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Abstract:    A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre-
sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken 
as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line 
real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as 
an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and 
optimization capability are demonstrated by simulation examples. 
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INTRODUCTION 
 

Path planning of mobile robots is one of the key 
issues in robotics research on the problem of a robot 
finding a collision-free path from beginning to goal 
in the presence of obstacles. Depending on the envi-
ronment surrounding the robot, it can be classified as 
follows: 

(1) Path planning for static obstacles in com-
pletely known environment;  

(2) Path planning for static obstacles in un-
known or partially known environment; 

(3) Path planning for dynamic obstacles in com-
pletely known environment;  

(4) Path planning for dynamic obstacles in un-
known or partially known environment. 

To the former two cases, that is, path planning 
in the presence of static obstacles, there are various 
approaches, such as ÷-space method and artificial 

potential field method. They may obtain perfect re-
sults under some certain condition. But in fact, ro-
bots mostly work in dynamic uncertain environment 
that includes static obstacles with unknown position 
and dynamic obstacles with uncertain trajectory. So 
the collision-free navigation of mobile robots in dy-
namic uncertain environment is so complex that it is 
still an intractable topic by far. 

Many real-time navigation systems have been 
developed recently. Fujumura (1992) proposed an 
algorithm for obstacles with known trajectories. 
Tang et al.(2000) treated instantaneous dynamic ob-
stacle as static and proposed an optimal path based 
on a grid method called dynamic grid method. 
Fiorinio and Shiller (1998) advanced a view of ve-
locity obstacle that plans on-line motion based on 
relative velocity between the robot and moving ob-
stacles. Rude (1997) used Time-Space coordinates to 
translate robot’s path planning in 2D dynamic envi-
ronment into static path planning in 3D space. Take-
shi (1994) used three-tier fuzzy control method to 
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adjust robot’s motion direction and velocity for de-
touring dynamic obstacles. 

It is difficult to give obstacle’s reliable motion 
information obviously, e.g. velocity and direction. In 
fact, such real-time information is hidden in 
next-time obstacle’s position. So we can obtain ob-
stacle’s motion information provided that next-time 
the obstacle’s position is predicted by some predic-
tion algorithm. Some navigation systems combine 
path planning with obstacle motion prediction. A 
prediction model takes object’s previous information 
and uses various methods to predict the motion trend 
of the object to get its next position. In motion pre-
diction, numerical prediction approaches, such as 
curve fitting or regression methods (Sen and 
Srivastava, 1990), are widely used because they are 
simple and convenient. Other models that may be 
used to improve the prediction results are hidden 
Markov stochastic models (Zhu, 1991), the Grey 
prediction (Luo and Chen, 1999), etc. The Kalman 
Filter (Kalman, 1960) is also used for predicting fu-
ture positions and orientations of a moving object in 
dynamic environments. The Kalman Filter’s recur-
sive nature enables it estimate a real-time system 
state. 

The motion trajectories of moving obstacles are 
predicted by using an autoregressive (AR) model in 
this paper. Compared with other models above, the 
AR model is so simple and its algorithm is so fast 
that the robot can give a quick response when en-
countering obstacles. In the meanwhile, prediction 
precision can also be guaranteed. Positions of mov-
ing obstacles are sampled by the robot’s sensor sys-
tem. The sampling position information on dynamic 
obstacles is treated as instantaneously static. With 
current sampling positions, the AR model predicts 
future obstacle’s positions in the next sampling dura-
tion. Then the robot’s motion path is planned with 
such predicted positions. Thus, dynamic colli-
sion-free path planning is translated into static one. 
Combining global planning with local planning, we 
propose an on-line real-time path planning technique 
based on polar coordinates in which the desirable 
direction angle is taken into consideration as an op-
timization index. Detecting unknown obstacles with 
local feedback information by the robot’s sensor 
system, this approach orients the desirable direction 
of the mobile robot so as to generate local sub-goal 

in every planning window. As a result, the difference 
between real direction angle and desirable direction 
angle of robot motion steers the mobile robot to de-
tour collisions and advance toward the target without 
stopping to re-plan a path when new sensor data be-
come available. 

