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Abstract:    This paper presents a pooled-neighbor swarm intelligence approach (PNSIA) to optimal reactive power dispatch and 
voltage control of power systems. The proposed approach uses more particles’ information to control the mutation operation. The 
proposed PNSIA algorithm is also extended to handle mixed variables, such as transformer taps and reactive power source in-
stallation, using a simple scheme. PNSIA applied for optimal power system reactive power dispatch is evaluated on an IEEE 
30-bus power system and a practical 118-bus power system in which the control of bus voltages, tap position of transformers and 
reactive power sources are involved to minimize the transmission loss of the power system. Simulation results showed that the 
proposed approach is superior to current methods for finding the optimal solution, in terms of both solution quality and algorithm 
robustness. 
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INTRODUCTION 
 

The reactive power dispatch is aimed at mini-
mizing the active power loss in the transmission 
network by allocating the reactive power generation 
under several security constraints. The reactive power 
dispatch problem has significant influence on secure 
and economic operation of power systems. The reac-
tive power generation affects the overall generation 
cost via transmission loss. A procedure which allo-
cates the reactive power generation so as to minimize 
the transmission loss, will consequently result in the 
lowest production cost. Obviously, this problem is in 
nature a global optimization problem, which may 
have several local minima with the conventional op-
timization methods easily leading to local optimum. 
Conventional gradient-based optimization algorithms 
widely used to solve this problem for decades 
(Dommel and Tinney, 1968; Hong et al., 1990) have 

many mathematical assumptions (such as analytic and 
differential properties of the objective functions and 
unique minima existing in problem domains) which 
have to be given to simplify the problem, otherwise it 
is very difficult to calculate the gradient variables in 
the conventional methods. Furthermore, in practical 
power system operation, the data acquired by the 
SCADA (Supervisory Control and Data Acquisition) 
system are contaminated by noise. Such data may 
cause difficulties in computation of gradients. Con-
sequently, the optimization could not be carried out 
on many occasions. 

In the last decade, many new stochastic search 
methods have been developed for the global optimi-
zation problems, such as simulated annealing, genetic 
algorithms and evolutionary programming. Genetic 
Algorithms (GAs) are a class of stochastic search 
algorithms that start with a population of randomly 
generated candidates and ‘evolve’ towards better 
solutions by applying genetic operators (crossover, 
mutation, selection, etc.), modelled on the genetic 
processes occurring in nature. Evolutionary compu-
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tation techniques have recently found many applica-
tions in power systems, especially in the economic 
operation area (Yin and Germay, 1991; Iba, 1994; Wu 
et al., 1998; Wong and Wong, 1994; Lee et al., 1995). 
A reliable global optimization approach to reactive 
power dispatch problem has always been of consid-
erable value to both secure and economical operation 
of power systems. 

In this paper, a novel approach for solving op-
timal reactive power dispatch and voltage control 
problem of power systems has been developed, based 
on the recently introduced swarm intelligence algo-
rithms. Swarm intelligence, as demonstrated by 
natural biological swarms, exhibits numerous pow-
erful features that are desirable in many engineering 
systems and can be applied to nonlinear and 
non-continuous optimization problems (Bonabeau et 
al., 1999; Dorigo et al., 1996; Kennedy and Eberhart, 
1995). The swarm intelligence technique can generate 
high-quality solutions in shorter calculation time and 
stabler convergence characteristic than other sto-
chastic methods. This work is devoted to developing a 
pooled-neighbor swarm intelligence approach 
(PNSIA) to optimal reactive power dispatch and 
voltage control of power systems. The convergence 
property of the proposed PNSIA is analyzed using 
standard results from dynamic system theory and 
guidelines for proper algorithm parameter selection 
are derived. A new adaptive strategy for choosing 
parameters is also proposed to assure PNSIA method 
convergence. The proposed PNSIA algorithm is also 
extended to handle mixed variables, such as trans-
former taps and reactive power source installation, 
using a simple scheme. The PNSIA is evaluated on an 
IEEE 30-bus power system and a practical 118-bus 
power system in which the control of bus voltages, tap 
position of transformers and reactive power sources 
are involved to minimize the power transmission loss. 
Simulation results showed that the proposed approach 
is superior to current methods for finding the best 
solution, in terms of both solution quality and algo-
rithm robustness. 

