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Abstract:    A basic optimization principle of Artificial Neural Network—the Lagrange Programming Neural Network (LPNN) 
model for solving elastoplastic finite element problems is presented. The nonlinear problems of mechanics are represented as 
a neural network based optimization problem by adopting the nonlinear function as nerve cell transfer function. Finally, two 
simple elastoplastic problems are numerically simulated. LPNN optimization results for elastoplastic problem are found to be  
comparable to traditional Hopfield neural network optimization model. 
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INTRODUCTION 
 

An Artificial Neural Network (ANN) is an in-
formation-processing paradigm that is inspired by the 
way biological nervous systems, such as the brain, 
process information. It is composed of a large number 
of highly interconnected processing elements (neu-
rons) working in unison to solve specific problems. In 
recent years, neural network has been widely applied 
in the field of engineering construction as a large 
dimensional nonlinear dynamic system, because of its 
support for parallel computing (Gao et al., 2000). 

According to the Parametric Variation Principle 
(PVP) (Zhong et al., 1997), elastoplastic mechanics 
problem can be dealt with as a mathematical pro-
gramming problem. Sun et al.(1998) transformed the 
solution of an elastic problem into the solution of a 
quadratic optimization problem with equalities con-
straint, which is implemented by using Hopfield 
neural network model. Sun et al.(2000) subsequen- 

 
 
 

tly constructed a model for elastoplastic finite ele-
ment problem solvable by the neural networks proc-
essing, which, however, may involve computational 
inaccuracy because the models above were built on a 
combination of Hopfield model and simulated an-
nealing algorithm. The error may occur due to the 
local minima trap during annealing implementation. 
Moreover, there are no consistent rules for finding the 
parameters of the simulated annealing algorithm, e.g. 
initial temperature, temperature updating criteria, etc., 
which adds to the uncertainties of the computational 
results. Besides, earlier work considered using linear 
transfer function for solving elastoplastic finite ele-
ment problems, which is inconsistent with the 
nonlinear character of mechanics problems. 

This paper presents a Lagrange neural network 
model for solving finite element problems based on 
the basic optimization principle of artificial neural 
networks. Lagrange neural network model uses the 
Lagrange function, a kind of nonlinear function, as 
the transfer function of the neural network model. The 
stability and convergence of neural network is dis-
cussed, and the neural optimization strategy for in-
creasing computational efficiency of the network 
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optimization is analyzed. Finally, the solutions of 
some numerical problems are presented to illustrate 
the validity and feasibility of neural network for 
solving elastoplastic finite element problems. 

 
 

NEURAL NETWORK MODEL 
 

Neural network is one kind of huge dimension 
nonlinear dynamic system consisting of neural ele-
ments. According to the dynamic system principle, 
the ultimate behavior of the system is determined by 
its attractors. The attractors of the dynamic system are 
considered to be the optimization solution of suitable 
energy functions (or generalized objective functions). 
The optimization calculation of the neural network 
starts from any initial condition, and reaches a stable 
state with the movement of the system itself. Such a 
stable state corresponds to a solution for the optimi-
zation. This is the principle guiding the application of 
the neural network model for solving optimization 
problems. 

Considering the standard Quadratic Program-
ming (QP) problem with inequality constraints: 

 
T Tmin ( ) /2

s.t.
f = +


≤ 

x x Gx c x
Ax b

,               (1) 

 
where x=[x1,x2,…,xn]T∈ún  is a variable vector, G is 
the n×n real symmetry positive definite matrix, A is 
an m×n matrix, c=[c1,c2,…,cn]∈ún and b=[b1,b2,…, 
bm]∈úm are constant vectors. After introducing the 
loose variable z=[z1,z2,…,zm]T∈úm, Eq.(1) can be 
transformed into a QP problem with constraints:  
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According to the theory of optimization, the 

Lagrange function can be defined as: 
 

T T T T( , , ) /2 ( )L = + + − +x y z x Gx c x y Ax b z z ,     (3) 
 

where y=[y1,y2,…,ym]T∈úm is the Lagrange multiplier. 
According to classic limit theory, the necessary op-
timality can be expressed as a stationary point 
(x∗,y∗,z∗) of L(x,y,z) over x, y and z. That is, 
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To improve the convergency of the optimization al-
gorithm, we may add a compensation term 

T

2
k

− +Ax b z z , k>0, to the Lagrange function 

Eq.(3). The energy function of the dynamic system 
can be implemented as follows:  
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According to the stability theory of the differen-

tial equations, the dynamic system equations can be 
implemented as, 
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where b and c are the network input variables, x∈ún is 
the network output variable. The frame of the neural 
network corresponding to the above formula is shown 
in Fig.1. g(u) can be considered as a hyper-linear 
function g(u)=(eu–e–u)/2, which serves as the neural 
transfer function. When the transfer function is a 
nonlinear function, the computational speed can be 
increased and the  precision  for  solving  elastoplastic 

 
 
 
 
 
 
 
 
 
 
 
 Fig.1  The frame of neural network 
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finite element problems can be improved because of 
the inherent nonlinearity of the elastoplastic problem. 
 
 
STABILITY AND CONVERGENCY OF THE 
NEURAL NETWORK 
 

The LPNN is globally stable and converges to 
the optimum solution of QP problem as stated and 
proved by the Appendix’s Theorem.  

The QP problem of Eq.(1) is a convex optimi-
zation problem (Wu and Tam, 1999). The objective 
function f(x) is a first-order differentiable function in 
the open convex set x∈ún. For every x∈ún, the Hes-
sian ∇xxL(x,y,z) is positive definite and f(x) is a 
strictly convex function. So, every local solution x∗ of 
problem Eq.(1) is a global optimum solution, and the 
set of the global optimum solutions is convex. 