Trajectory prediction of moving obstacles is 
elaborated on in Section 2. On-line real-time path 
planning of mobile robots in dynamic uncertain en-
vironment is proposed in Section 3. The effective-
ness, feasibility, high stability, perfect performance 
of obstacle avoidance, real-time and optimization 
capability of the proposed approach are demon-
strated by simulation examples in Section 4. And 
Section 5 provides the results of our study. 
 
 
TRAJECTORY PREDICTION OF DYNAMIC 
OBSTACLES 
 

In our analysis, we consider a 2D navigational 
space. However, the framework discussed here can 
be readily extended to 3D or higher dimensional 
space. As depicted in Fig.1, suppose a robot R is to 
travel from starting point S to goal point G in a 
navigational space consisting of M moving obstacles 
O1,O2,…,OM. Clearly, if there are no moving obsta-
cles, the straight-line path SG  is a reasonable solu-
tion provided that no obstacle is located along SG . 
When the obstacles are in motion, the straight-line 
path SG  is not necessarily a collision-free path and 
a better solution must be looked for. 
 
 
 
 
 
 
 
 
 
 
 
AR modeling of the obstacle’s position 

In the following sections, we develop a predic-
tion model to be used by a robot to decide about fu-
ture positions of moving obstacles. Our intention is 

Fig.1  Robot’s workshop in the presence of moving obsta-
cles 
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to use this model within a trajectory planning algo-
rithm in a time-varying environment. Before the ro-
bot starts to interact with its environment, data on 
visible obstacles are collected, via sensors, for a 
short period of time. This step enables the robot to 
learn about any moving obstacles in its visibility 
field at discrete points in time-space. Therefore, sta-
tistical modelling using difference equations is ap-
propriate for predicting future position of a moving 
obstacle based upon its previous positions. But since 
sensory readings are usually noisy, an autoregressive 
(AR) model is more relevant and useful. 

Let the sensing system of the robot sample an 
obstacle Ok’s actual position, pk(t), at time t=1,2,…, 
where pk(t)=(Xk(t),Yk(t))T. And ( )ˆ

k tp  defines the 
predicted position of Ok at time t. The sequence of 
positions {pk(t), t=1,2,…} is fitted to a nth order AR 
model described by the following difference equa-
tion: 

 

    
1

( ) ( ) ( ),
n

k i k
i

t t i t
=

= − +∑p α p e        (1) 

 
where αi (i=1,…,n) are AR coefficients, e(t) denotes 
the prediction error. Depending on different applica-
tions or assumptions, the coefficients {αi, 1<i≤n} 
may be scalars or matrices. For instance, in the case 
of a mobile robot, the coefficients are (2×2) matrices. 

If the obstacle Ok undergoes slowly changing 
acceleration (small positional sampling duration), it 
is reasonable to model accelerations of Ok, {ak(t), 
t=1,2,…}, with a first order AR model as follows: 
 

,( ) ( 1) ( ),k k t kt t t= − +a β a w         (2)  

 
with w(t) as the prediction error. Note that for dif-
ferent assumptions, the coefficient βk,t can be a scalar, 
a diagonal or general matrix. For instance, if the mo-
tions along x and y are correlated, βk,t will be a gen-
eral matrix. In each case, βk,t can be either dependent 
or independent of time t. If βk,t is independent of time, 
it is only required to compute it once. In general, βk,t 
is estimated adaptively as new measurements are 
made available by the sensing system. In terms of the 
obstacle’s velocity and position, the robot’s accelera-
tion can be calculated by: 
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where vk(t) represents velocity at time t. Substituting 
Eq.(3) in Eq.(2), we have: 
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Estimating the model coefficients 

Let us first assume that βk,t is a scalar and inde-
pendent of time t, βk,t=βk; also there is a batch of po-
sition measurements available, {pk(t), 1≤t≤N}. To 
estimate βk, first the acceleration sequence {ak(t), 
3≤t≤N} is formed from Eq.(3). Then, a first order 
AR model is fitted to this sequence in a least squares 
sense, that is, ˆ

kβ  is chosen such that 
 

4
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The solution to the above least squares problem is 
given by Makhoul (1975): 
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The above result takes the following general form 
when βk is a matrix, 
 