 
 

MATHEMATICAL FORMULATION OF OPTI- 
MAL REACTIVE POWER DISPATCH 
 

The objective of the reactive power dispatch is to 
minimize the active power loss in the transmission 

network, which can be described as follows: 
 

E E

2 2
Q loss ( 2 cos ),k k i j i j ij

k N k N
f P g V V VV θ

∈ ∈

= = + −∑ ∑       (1) 

 
where k=(i,j), i∈NB, j∈Ni. The symbols in Eq.(1) and 
in the following context are given in (Wu et al., 1998). 
The minimization of the above function is subject to a 
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where power flow equations are used as equality, 
constraints, reactive power source installation re-
strictions, reactive power generation restrictions and 
transformer tap-setting restrictions, and bus voltage 
restrictions are used as inequality constraints. 

In most nonlinear optimization problems, the 
constraints are considered by generalizing the objec-
tive function using penalty terms. In the reactive 
power dispatch problem, the generator bus voltages, 
VPV and VS, the tap position of transformer, T, the 
amount of the reactive power source installation QC, 
are control variables which are self-constrained. 
Voltages of PQ-bus, VPQ, and injected reactive power 
of PV-bus, QG, are constrained by adding them as 
penalty terms to the objective function [Eq.(1)]. The 
above problem is generalized as follows: 
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POOLED-NEIGHBOR SWARM INTELLIGENCE 
APPROACH (PNSIA) 
 
Particle swarm optimization approach (PSO) 

Swarm intelligence appears in biological swarms 
of certain insect species (Bonabeau et al., 1999; 
Dorigo et al., 1996) and gives rise to complex and 
often intelligent behavior through complex interac-
tion of thousands of autonomous swarm members. 
Interaction is based on primitive instincts with no 
supervision. The end result is accomplishment of very 
complex forms of social behavior and fulfillment of a 
number of optimization and other tasks. The main 
principle behind these interactions is called stigmergy, 
or communication through the environment. Recently, 
based on the simulation of bird swarm, Kennedy and 
Eberhart (1995; 2001) developed a particle swarm 
optimization (PSO) concept mainly based on simula-
tion of bird flocking in 2D space. According to the 
research results for a flock of birds, birds find food by 
flocking (not by each individual). The observation 
leads to the assumption that every information is 
shared inside flocking. Moreover, according to ob-
servation of human groups behavior, the behavior of 
each individual (agent) is also based on group decided 
behavior patterns such as customs and other behavior 
patterns based on the experiences of each individual. 
The position of each agent is represented by the 
xy-axis position and the velocity (displacement vector) 
is expressed by vx (the velocity of x-axis) and vy (the 
velocity of y-axis). Modification of the agent position 
is realized by using the position and the velocity in-
formation. The PSO algorithm retains the conceptual 
simplicity of the genetic algorithm while being much 
easier to implement and apply to design problems 
with both discrete and continuous design parameters. 
Particle swarm adaptation and its modifications have 
been shown to successfully optimize a wide range of 
continuous functions (Clerc and Kennedy, 2002; 
Mendes et al., 2004). 

Searching procedures by PSO based on the 
above concept can be described as follows: a flock of 
agents optimizes a certain objective function. Each 
agent knows its best value so far (pbest) and its xy 

position. The information corresponds to the personal 
experiences of each agent. Moreover, each agent 
knows the best value so far in the group (gbest) 
among pbests. The information corresponds to the 
knowledge of how the other agents around them have 
performed. Namely, each agent tries to modify its 
position using the following information:  

(1) The distance between the current position 
and pbest, pt; 

(2) The distance between the current position 
and gbest, ˆ tp . 

This modification can be represented by the 
concept of velocity. Velocity of each agent can be 
modified by the following equation: 

 

1 0 1 1 2 2 ˆ( ) ( ) ( ) ( )t t t t t tv c v c r t p x c r t p x+ = + × − + × − , (7) 
 

where c0, c1 and c2 are positive constant coefficients, 
r1 and r2 are uniformly distributed random numbers in 
[0,1], vt is the current velocity of the particle at itera-
tion t, xt is current position of the particle at iteration t, 
vt+1 is the modified velocity. 

The right-hand-side (RHS) of Eq.(7) consists of 
three terms. The first term is the previous velocity of 
the agent. The second and third terms are utilized to 
change the velocity of the agent. Without the second 
and third terms, the agent will keep on ‘flying’ in the 
same direction until it hits the boundary. Namely, it 
tries to explore new areas and, therefore, the first term 
corresponds to diversification in the searching pro-
cedure. On the other hand, without the first term, the 
velocity of the ‘flying’ agent is only determined by 
using its current position and its best positions in 
history. Namely, the agents will try to converge to the 
their pbests and/or gbest and, therefore, the terms 
correspond to intensification in the searching proce-
dure. 

