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Abstract:    Differential space-time coding was proposed recently in the literature for multi-antenna systems, where neither the 
transmitter nor the receiver knows the fading coefficients. Among existing schemes, double differential space-time (DDST) coding 
is of special interest because it is applicable to continuous fast time-varying channels. However, it is less effective in fre-
quency-selective fading channels. This paper’s authors derived a novel time-frequency double differential space-time (TF-DDST) 
coding scheme for multi-antenna orthogonal frequency division multiplexing (OFDM) systems in a time-varying fre-
quency-selective fading environment, where double differential space-time coding is introduced into both time domain and fre-
quency domain. Our proposed TF-DDST-OFDM system has a low-complexity non-coherent decoding scheme and is robust for 
time- and frequency-selective Rayleigh fading. In this paper, we also propose the use of state-of-the-art low-density parity-check 
(LDPC) code in serial concatenation with our TF-DDST scheme as a channel code. Simulations revealed that the LDPC based 
TF-DDST OFDM system has low decoding complexity and relatively better performance. 
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INTRODUCTION 
 

High data rate and high quality multimedia ser-
vices are required in beyond third generation (B3G) 
and fourth generation (4G) mobile communications. 
Space-time coding scheme has been proposed 
(Tarokh et al., 1998; 1999) to achieve higher capacity 
and data rate. So far, most research on space-time 
coding assumed that accurate channel estimations are 
available at the receivers. However, accurate channel 
estimation is difficult and too many training symbols 
are required in a rapidly changing mobile environ-
ment (Shan et al., 2004). 

Single differential space-time (SDST) coding 
schemes were proposed to achieve diversity gains 
without channel state information (CSI) (Hughes, 

2000). SDST coding schemes allow for slowly 
changing channels that have to remain invariant 
within two consecutive symbols. So it is less effective 
in rapidly fading environments. In order to allow for 
fast time-varying fading channels, double differential 
space-time coding (DDST) was proposed (Liu et al., 
2001). However, in DDST, channel delay resulting 
from multi-path fading is assumed to be smaller than 
the symbol duration, which cannot be guaranteed in 
frequency-selective fading wireless channels. To 
combat frequency-selective fading, Yao and How-
lader (2002) proposed a DDST-OFDM system, in 
which DDST is introduced only into time domain and 
the differential process is performed between adjacent 
OFDM frames in the same sub-carrier. 

In this paper, a novel time-frequency double 
differential space-time (TF-DDST) coding scheme is 
proposed for multi-antenna OFDM systems, in which 
double differential space-time coding is introduced 
into both time domain and frequency domain. A cor-
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responding low-complexity non-coherent decoding 
scheme is also proposed. Our proposed TF-DDST- 
OFDM system is robust for time- and frequency- 
selective Rayleigh fading channels, and requires less 
decoding delay compared with DDST-OFDM system.  

From the information theoretic perspective, it is 
necessary to apply channel coding to approach further 
the channel capacity limit. So, channel coding is in-
dispensable in a practical communication system. 
Recently, state-of-the-art low-density parity-check 
(LDPC) codes (Gallager, 1962; 1963) with good per-
formance close to the Shannon limit, have attracted 
much attention. LDPC codes have been applied to 
space-time coded OFDM system (Futaki and Ohtsuki, 
2003; Lu et al., 2002) and unitary space-time coded 
OFDM system (Yoshimochi et al., 2003). In this 
paper, LDPC code is adopted as the channel code of 
our proposed TF-DDST-OFDM system. The decod-
ing algorithm of LDPC-TF-DDST-OFDM system is 
derived in the paper via analysis of TF-DDST de-
coding scheme. System performance is evaluated and 
compared with TF-DDST-OFDM system via simula-
tions. 