4 4

ˆ ( ) ( 1) ( 1) ( 1) .
N N

k k k k k
i i

i i i i
= =

′   ′ ′= − − −   
   
∑ ∑β a a a a   (7) 

 
At this point, we consider the case when βk,t 

changes with time t. In this case, an adaptive algo-
rithm is desired where βk,t is updated as a new meas-
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urement is acquired by the sensing system. The algo-
rithm proposed by Lee et al.(1981) and Shensa (1981) 
is adopted to determine βk,t as follows: 

 

{
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where λ (0<λ≤1) is an exponential weighting factor. 
For slowly changing acceleration, λ is close to 1. The 
solution for this problem is: 
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The above result takes the following general form 
when βk,t is a matrix: 
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where 
, , 1 ( ) ( 1),k t k t k kt tλ − ′= + −∆ ∆ a a        (10.2) 

, , 1 ( 1) ( 1).k t k t k kt tλ − ′= + − −η η a a      (10.3) 
 
Once the estimation is found for βk,t, the future posi-
tions of Ok are predicted as follows: 
 

,
ˆˆ ( 1) ( ) ( ) ( ).k k k k t kt t t t+ = + +p p v β a      (11) 

 
 
REAL-TIME PATH PLANNING OF MOBILE 
ROBOTS  
 

As to on-line real-time path planning of mobile 
robots in dynamic uncertain environment, we treat 
every position in the motion trajectory of moving 
obstacle as instantaneously static. Thus in each sam-
pling duration, current position information of mov-
ing obstacles is sampled by the robot’s sensor system. 
Then the AR model elaborated on in Section 2 is 
used to predict next-time position of moving obsta-

cles. And moving obstacles on these predicted posi-
tions are treated as static in that time. As a result, we 
can implement collision-free path planning by means 
of an on-line real-time path planning technique based 
on polar coordinates in which the desirable direction 
angle is taken into consideration as an optimization 
index. 
 
Path planning based on polar coordinates space 

Consider the 2D path planning for mobile robot 
in which the robot is shrunk to a single moving point 
while the immovable obstacles are expanded to cir-
cles. Two sets of coordinates are used in our path 
planning approach discussed in this paper, where 
global environment coordinates are Cartesian coor-
dinates and local robot coordinates are polar coordi-
nates. The environment Cartesian coordinates abso-
lutely show the positions of starting point, goal point 
and the real-time location of the mobile robot so that 
the global information can be considered in 
every-time planning window. To be convenient, we 
define the starting point as the original point of Car-
tesian coordinates. The robot polar coordinates move 
along with the robot. Current real-time location of 
the robot is the pole of the polar coordinates and the 
direction of which robot current location points at the 
goal is the direction of the polar axis.  

Introduction of robot polar coordinates is con-
venient for describing and computing the motion 
direction angles of the robot as follows. Since the 
robot coordinates change at any moment in the mo-
tion process, if Cartesian coordinates are adopted, 
coordinate transform will greatly increase planning 
time. Moreover, Cartesian coordinates cannot visu-
ally express the motion direction angle of the robot. 
Instead, polar coordinates can be greatly convenient 
for computing the desirable direction angle. In addi-
tion, introduction of environment coordinates is 
convenient for computing current polar coordinates 
of the robot and determining current desirable mo-
tion direction of the robot according to the goal posi-
tion in environment coordinates. 

To describe conveniently, as shown in Fig.2, we 
only consider the case of including one obstacle. The 
starting point S is the original point of the environ-
ment Cartesian coordinates and the starting pole of 
robot polar coordinates. Point G is the goal point. 
The shadow circle represents the obstacle. Its direc-
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tion angle is φ(t), that is, the real-time angle between 
the motion direction of the robot and the polar axis 
direction of current polar coordinates. The motion 
direction that we want to plan in every local planning 
is the desirable direction of the robot. And the angle 
between the desirable direction of the robot and the 
polar axis direction of current polar coordinates is 
the desirable direction angle, namely, φd(t) (0≤φd(t) 
<2π). 

 
 
 
 
 
 
 
 
 
 
 
According to the model above, the difference 

between real direction angle and desirable direction 
angle of robot motion steers the mobile robot to 
avoid collisions and advance toward the target. Con-
sider a quadratic index 

 

2
d

1( ) [ ( ) ( )]
2

E t t tϕ ϕ= − ,        (12) 

 
where φd(t) is the desirable direction angle for navi-
gating the robot to the goal, or for avoiding obsta-
cles. 