Using the above Eq.(7), a certain velocity that 
gradually gets closer to pbests and gbest can be cal-
culated. The current position (searching point in the 
solution space) can be modified by the following 
equation: 

 
1 1.t t tx x v+ += +                                       (8) 

 
Pooled-neighbor swarm intelligence approach 

In social science context, PSO algorithm com-
bines a social-only component model and a cogni-
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tion-only model (Clerc and Kennedy, 2002). The real 
strength of the particle swarm derives from the social 
interactions among particles as they search the space 
collaboratively (Clerc and Kennedy, 2002). Recently, 
Mendes et al.(2004) proposed an alternative that is 
conceptually more concise and potentially performs 
more effectively than the traditional particle swarm 
algorithm. In this new version, the particle uses in-
formation from all its neighbors, rather than just the 
best one. In this section, an improved adaptation 
strategy with enhanced social interactions is proposed 
for particle swarm optimisation (PSO) algorithm. 
This adaptation strategy uses more particles’ infor-
mation to control the mutation operation and extends 
the original formulas of PSO method, which can 
search the global optimal solution more effectively. 

The third term added to the right-hand-side of 
the velocity Eq.(7) is derived from the successes of 
others, and is considered a “social influence” term. It 
was found that when this effect is removed from the 
algorithm, performance is abysmal (Clerc and Ken-
nedy, 2002). So the social interaction is an important 
factor to improve the PSO performance. To enhance 
the social interactions in the algorithm, this paper 
proposes a new method to improve PSO using some 
fittest particles’ information to modify the particle’s 
position and velocity. Namely, at ith iteration, we 
rearrange the particles in ascending order according 
to their fitness and select the last n particles to modify 
the particle’s position and velocity. Let ,ˆ i tp  denote 
the current position of the particle i in these particles 
at iteration t. The updating equations of PNSIA 
method can be described as follows: 

 

1 0 1 1 2, 2, ,
1

1 ˆ( ) ( ) [ ( ) ( )],
n

t t t t i i i t t
i

v c v c r t p x c r t p x
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1 1.t t tx x v+ += +                        (10) 

 
Each PNSIA method particle modifies its posi-

tion and velocity using the best solution the particle 
achieved and several gbests of neighborhood particles. 
It is similar to the social society in that a group of 
leaders could make better decisions. However, in 
PSO, only one gbest of neighborhood particles is 
employed. This process using some neighborhood 
particles can be called ‘intensifying’ and ‘enhancing’ 

the social influence. Based on this understanding, we 
should intensify these particles which could lead 
individuals to better fitness. As a particle swarm 
population searches over time, individuals are drawn 
toward one another’s successes, with the usual result 
being clustering of individuals in optimal regions of 
the space. 

The convergence analysis can be conducted 
similarly based on the form of the recurrence relation 
of the particle’s position derived (Clerc and Kennedy, 
2002). The analysis can assure convergence of the 
proposed algorithm via appropriately chosen pa-
rameters satisfying the convergence conditions. One 
popular choice of updating parameters is c0=0.7298, 

c1=1.49618 and 2,
1

1.49618
n

i
i

c
=

=∑  (Clerc and Ken-

nedy, 2002). 
 

Mixed-variable handing methods 
In its basic form, the proposed PNSIA algorithm 

can only handle continuous variables. However, tap 
position of transformer and reactive power source 
installation are discrete variables or integer variables 
in optimal reactive power dispatch problem. To han-
dle integer variables, simply truncating the real values 
to integers to calculate fitness value will not affect the 
search performance significantly. The truncation is 
only performed in evaluating the fitness function. 
That is, the swarm will ‘fly’ in a continuous search 
space regardless of the variable type.  

