-elevation formula.
Proposition 3

Ui,zm 0= Ui,zm ®
><(sh2 [(a—0)/2] , 2ch(e/2)shi(r—1)/ 2fh(e/2)

sh’(a/2) sh’(ar/2)
2ch(a/2)a,

i,2m

Sh(t/2)
sh’(a/2)

a

i,2m

=" U +
sh’(a/2)a 5y " sh’(a/2)a,

i+1,2(m+1)

i+1,2(m+1)

a

i,2m

+ U. .
2 i+2,2(m+1)
sh”(a/ 2)a1+2,2(m+l)

Differentiation

2m

The basis {U,,, (0} s for the

space
i=0

I,=span{l, sht, chz, sh2t, ch2t, ..., shmt, chmt}, and
each U, () can be represented as follows:

U, t)=c, +c,sht+c,cht+---+c,, shmt+c, chmt

Thus, as &>1, U

i2m

shmt, chmt} and p™(r) cannot be expressed by a

(t) espan{sht, cht, sh2¢, ch2s, ...,

lower-degree curve with the basis {U ion (t)}:O (n<m),

but can be represented by the basis {U,.,Zm (t)}f:m0 . We

only show the degree-one derivative, the higher de-
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gree derivative can be analogously produced recur-
sively.

Proposition 4  For arbitrary integer i€[0, 2m], we
have the differential formula:

.az
th()_ .

) t
Mwmﬂmmw
. i —2m)a,
N (l m)Ch((Z /2) U/.,Zm (t) + (l m)a,,Zm U,-H,zm (l)
sh(a/2) 2sh(a/2)ay, ,,
(5

Proof The process of deriving Eq.(5) is as follows:

2m-1-i i

2m—i o—t a-—t t

t sh—— ch——| sh—
zZm() 12m|: 2 ( 2 j 2 ( 2)

2m—i
3] (5] ]
jZm 1- 1( j
- (sh Lj LN
2 2 2
¢ 2m-1-i P -1 i—m a
( e j (shj msh(a—tj-i- sh&
2 2 2 2 2 2
a a—t 2m-1-i P i-1
=Lt (sh—j (sh—]
&\ 2 2
2

><[ish2 aT—t + 2Ch%(i —m)sh a

= ai,Zm (

X {—mch

“tonl s i—2mysh? L
2 2

i (i—m)ch %
i,2m
= ’ Ui—l‘2m )+ Ui,Zm (®)

2shgaH o, shZ

2 ’ 2

-2

% Uinipn () (1<i<2m-1)
ZSh* Aiviom

When i=0 or i=2m, the equation above also holds.

Limit of the basis
Proposition 5

2m
{U"»Zm (t)}i:O
ch2t, ..., shmt, chmt} approaches the Bernstein basis
in the space T»,=span{l, ¢, £, ..., "}.
Proof By mathematical induction.
(1) When m=0, the proposition is true obviously.
(2) Suppose that it holds in the space 7,;. After

As o—0, the limit of the basis
in the space I,=span{l, sht, cht, sh2z,

reparameterizing by =t/ac[0, 1] and setting the

Bernstein basis B, , (7) = ( .j(l —1)""'t", by the induc-
i

tive hypothesis,
EE% U[,Z(m—l) ()= gg% Ui,2(m—]) (at) = Bizm-1)(2),
i=0,1, ..., 2(m—1)

(3) From Proposition 2, we have

hm U,

_ liH{shz(m/z)
sh’(a/2)
2ch(a/2)sh[(a ar)/2]sh(ar/2)
sh®(a/2)

sh’[(a —ar)/2]
sh’(a/2) Ui zmen (0”'):|

2
—lim [(O‘T_/z)

(az)=limU,., (1

i-2,2(m~1) (ar)

Uiiom (ar)

(a/2)2 Ui—Z,Z(m—l) (ar)

20h(a/2)[(a ar)/2](ar/2)
(a/2)

%Ui,z(ml) (aT)j|

= TzBi—Z,Z(m—])(T) +27(1- T)Bi—l,Z(m—])(T)
+(1- T)zBi,2(m—l)(T)
= TBi—l,Zm—l @o+d- T)Bi,Zm—l (r)=

Ui—l,2(m—1)(aT)

B, (7).

By induction on m, the proposition is right.
2m
From the above characters, {Uilm(t)}‘:0 is a

quasi Bernstein basis and is also a blending system.