If the robot is required to move toward the de-
sirable direction, then the following control integral 
law is proposed:  

 
   d( ) [ ( ) ( )]t t tϕ η ϕ ϕ= − − ,         (13) 

 
where η is a positive constant. The gradient descent 
method is then used to determine the direction angle 
to achieve the minimum E(t) implying that the robot 
is finally navigated to the desirable direction, that is, 
the direction toward the goal or to avoid obstacles. 

To obtain desirable direction angle, a local path 
planning is executed with one step of the robot. In 
every-time planning window, the starting point is the 
end point of the last planning, the current position of 
the robot, as well as the pole of new polar coordi-

nates. Simultaneously, real-time environment infor-
mation is detected by the robot’s sensor system. Ac-
cording to such environment information and the 
information on the goal, next motion direction of the 
robot is planned by every local planning with certain 
optimization index, that is, determines the desirable 
direction. Before the next sampling period comes, 
Eqs.(12) and (13) will drive the robot to move to-
ward the desirable direction. It is repeated as above 
until the robot reaches the goal. In this strategy of 
local path planning, the optimization index is the 
minimum angle (absolute value) between the motion 
direction of the robot and the polar axis direction of 
current polar coordinates, that is, the desirable direc-
tion angle φd(t) is minimum. 

In local planning, the optimization index is the 
minimization of the direction angle. Here Fig.2 
shows the desirable direction angle in single obstacle 
case. To figure conveniently, it is assumed that the 
robot has detected an obstacle in the way towards the 
goal by sensors at starting point S. And compared 
with collision-free direction of the other side, the 
angle between direction SR and current polar axis 
direction is smaller. So current desirable direction 
angle is φdS(t). When the robot moves at point R, 
since there is no obstacle detected in the direction 
towards the goal, current desirable direction super-
poses the polar axis direction of current polar coor-
dinates, that is, φdR(t)=0. Minimum as the desirable 
direction angle, it is guaranteed that the planning 
path is optimal or sub-optimal. This can be proved 
by the knowledge of plane geometry. Limited by the 
paper length, the detailed demonstration is skipped 
here. So index-angle minimum can overcome the 
drawback in that the local path planning cannot op-
timize the motion path. 

 
Strategy of obstacle avoidance 

The mobile robot discussed in this paper pri-
marily obtains obstacle information by distance sen-
sors. The robot should know obstacle information in 
forward, left and right directions to determine the 
next step when moving in collision environment. We 
assume that the robot moves only in the forward di-
rection. As a result, we can use semicircular range 
detected by sensors as every-time planning window. 
In each planning window, let df, dl, dr be forward, 
left and right directions respectively, where df repre-

Fig.2  On-line real-time path planning model for mobile 
robots 
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sents the straight direction towards the goal and dl, dr 
respectively represent any direction in left and right 
sectors bounded by df. Thus, obstacle avoidance of 
the robot can be divided into the three following 
cases: 

(1) If sensors detect no obstacle along df direc-
tion, the robot will move towards the goal along df 
direction wherever left or right side has obstacles. At 
this time, desirable direction angle φd(t)=0, as shown 
in Figs.3a~3c; 

(2) If sensors detect obstacles along df direction, 
then let dl, dr be the left and right tangential direction 
between the robot and obstacle circle. And the angle 
between dl, dr and df is βl, βr respectively. The robot 
will move along ‘angle minimum’ tangent direction, 
that is, when βl<βr, the robot will move along dl di-
rection and current desirable direction angle φd(t)= βl; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

when βr<βl, the robot will move along dr direction 
and current desirable direction angle φd(t)=βr, as 
shown in Figs.3d~3e; 

(3) When βl=βr, a special example of Case 2, we 
prescribe that the robot moves along dl direction, that 
is, desirable direction angle φd(t)=βl, as shown in 
Fig.3f. 
 