For discrete variables of the ith particle Xi, the 
most straightforward way is to use the indices of the 
set of discrete variables with nD elements: 

 

D

D D D D
,1 ,2 ,[ , ,..., ]i i i i nX x x x= .                  (11) 

 
Let C

iX  denote the continuous variables with nC 
elements:  

 
                     

C

C C C C
,1 ,2 ,[ , ,..., ]i i i i nX x x x= , 

 
then particle i is denoted by C D[ , ].i i iX X X=  For 

particle i, the index value j of the discrete variable D
,i jx  

is then optimized instead of the discrete value of the 
variable directly. In the population, the indices of the 
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discrete variables of the ith particle should be the float 
point variables before truncation. That is, D[1, +1)j n∈ , 
nD is the number of discrete variables. Hence, the 
objective function of the ith particle Xi can be ex-
pressed as follows: 
 

( ),     1,2,..., ,if X i M=                 (12) 
where 

C
, , C

D
, ( ) , ( ) D

,           , 1,..., ,

,      , [1, 1),
i j i j i

i
i int j i int j i

x x X j n
X

x x X j n
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     (13) 

 
where CC n

iX ∈  and DD n
iX ∈  denote the feasible 

subsets of continuous and discrete variables of parti-
cle Xi, respectively. int(x) denotes the greatest integer 
less than the real value x. 

 
Implementation of PNSIA for reactive power op-
timal dispatch 

The general process of PNSIA method is de-
scribed in the above section. Its application to the 
optimal reactive power dispatch is described as fol-
lows: 

 
Pseudo code for the PNSIA algorithm: 

Set k=1; 
Randomly initialize positions and velocities of all particles; 
WHILE (the termination conditions are not met) 

FOR (each particle i in the swarm) 
Calculate fitness: Calculate the fitness value ( )k

if X  of 
the current particle using based on the New-
ton-Raphson power flow analysis results and Eq.(12); 

Update pbest: Compare the fitness value of pbest with 
( )k

if X . If ( )k
if X is better than the fitness value of 

pbest, then set pbest to the current position k
iX ; 

Update gbest: Select n gbest particles in the population 
according to ascending order of fitness values; 

Update velocities: Calculate velocities k
iV  using Eq.(9); 

Update positions: Calculate positions k
iX  using Eq.(10); 

END FOR 
Set k=k+1; 
END WHILE 

 
 
SIMULATION RESULTS 
 

To verify the effectiveness and efficiency of the 
proposed PNSIA based reactive power optimization 

approach, the IEEE-30 bus power system and a prac-
tical 118-bus area power system are used as the test 
systems. The PNSIA has been implemented in Matlab 
6.5 programming language and numerical tests were 
carried on a Pentium IV 2.0 G computer. 

Some parameters must be assigned before 
PNSIA is used to solve reactive power optimization 
dispatch. The population size is set to 50 and the 
maximal generation is set to 300. To evaluate uncer-
tain value combinations of n of PNSIA method, they 
have been executed 30 times to solve the above reac-
tive power optimization dispatch problem under 
various value combinations. The results showed that 
the best solution can be obtained by PNSIA method 
when n=4. 

1. IEEE 30-bus power system 
The IEEE 30-bus system is shown in Fig.1 and 

the system data and operating conditions are given in 
(Wu et al., 1998). The network consists of 48 
branches, 6 generator-buses and 22 load-buses. Four 
branches, (6,9), (6,10), (4,12) and (27,28), are under 
load tap setting transformer branches. The possible 
reactive power source installation buses are 3, 10 and 
24. Six buses are selected as PV-buses and Vθ-buses 
as follows: PV-buses: bus 2, 5, 8, 11,13, Vθ-bus: bus 1. 
The others are PQ-buses. The variable limits are listed 
in Table 1. The transformer taps and the reactive 
power source installation are discrete variables with 
the changes step of 0.01 p.u. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig.1  IEEE 30-bus power system 
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To demonstrate the superiority of the proposed 
PNSIA approach, simulation results have been com-
pared with various techniques available in literature, 
namely, standard genetic algorithm (SGA), adaptive 
GA in (Wu et al., 1998), EP method presented in (Lai 
and Ma, 1997), Broyden’s non-linear programming 
method (Das and Patvardhan, 2002) and PSO method 
(Clerc and Kennedy, 2002). The initial conditions for 
all the methods are the same and given as: Pload=2.834 
p.u., Qload=1.262 p.u. 

The initial generator bus voltages and trans-
former taps are set to 1.0. The total generations and 
power losses are obtained as follows: 

 
2.893857GP =∑  p.u., 0.980199GQ =∑  p.u., 

loss 0.059879P =  p.u.,  loss 0.064327Q = −  p.u. 
 
The voltages outside the limits on three 

PQ-buses are given as follows: 
 

V26=0.932;  V29=0.940;  V30=0.928. 
 