 
 
 

SYSTEM MODEL 
 

Fig.1 depicts the block diagram of our proposed 
TF-DDST-OFDM system with Nc subcarriers, Nt 
transmit antennas, and Nr receive antennas. At the 
transmitter, each information symbol is mapped into a 
space-time code word, which spans Nx adjacent 
OFDM symbols and one subcarrier. We define the Nx 
OFDM symbol intervals as one OFDM time block 
and denote TF-DDST code matrix as C(k,i), in which 
k is the subcarriers index and i is the index of OFDM 
time blocks. C(k,i) is a Nx×Nt matrix, as shown below: 
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Consider the time-varying channel response 

between the mth transmit antenna and the nth receive 
antenna. Following (Proakis, 1995), the time-domain 
channel impulse response can be modeled as a tapped 
delay line. 
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where δ(⋅) is the Dirac delta function, L denotes the 
number of nonzero taps and αmn(p;t) is the complex 
amplitude of the pth nonzero tap, whose delay is 
np/(Nc∆f), where np is an integer and ∆f is the tone 
spacing of the OFDM system. Similar to the descrip-
tion in (Yao and Howlader, 2002), we assume that the 
time-varying effect is small and that the Doppler 
frequency shift is invariable during the period of 
maximum channel delay. Then αmn(p;t) can be ex-
pressed as: 
 

( ; ) ( )exp( j2 )mn mn np t h p f tα = π� ,                  (3) 
 
where fn is the Doppler frequency shift caused by 
relative motion between the transmit antennas and 
receive antennas. After discrete Fourier transform 
(DFT), the frequency-domain channel response can 
be derived from the time-domain response as: 
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It is assumed that ( )mnH k�  remains invariant 

during at least two consecutive OFDM time blocks 
for the kth sub-carrier and that the Doppler frequency 
fn is common to all transmit antennas, which is valid if 

 
 

Fig.1  Block diagram of TF-DDST-OFDM system 
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the multi-path components originate far away from 
the receiver so that they all share a common angle of 
arrival. For simplicity of description, ( )mnH k�  is 
called fading component and exp(j2πfnt) is called 
Doppler component in the rest of the paper. At the nth 
receive antenna, DFT is applied to the signals re-
ceived from Nt transmit antennas. The received signal 
Xn(k,i) at the kth sub-carrier and during the ith OFDM 
time block, is obtained as: 
 

j2( , ) e ( , ) ( ) ( , )n xf iN
n n n nk i k i k k iπ= +X C H ZΛ ,        (5) 

 
where j2 j2 ( 1)

1: diag(1,e , ,e ), ( ) : ( ( ),n n xf f N
n n nk H kπ π −= =H �…Λ

t

T
2 ( ), , ( )) ,n N nH k H k� �…  Zn(k,i) is the noise defined as 

T( , ) : ( ( , ),..., ( , 1)) ,n n x n x xk i z k iN z k iN N= + −Z which 
is circularly symmetric complex Gaussian distributed 
with variance N0. 
 
 
TF-DDST CODING AND DECODING 
 

The method proposed in (Yao and Howlader, 
2002), in which OFDM is concatenated with double 
differential space-time coding (DDST), is an effective 
way to suppress time-selective and frequency-selec- 
tive fading. In their scheme, DDST is introduced in 
consecutive OFDM symbols in the same sub-carrier 
and the fading component of frequency-domain 
channel response ( )mnH k�  is assumed to be constant 
during three consecutive OFDM time blocks. In this 
paper, a novel time-frequency double differential 
space-time coding scheme is proposed for 
multi-antenna OFDM system, adopting DDST in both 
time and frequency domains. The new coding scheme 
has relatively better performance and needs only two 
OFDM time blocks to detect the information symbols. 

 
TF-DDST encoding scheme 

TF-DDST code matrix, denoted as C(k,i), is 
chosen as a code matrix with orthogonal columns, i.e. 
 

t

H
c( , ) ( , ) ( 1, 1,2, , )x Nk i k i N i k N= ≥ =C C I … .     (6) 

 
In order to maximize the transmission rate, 

Nx=Nt=N is assumed. 