GEOMETRIC PROPERTIES
BEZIER CURVE

OF THE QUASI

The corresponding curve p(f) with control points
{p,}”" is defined by

PO=Y U, 0p, tel0al  (©)

Marking some linear operators: Ep=pi1, Ip=p;,
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Ap=(E-D)p=p:+1—p;, we also have another represen-
tation of the new curve Eq.(6) by simple calculations.

p(t){shz[(a—t)/z]l

sh’(a/2)
2ch(a/2)sh[(a—t)/2]sh(t/2) E+ Sh: (t/2) E2j| Po
sh’(a/2) sh’(a/2)
=[I+fOAT +gOA)]" py. )
where f(t)= sh(1/2)

sh(a/2)(ch[(a —1)/2] = sh[(a —1)/2]) ’

2(0)= sh(z/2)(ch[(a —1)/2] - sh[(a —1)/2])
sh(a/2)

fied that 0<f(¥), g(1)<1. Because the quasi Bernstein

satis-

basis { iom (t)} , p(t) is a quasi Bézier curve, it has
many Bézier-like characters.
Geometric properties at the endpoints

The geometric properties at the endpoints of the
quasi Bézier curves are obvious from those of the

basis {U,-,zm (t)}j:; ‘

(1)p<0)=po,p<a)=pzm;
) p<“(0>=ZUf’;L,<om,p"‘)(a)= Z U® (@p,.

i=2m—k

Especially, by the differentiation formula Eq.(5), we
also have

, mch(a/2)
3) p0)= “h(@/2) (P = Po)>
, mech(a/2)
p(a)= sh(a/2) ————— (P21 — P1)
Convex hull property

The quasi Bézier curve Eq.(6) must lie inside its
control polygon spanned by po, pi, ..., Pam This
property is a consequence of the third subproposition
of Proposition 1 and we show it in Fig.2.

Degree-elevation
The problem of elevating 2k degrees is stated as
follows: Given 2m+1 points po, p1, ..., Pam, and a nat-

D2

P4

Ds

Po Ps

Fig.2 Convex hull property

ural number k, we should find 2(m+k)+1 points

[k [k k . .
pocl,plc], ,pg(}m) , which satisfy

2m 2(m+k)

p(t) = Z Ui,2m (t)pz Z UI 2(m+k) (t)p[k]
i=0

Using the normalization of the quasi Bernstein basis,
we have

2m

p(t):ZUi,Zm(t)pi [z 12m(t)pi)(ZUi,2k(t))

= (zzm:a,,m (shf(a—1)/2])"" (sh(z/2)) p,.j
x (ialﬂ (shi(a—1)/2])"" (sh(t/2))')

2(m+k) , ,
= [ > @y (shll@ = 1)/20) " (sh(t/Z))'p,Wj
i=0

[k] k]

And the formulas of p), p{),---, pi]  are obtained

coefficients of
}2(m+k)

by comparing the
{(sh[(a —0)/21)7 "7 (sh(t/2))

i

ZaJZm l /2kpj Z

[k] j:max{O,FZk}

D;

Ajombij2u P

A 2(mik) A; 2(mik)

Especially, when k=1,

i
Z Qomi-j2P;
[1] Jj=i-2

D:

i 2(m+1)
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_ A yomPiy t 2Ch(a/2)ai—l,2mpi71 TP (8) |:ch (m— i)a/ch (m+1- i)a:|a, +a,
a,5mysh’(a/2) . 2 2 e [0.1]
l ai,2(m+])Sh2 (a/2) '
From Eq.(4), we have i=0,1,---,2m+2.
a _Giaom t 2ch(a/2)a; ,,, + 4, Fig.4 shows the process of cutting angles.
n2meh sh®(a/2) ’

and

ai72,2m 2Ch(a/2)ai71.2m ai,2m
ai,Z(m+1)Sh2(a/2) ' ai,Z(m+1)Sh2(a/2) ' ai,Z(erl)Shz(a/z)

is the barycentric coordinate of p!" in Ap;opiipi,
when 2<i<2m—2. Fig.3 shows that the curve de-

v (11
gree-elevates from degree-5 (m=2) to degree-7 (m=3). polan. 2y’ pils o)
The primary control polygon is represented by solid Fig.4 Degree-elevation of cutting angles
while the elevated control polygon is represented by
dashed line.

Recursive evaluation
First, a recursive definition Eq.(9) is given.

o=
shZ“T_t 2ch(a/2)sha7_t sh%
2y o
W@’ O W@ 0
o i )]
o 1 P4 \Ps .
Po (P s’hz(—t/z)nz("’”(t) k=12,..,m, i=2k,..2m,
sh™(a/2)
Fig.3 Degree-elevation
D k=0, i=0,1,..,2m.
For geometric significance, we represent the
degree-clevation formula with the form of cutting  Then, from the definition Eq.(9), we have
angles. Eq.(8) can be denoted:
. sh*[(a—1)/2]
P =01-5)q,, +s4, p0= W’
:(l—s,.)[(l—k[_ )P, +k p_ ]+s,. [(l—k[)pi_ +k[pl.]
SRR : 2ch(a/2)sh[(ar—1)/2]sh(t/2) b S Ez} e
' 2 2 i-2
where sh™(a/2) sh™(a/2)
—i h*[(a-1)/2
ch(m+1 l)aai,Zm _ .S [(za ) ]I
= : , €[0,1] sh”(a/2)
! h(m—z)oz +h(m+l—z)a , i
c 5 i 1omTC fai,zm +2ch(a/2)sh[(a—t)/2)]sh(t/2)E _sh’(1/2) Bl
i=0,1,-.2m+1: sh®(a/2) sh’(a/2) 2
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Especially from Eq.(7), the following formula is hold.