Algorithm of real-time path planning 

Now an algorithm of on-line real-time path 
planning for mobile robot in dynamic uncertain en-
vironment is presented as follows: 

(1) Initialize such parameters as starting point, 
goal point, work environment, vision field and ve-
locity of the robot; 

(2) If the robot reaches the goal, the planning is 
over; 

(3) Update environment information in current 
planning window according to real-time local detec-
tion information; 

(4) Are there dynamic obstacles in current plan-
ning window? If so, next-time positions of these dy-
namic obstacles are predicted by the AR model; 

(5) According to predicted positions of dynamic 
obstacles and positions of other static obstacles, de-
sirable direction angle of the robot is determined by 
the strategy of obstacle avoidance, that is, generating 
local sub-goal; 

(6) The difference between real direction angle 
and desirable direction angle of robot motion drives 
the robot to step towards local sub-goal; 

(7) Return to Step (2). 
 
Algorithm’s reachability and security 

In dynamic uncertain environment, if the fol-
lowing theorems are satisfied, the reachability and 
security of the above algorithm can be guaranteed. 
Theorem 1 (Reachability)    ∀PS, PG∈FD, the 
above algorithm must guarantee that the robot moves 
from the beginning PS to the goal PG in limited time, 
where FD is the feasible domain. 
Theorem 2 (Security)    When the robot is exe-
cuting local planning, it is always guaranteed for the 
robot to move safely if formula vR/vOH ≥(L/2+ε)/(r−ε) 
is satisfied, where vR, r, ε respectively represent ve-
locity, vision radii and step of the robot and vOH, L 
respectively represent maximal velocity and size of 
the moving obstacle. 

As shown in Theorem 2: 

dr 

 
dr df 

βr βl 
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dl df 
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Fig.3  (a)~(c) Case 1; (d)~(e) Case 2; (f) Case 3 
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(1) When ε≥r, collision-free condition cannot be 
guaranteed; 

(2) As to the robot, the faster vR, the larger r and 
the smaller ε, the more favorable for the robot to 
avoid obstacles; 

(3) The robot’s velocity is always slower than 
that of moving obstacles provided that the robot has 
the larger vision as indicated by r>(L/2+2ε). 

Such two theorems above can be proved by 
mathematical induction. Limited by the paper length, 
they are not proved in detail here. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

SIMULATIONS 
 

Several simulation examples were used to 
demonstrate the models and planning algorithm de-
scribed above. Fig.4 and Figs.5a~5c show plan-
ning results in which the robot detours dynamic ob-
stacle by linear, parabolic, sinusoidal and stochastic 
motion. In addition, Fig.5d shows robot’s colli-
sion-free path planning results in dense dynamic un-
certain environment that includes static obstacles 
with unknown position and dynamic obstacles with 
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Fig.4  Robot detours dynamic obstacle in linear motion. (a) A dynamic obstacle comes into the robot’s view;
(b) The predicted position of the obstacle interfers the robot’s motion to G; (c) The robot trys to detour the
obstacle from its front; (d) The robot detours the obstacle form its back; (e) The obstacle disappears from the
robot’s view; (f) The robot moves straight to G 
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uncertain motion. 
In Figs.4~5, red solid dot S and G respectively 

express the starting point and the goal point. Blue 
semicircle represents effective detection range of the 
robot’s sensor system, that is, local planning window. 
Its black solid center stands for the mobile robot and 
the trajectory consisting of these centers represents the 
robot’s motion path. The small red solid circle 
represents dynamic obstacle. Its brown solid center 
stands for real positions detected by the robot’s sen-
sor system and the trajectory consisting of these 
centers represents real trajectory of the dynamic ob-
stacle. The small green hollow circle represents the 
dynamic obstacle on predicted position. Its green 
solid centers stand for the predicted positions com-
puted by the AR model and the trajectory consisting 
of these centers represents predicted trajectory of the 
dynamic obstacle. And in Fig.8, the big red solid 
circle represents static obstacle. 