DDST is introduced into both time-domain and 
frequency-domain and our TF-DDST code matrices 
are designed to satisfy: 
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where the generating matrix G(k,i) obeys 
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where k is the index of sub-carriers and i is the index 
of OFDM time blocks. The matrix F(k,i) is mapped 
from the information symbol one-to-one. In the de-
sign of the transmit matrices, we consider diagonal 
unitary space-time coding, i.e. FH(k,i)F(k,i)=IN 
(∀F(k,i)∈Ω) , where Ω is the group of N×N unitary 
and diagonal matrices.  
 
Sub-optimal TF-DDST decoding 

From the description of generation of TF-DDST 
code C(k,i) (Eq.(7) and Eq.(8)) and the expression of 
the received signal in the nth receive antenna (Eq.(5)), 
four corresponding receive matrices Xn(k–1,i–1), 
Xn(k–1,i), Xn(k,i–1), Xn(k,i) that are adjacent in time 
and frequency domains can be written as: 

 
j2 ( 1)( 1, 1) e ( 1, 1) ( 1)

( 1, 1),

n xf i N
n n n

n

k i k i k
k i

π −− − = − − −

                          + − −

X C H
Z

Λ
 

j2( 1, ) e ( 1, ) ( 1, 1) ( 1)n xf iN
n n nk i k i k i kπ− = − − − −X G C HΛ

j2 ( 1)

j2

                    ( 1, ),

( , 1) e ( , 1) ( ) ( , 1),

( , ) e ( , ) ( , 1) ( ) ( , )

n x

n x

n
f i N

n n n n
f iN

n n n n

k i

k i k i k k i

k i k i k i k k i

π −

π

+ −

− = − + −

= −  +  .

Z

X C H Z

X G C H Z

Λ

Λ
                                                                                (9) 
 

Considering the complexity of ML detection, a 
sub-optimal yet low-complexity non-coherent de-
coding approach is proposed in this section. First, the 
unknown fading components Hn(k–1) and Hn(k) are 
removed by use of the characteristic of differential 
process between two adjacent OFDM time blocks in 
the same sub-carrier, which is described as 
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And then, the Doppler component is eliminated 

by performing the outer product to get: 
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For simplicity, we define 
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Zn1, Zn2, Zn3 and Zn4 are also defined similar to 

Eq.(12), and F(k,i) is denoted as F. Then, Eq.(11) can 
be rewritten as 
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We collect all noise terms in Eq.(13) to the 

right-hand side and get: 
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For notational simplicity, Eq.(14) can be re-

written as 
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Then, the signal of all the receive antennas can 

be written as 

r
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r2 , , ),NN N…  ⊗ stands for Kronecker product. 

In order to derive the sub-optimal decoding rule, 
the second-order noise term in N is ignored and the 
noise N is approximated as a zero-mean complex 
Gaussian vector whose covariance matrix is denoted 
as 
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Because N is complex Gaussian distributed, so 

the probability function of R(i) conditioned on R(i–1) 
and F can be written as 
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where “tr” and “H” denote the trace and conjugate- 
transpose respectively. TF-DDST decoder chooses F 
to maximize the probability Pr(R(i)|R(i−1),F). Then 
the estimate of F is 
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It is easy to recover the information symbols 

from F̂ , since the mapping between the information 
symbol and matrix F is one-to-one. From the de-
scription above, it is evident that our TF-DDST- 
OFDM system needs only two OFDM time blocks to 
detect the information symbols, while DDST-OFDM 
system needs at least three OFDM time blocks. 
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PERFORMANCE ANALYSIS 
 

Performance analysis of our TF-DDST-OFDM 
system is conducted in this section, based on the 
calculation of the pairwise error probability (PEP), 
defined as the probability of transmitting F and de-
ciding in favor of F′ at the decoder. 