. sh*[(a—1)/2]

PO\ =45y |

, 2ch(e/sh[(a=0)/2sh(t/2) | sheer2)
' sh*(@/2) “shi(a/2)

Ez} Py =p(0)

Fig.5 gives the graphic representation of the re-
cursive evaluation. By setting m=2, =0.40, and giv-
ing the five points po, p1, p2, P3, ps, We first get

P> (1), p3 (1), pi (1) in Apopips, Apipops, Apopsps te-
spectively. Then, we get p; (t) = p(t) with the bary-
centric coordinate in Ap; (¢) p32 GYAGE

PZPQ)

pi(p)

<
- d

p(py)
Fig.5 Recursive evaluation

For geometric significance, we want to produce
the recursive evaluation points with the form of cut-

ting angles, so the points p’*”'(¢) are added to Eq.(7).
Eq.(9) is changed to

p()=
.. =0, i=j,j+1, .., 2m
[1 sh(t/2)(ch[(ar—1)/2]-sh{(a - t)/2])Jp[j1] "
sh(a/2)
. sh(r/2)(ch[(a—1)/2]-sh[(a —1)/2]) 20,
sh(a/2)
j=L3,--2m-1, i=j, j+1, ..., 2m
- sh(z/2) o
[1 sh(a/2)(ch[(a—1)/2]-sh[(a—1)/ 2])}” - 0
sh(z/2) .
" sh(a/2)(ch[(a—1)/2]-sh[(a—1)/2]) P
F=2,4,2m, i=j, j+1, .., 2m

Fig.6 shows the process of cutting angles.

Pz(l’g)

p(p)),

o D3 ( P5)

poCp)) p(Pi)

Fig.6 Recursive evaluation with the form of cutting angles

Differentiation
Let p(k)(t) be the degree-k derivative of p(¢) in
Eq.(6). From Eq.(5), we get

om (i-1-2m)a_, ,
=S (| L
PO=2 U0 2sh(a/Da,,

) (l —m)Ch(a/Z) n (l +1)ai+l,2m
C sh@/2) U 2sh(a/2)a,, P

where a,1,2m=a2m+1,2m=0.
However, from Eq.(7), we have

PO =m[(I+f©OA)I+gn)A)]"
x[(I+g0A) f'(0)+(I+ f()A)g'(1) |Ap,

Sy 2her)
- o i-1,2(m-1) Shz (a/Z)
h —_ —_—
+U,',2(m*1) (t) : [(a ts)l’izz(](;:l‘;g)a t) : 2] :| Api

Thus, p®(#) (k>1) can be linear represented by Ap;
=0, 1, ..., 2m-1).

Limit of the quasi Bézier curves

From Proposition 5 and the definition of the
curve Eq.(6), we have the following proposition.
Proposition 6 As a—0, the limit of the curve Eq.(6)
in the space /,=span{1, sht, chz, sh2¢, ch2z, ..., shmt,
chmt} approaches a Bézier curve in the space
Ton=span{l, t, 7, ..., "}.
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In Fig.7, we show that when a is reduced
gradually, the dashed curve Eq.(6) on [0, a] ap-
proaches to the Bézier curve drawn with solid line.

Fig.7 The limit of these curves

REPRESENTATION OF HYPERBOLIA
For the infinity of hyperbola, we can only rep-

resent a portion of the whole hyperbola. Fig.8 is a part
of an equilateral hyperbola.

P2

P

Po

Fig.8 An equilateral hyperbola

EXTENDING TO [r, 5]

The quasi Bernstein basis for the space
I,=span{l, sht, che, sh2¢, ch2¢, ..., shmt, chmt} can
also be defined on the general interval [r, s] (r<s)
instead of [0, ] as follows:

2m—i i
U, =a,, [shsT_t] (sht_Trj ,te[r,s],(10.1)

where
1

Li/2] N2
> ..(2chs j
m\m—i+j,i=2j,] 2

It has the same properties as those of the basis on
[0, a], and when the interval [, s] is given, the Bern-
stein-like basis is unique for its normalization because
of the unique representation of the element
1el,=span{l, sht, cht, sh2z, ch2t, ..., shmt, chmt}.

(10.2)
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