The equilibrium point (x∗,y∗,z∗) of the LPPN 
satisfies a Kuhn-tucker condition of the QP problem 
(Wu and Tam, 1999; Zhang and Constantinides, 
1992). Therefore, the neural network will always 
converge globally to the optimum solution from any 
arbitrary initial point. 

 
 

ELASTOPLASTIC FINITE ELEMENT MODEL 
 

The classic elastoplasticity theory can be simply 
expressed as follows: 

 
(1) Equilibrium equation: 

( )d d 0∇ + =A bσ .                                             (7) 
(2) Geometry equation: 

( )d d∇= L uε .                                                 (8) 
(3) Boundary conditions:  

( )d d ,
d d .

∇ =
=

n p
u u

σ                                                     (9) 

(4) Constitutive equations: 
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The meanings of the parameters are the same as 

that of the traditional expressions and can be found in 
(Zhong et al., 1997). 

Assuming that there is only one yield function 
condition, the loading function can be expressed as 
(Taylor decomposition), 
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here f 0 is the loading function before increment steps. 
If the nonce state is loading, and f=f 0 has been scat-
tered by finite element method, then the potential 
energy of the system will become: 
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where,  
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In the above nonlinear program problems, λ is para-
metric variation, and can be turned into the standard 
nonlinear program problems below: 
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,
− 
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 0

Q U
A

E
     T[d ]Pλ=V u , 

T[ ]µ= −I P d ,  T[ ]= − 0J d . 
 

The standard optimization problem with ine-
quality constraints, can be applied to solve the elas-
toplastic mechanics problems by using Lagrange 
neural network model. 
 
 
EXAMPLES 
 
Example 1 

Flow analysis of layer rock material (Zhong et 
al., 1997). As shown in Fig.2, I and II are elastic units, 
and III is an elastoplastic element. The units are all 
isotropic. E=5×105, µ=0.25. The yield function and 
potential function can be considered as: 

         

0tan 0,   tanxy y xy yf g Cτ ϕσ τ ϕ ϕσ= + ≤ = + + . 

 
The example has symmetry: f1=σy≤0, g1=f1. Ta-

ble 1 shows that the result of the Lagrange pro-
gramming neural network model is the same as that in 
(Zhong et al., 1997). 
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I            II           III 

 
Fig.2  Layer rock units 

 
 
 

 
 

 
 

 
Example 2 

As shown in Fig.3, the three members symmetric 
truss structure has a perpendicular force, P=3.0×105 

kN. The areas of the three members are A=1000 mm2. 
The three members are all ideal elastoplastic material, 
whose elastic modulus is E0=2.0×105 MPa, and 

whose yield limit is σs=200 MPa. The loading func-
tion f(σ)=σi–σs. 
 
 

 
 

Fig.3  The truss 
 

The results of LPNN are shown in Table 2. In 
this example, the result of the Lagrange programming 
neural network model is almost the same as that of the 
Hopfield neural network. 
 

Table 2  Result of the truss 
Ref. σ1y×Ε0 λ1×Ε0 λ2×Ε0 λ3×Ε0 

Theory 
Sun et al., 2000 
This article 

13048.9 
13042.6 
13047.5 

0 
0 
0 

0 
0 
0 

0 
0 
0 

 
 
CONCLUSION 
 

Based on the PVP, the finite element computa-
tion of elastoplastic mechanics was transformed into a 
quadratic programming problem with inequality 
constraints, which can be solved by using the La-
grange programming neural network. LPNN model is 
characterized by global convergence of the solution 
for optimization. The computation of the problem is 
equivalent to the dynamic stabilizing procedure of the 
LPNN system, the final stable equilibrium point cor-
responds to the solution of the elastoplastic finite 
element problems. 

 
 

APPENDIX A 
 
Theorem 1    The Hessian ∇xxL(x,y,z)=G is positive 
definite everywhere in the dynamic domain of the 
LPNN of QP problem. The neural network is 
Lyapunov stable.  
Proof    Differentiating function E(x,y,z) with respect 

100 m 

4                 3                   2 

1           2               3 

1 
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10
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m
 

30° 

Ref. U2 U5 U7 
Zhong et al., 1997 
This article 

1.667×10-4 
1.667×10-4 

3.542×10-4 
3.542×10-4 

5.208×10-4 
5.208×10-4 

Table 1  Displacement of unit nodes (m) 



Ren et al. / J Zhejiang Univ SCIENCE  A   2006 7(3):378-382 
 

382

to time t along the trajectory of the neural network 
gives: 
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where ∇xE(x,y,z), ∇yE(x,y,z), ∇zE(x,y,z) is the partial 
derivative of E(x,y,z)  with  respect  to  x  and  y,  and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gu′=diag(g′(u1), g′(u2), ..., g′(un)), g′(ui)>0, i=1,2,...,n; 
Gv′=diag(g′(v1), g′(v2), ..., g′(vm)), g′(vj)>0, j=1,2,...,m; 
Gz′=diag(g′(w1), g′(w2), ..., g′(wm)), g′(wk)>0, k=1,2,..., 
m. The energy function E(x,y,z) is always negative. 
Obviously, E(x,y,z) is lower bounded, and when and 
only when du/dt=0 and dv/dt=0, dw/dt=0, we have 
dE(x,y,z)/dt=0. So E(x,y,z) is the Lyapunov function 
of the system, and the LPNN is Lyapunov stable.  
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