In this section, we only focus on the nth receive 
antenna, and our derivations are based on the fol-
lowing assumptions: (1) ( )mnh p� ’s in Eq.(3) are i.i.d. 
Gaussian distributed with variance 1/2L per dimen-
sion and mean 0; (2) High SNR. Based on Eq.(16), the 
conditional PEP for the nth receive antenna can be 
approximately by 
 

( ) ( )2 2
0| ( 1) exp ( , ) /16 ,(22)nP i d N N′ ′→ − ≤ −F F r F F

in which,  
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{ }H Htr ( 1) ( 1)n ni i= − −er r e ,  
 
where║⋅║ denotes Frobenius norm and e=F−F′.  

At high SNR, we can ignore the noise term in 
Eq.(9), and d2(F,F′) can be expressed as: 
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Let vec{A} denote a vector obtained from the 
diagonal elements of matrix A. Then, Eq.(23) can be 
rewritten as: 
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Gd and Gc are defined as diversity gain and coding 
gain respectively. Then, the code design criteria for 
our TF-DDST-OFDM system are:  

(1) (Diversity gain criterion) Design optimal 
diagonal unitary group Ω such that e=F−F′ has full 
rank, for ∀F, F′∈Ω and F≠F′; 

(2) (Coding gain criterion) Design Ω such that 
|det(F−F′)| is maximized for ∀F, F′∈Ω and F≠F′. 

This implies that if a diagonal unitary group is 
optimal for DST-OFDM system, it is also optimal for 
our TF-DDST-OFDM system. So, we can adopt the 
group codes shown in (Tarokh et al., 1999; Hughes, 
2002; Gallager, 1963) for the code construction in our 
TF-DDST-OFDM system. 

 
 

LDPC-TF-DDST SCHEME 
 
LDPC codes 

Low-density parity-check (LDPC) codes were 
first proposed by Gallager in 1962 and recently re-
examined in (MacKay and Neal, 1996; MacKay, 
1999). It had shown that these codes achieve re-
markable performance with iterative decoding that is 
very close to the Shannon limit (MacKay and Neal, 
1996). 

An LDPC code is a linear block code character-
ized by a very sparse parity-check matrix. The par-
ity-check matrix H for an (n, k) LDPC code of rate 
R=k/n is an (n–k)×n matrix. Both the number of 1’s 
per column (column weight) and the number of 1’s 
per row (row weight) are very small compared to the 
block length n. Apart from these constraints, the ones 
are placed randomly in H. When the number of ones 
in every column is the same, the code is known as a 
regular LDPC code; otherwise, it is called an irregular 
LDPC code. 

The algorithm used for LDPC decoding is an it-
erative message algorithm known as the sum-product 
algorithm (SPA) (MacKay, 1999). It determines a 
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posteriori probabilities for bit values based on a priori 
information, improving the accuracy of these calcu-
lations at each iteration. The initialization of SPA is 
important for LDPC decoding, whose task is to 
compute the first likelihood rate of the received sig-
nal. 

 
Algorithm for LDPC-TF-DDST scheme 

Fig.2 shows the block diagram of LDPC-TF- 
DDST scheme. For simplicity, we employ fi-
nite-geometry LDPC codes (Kou et al., 2001) using 
the parameters shown in Table 1. If other better LDPC 
codes are adopted, the system performance will be 
improved. In the receiver, the received signal can be 
expressed by R(i) and R(i−1) as shown in Eq.(17). In 
order to perform the decoding, the first likelihood rate 
of code bits “1” and “0” for all the code bits corre-
sponding to received signals should be computed. 
And then, the sum-product algorithm is used to de-
code iteratively. The algorithm for computation of 
first likelihood rate is as follows. 
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Assuming all the constellation points are 
equiprobable, Eq.(29) can be rewritten as 
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Since Pr(R(i) | R(i−1), F) has been evaluated in 

Eq.(20), L(bl) can be derived in Eq.(31). 
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Because R(i), R(i−1), F and Σ are all diagonal 

matrices, the computation of L(bl) has low complexity. 
After the derivation of L(bl), iterative decoding is 
executed as sum-product algorithm. Moreover, this 
decoding scheme is not only suitable for fi-
nite-geometry LDPC codes, but is also applicable for 
other kinds of LDPC codes. 