Let us cite the case of dynamic obstacle in lin-
ear motion shown in Fig.4 to simply describe the 
planning process. Since no obstacle is detected in the 
robot’s local planning window after the robot starts 
from the beginning point S, the robot moves straight 
to the goal point G. When the robot moves at the 
position shown in Fig.4a, a dynamic obstacle comes 
into the robot’s vision. Therefore, sensors begin to 
sample the obstacle’s real positions and its future 
positions are predicted by AR model described in 
Section 2. When the robot moves at the position A 
shown in Fig.4b, its sensors detect the moving obsta-
cle in its way to the goal. Then desirable motion di-
rection and local sub-goal of the robot are deter-
mined by the models and algorithm described in 
Section 3 above. As a result, the robot moves to-
wards the edge of the dynamic obstacle gradually. 
As Fig.4c shows, position B is the inflexion of the 
robot’s collision-free trajectory. Until the robot 
moves at the position C shown in Fig.4d, the robot 
escapes the moving obstacle and moves straight to 
the goal again. When the robot moves at the position 
D shown in Fig.4e, the moving obstacle disappears 
from the robot’s vision. After position C, there is no 
obstacle detected in the way to the goal. So the robot 
will move straight until reaching the goal. The whole 
planning task is completed, as Fig.4f shows. 

The above simulations show that this based on 
polar coordinates space approach to on-line real-time 

path planning of mobile robot is not only effective 
and feasible but also simple and flexible. The sizes 
and positions of static obstacles and the locations of 
starting point and goal point are all set up at random. 
Moreover, the velocity and motion direction of dy-
namic obstacle are all unknown. In addition, the case 
of dense obstacles is also considered, as Fig.8 shows. 
So the experiments have strong stochastic capability 
and reliability. Figs.4~5 show wonderful behavior of 
obstacle avoidance and perfect stability of the ro-
bot’s motion because there are no phenomena of os-
cillation and hesitation shown in the above figures. 
Besides, the planning algorithm is so simple and fast 
that the robot can give a quick response when en-
countering obstacles. 

 
 

CONCLUSION 
 

Now on-line real-time path planning with ob-
stacle avoidance for mobile robots in dynamic un-
certain environment is a focus on robotics research. 
Previous methods of global planning and local plan-
ning have their respective drawbacks. Global plan-
ning methods can give optimal planning results. But 
they can only plan once off-line so that real-time 
capability cannot be executed. So their applications 
are limited. Though local planning methods can im-
plement real-time planning, since there is no global 
information, such indices as motion path or runtime 
cannot be optimized so that it cannot meet the de-
mands of the planning task.  

To overcome their drawbacks, an on-line 
real-time path planning of mobile robots in dynamic 
uncertain environment is presented in this paper. In 
our approach, positions of moving obstacles are 
sampled by the robot’s sensor system, and the sam-
pling position information on dynamic obstacles is 
treated as instantaneously static. With current sam-
pling positions, the AR model predicts future obsta-
cle’s positions in the next sampling duration. Then 
the robot’s motion path is planned with such pre-
dicted positions. Thus, dynamic collision-free path 
planning is translated into static one. 

With the integration of global planning and lo-
cal planning, an on-line real-time path planning ap-
proach for mobile robots is proposed. This approach 
is based on polar coordinates in which the desirable 



Zhuang et al. / J Zhejiang Univ SCIENCE A  2006 7(4):516-524 524

direction angle is taken into consideration as an op-
timization index. Completely different from those 
traditional path planning methods based on configu-
ration space and Cartesian coordinates space, this 
approach does not concern how long the robot moves 
but in what direction it moves, that is, determining 
desirable direction of the robot’s motion is just the 
task in every planning window.  

With environment information detected by sen-
sors, the difference between real direction angle and 
desirable direction angle of the robot’s motion, 
considered as a drive, navigates the mobile robot to 
avoid obstacles and advance towards the goal step by 
step. Moreover, the decision of desirable direction 
angle is very simple so as to guarantee real-time 
performance. Therefore, this approach overcomes 
global planning’s drawback of on-line real-time 
planning. In each planning window, minimizing the 
angle (desirable direction angle) between desirable 
direction of the robot and polar axis direction of 
which current robot’s position points towards the 
goal is taken into consideration as an optimization 
index to plan local path. Since such index includes 
the global information of the goal, it is guaranteed 
that the planned path is optimal or sub-optimal. 
Hence, desirable direction angle minimization as an 
optimization index indicates the optimization capa-
bility of this approach so that it can overcome local 
planning’s drawback of path optimization. 
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