Table 2 summarizes the results of the optimal 
settings as obtained by different methods. These re-
sults showed that the optimal dispatch solutions 
determined by the PNSIA lead to lower active power  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

loss than that found by other methods, which con-
firms that the PNSIA is well capable of determining 
the global or near-global optimum dispatch solution. 
Moreover, these results showed that maximum saving 
is obtained by the PNSIA method. At the same time, 
the proposed method succeeds in keeping the de-
pendent variables within their limits.  

Owing to the randomness in SGA, PSO and 
PNSIA, the algorithms are executed 30 times when 
applied to the test system. The best and worst reactive 
power dispatch solutions together with the associated 
power loss and the standard deviations found by the 
three methods are tabulated in Table 3. PNSIA shows 
good consistency by keeping the difference between 
the best and worst solutions within 1%. In addition, 
the average execution times summarized in Table 3 
show that PNSIA is faster than SGA and PSO in 
speed. Table 4 lists the best control variables found by 
the above three methods in the 30 run times. 

2. A practical 118-bus power system 
The proposed PNSIA method was applied to a 

practical 118-bus power system. The power system 
has 181 transmission elements, 17 generators for 
AVR control, 9 transformers with 9 to 25 positions 
and 14 reactive power source installation buses. At 
initial operating condition, system loss is 141.84 MW 
and represents about 2.72% of the total real-power 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Variable limits (p.u.) 
Reactive power  
generation limits Voltage and tap-setting limits Var source installments 

and voltage limits 
Bus max

GQ  min
GQ  max

GV  min
GV  max

loadV  min
loadV  max

KT  min
KT  max

CQ  min
CQ  max

CV  min
CV  

1 0.596 −0.298 1.10 0.90 1.05 0.95 1.05 0.95 0.36 −0.12 1.05 0.95 
2 0.480 −0.240 − − − − − − − − − − 
5 0.600 −0.300 − − − − − − − − − − 
8 0.530 −0.265 − − − − − − − − − − 
11 0.150 −0.075 − − − − − − − − − − 
13 0.155 −0.078 − − − − − − − − − − 

 
Table 2  Comparison of optimal transmission loss for different methods (p.u.) 

 GP∑  GQ∑  Ploss Qloss PSAVE PSAVE (%) 
Broyden 2.88986 0.93896 0.055860 −0.32304 0.00402   6.7100 

SGA 2.88380 1.02774 0.049800 −0.23426 0.01008 16.8400 
AGA 2.88326 0.66049 0.049260 −0.60151 0.01062 17.7400 

EP 2.88362 0.87346 0.049630 −0.38527 0.01025 17.1200 
PSO 2.88330 0.82500 0.049262 −0.22920 0.01062 17.6200 

PNSIA 2.88270 0.64910 0.048711 −0.21650 0.01120 18.6493 
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generation in the system. There exist 11 deviations at 
the initial operating point. SGA, PSO and PNSIA are 
compared in 300 searching iterations. The same pa-
rameters for IEEE 30-bus system are utilized in the 
simulation. 

To avoid any hazardous interpretation of 
optimization results, related to the choice of particular 
initial particles, we performed the simulation 30 times, 
starting from different agents randomly generated in 
the search space. Table 5 giving the best and worst 
loss values and the computational time shows that the 
PNSIA method with the greater possibility can gen-
erate better solution than SGA and PSO. The average 
loss value and the standard deviations by the proposed 
PNSIA method are smaller than the best results by 
SGA and PSO. The average execution time by PNSIA 
is about 3 times faster than that by SGA, and the av-
erage execution time of PNSIA is 21% less than that 
of PSO. Considering together more particles’ infor-

mation to control the mutation operation, the pro-
posed method performs better than the PSO model, 
both in the quality of the solution discovered and in 
the velocity of convergence, and simulation results 
showed that PNSIA outperforms SGA and PSO, and 
is competent for practical reactive power optimization 
problems. 

 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 

A pooled-neighbor swarm intelligence approach 
(PNSIA) has been developed for determination of the 
global or near-global optimum solution for optimal 
reactive power dispatch and voltage control of power 
systems. The pooled-neighbor swarm intelligence 
approach uses more particles’ information to control 
the mutation operation. The performance of the pro-
posed algorithm demonstrated through its evaluation 
on the IEEE 30-bus power system and a practical 
118-bus power system shows that PNSIA can un-
dertake global search at a fast convergence rate and 
has the feature of robust computation. 
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