 
 

SIMULATION RESULTS 
 

In this section, first, we provide computer 
simulation results to illustrate the performance of our 
proposed TF-DDST-OFDM system over a time- and 
frequency-selective fading channel, namely two-tap 

Table 1  Parameters of finite-geometry LDPC code 
 

Code Type-I EG-LDPC 
n 255 
k 175 

Iteration number 5 
Column weight 16 

Row weight 16 
Decoding algorithm SPA 

 
 

 Fig.2  Block diagram of LDPC-TF-DDST scheme 
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equal-power Rayleigh fading channel with maximum 
Doppler frequency fd, compared with SDST-OFDM 
and DDST-OFDM systems. The channel coefficients 
are generated based on Jakes model (Jakes, 1974). 
The optimal (4;1;1) group codes (Liu et al., 2001) 
with code rate R=1 are employed for all the systems. 

Fig.3 illustrates the performance of the three 
systems in a fast fading channel, whose maximum 
Doppler frequency fd is chosen to satisfy fdT=0.05, 
where T denotes the period of one OFDM time block. 
We can see from Fig.3 that TF-DDST-OFDM system 
has better performance than SDST-OFDM system 
with gain of about 8 dB at BER of 10–2 and outper-
forms DDST-OFDM by about 1 dB at BER of 10−3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 shows the performance of the three sys-

tems in a very fast fading channel, in which maximum 
Doppler frequency is chosen to satisfy fdT=0.1. At this 
time, SDST-OFDM system has a very high BER even 
at high SNR, which means SDST-OFDM system is 
not suitable for very fast fading channel. The per-
formance of TF-DDST-OFDM system nearly does 
not degrade compared with the performance in fast 
fading channel shown in Fig.3 and our TF-DDST- 
OFDM system keeps better performance compared 
with the DDST-OFDM system. 

A conclusion can be drawn from Fig.3 and Fig.4 
that TF-DDST-OFDM system is robust to 
time-selective and frequency-selective fading and has 
better performance than DDST-OFDM system. 

Fig.5 shows the BER performance of LDPC-TF- 
DDST scheme using the parameters shown in Table 1. 
We assume that fdT is 0.1, and that the channel model 
is also two-tap equal-power Rayleigh fading channel. 

The channel coefficients are also generated based on 
Jakes model (Jakes, 1974). Fig.5 shows that the 
LDPC-TF-DDST scheme can obtain high coding 
gains and improve the BER performance considerably 
compared to TF-DDST scheme. LDPC-TF-DDST 
scheme provides gain of about 6 dB at BER of 10−3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 

In this paper, first, a novel time-frequency 
double differential space-time (TF-DDST) coded 
OFDM system is developed, which is suitable for 
time-selective frequency-selective channel. In trans-
mitter, TF-DDST encoding scheme is proposed, in 
which double differential space-time coding is in-
troduced into both time domain and frequency do-
main. At receiver, a sub-optimal yet low-complexity 
non-coherent decoding scheme is proposed. 
TF-DDST-OFDM system has proved to be robust for 
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Fig.3  Performance comparison for fast fading channel
(fdT=0.05) 
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Fig.4  Performance comparison for very fast fading
channel (fdT=0.1) 
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Fig.5  BER Performance of LDPC-TF-DDST Scheme 
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the time-selective frequency-selective fading by per-
formance analysis and computer simulations. More-
over, our TF-DDST scheme has better performance 
and less decoding delay than DDST-OFDM system. 
In this work, we also study the concatenation scheme 
of channel codes with our TF-DDST-OFDM system, 
and adopt state-of-the-art low-density parity-check 
(LDPC) code as our channel code. The decoding 
scheme for LDPC-TF-DDST-OFDM system is given 
in the paper. Simulation results proved that 
LDPC-TF-DDST-OFDM system achieves better 
BER performance than TF-DDST-OFDM, especially 
at high SNR. Moreover, increase of code length and 
iteration number will improve the system perform-
ance considerably. 
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