
Herrera et al. / J Zhejiang Univ SCIENCE A   2006 7(10):1748-1756 1748

 
 
 
 

Wavelet-based deconvolution of ultrasonic signals in  
nondestructive evaluation*

 

 
HERRERA Roberto Henry†1, OROZCO Rubén2, RODRIGUEZ Manuel3 

(1Department of Informatics, University of Cienfuegos, Cienfuegos 59430, Cuba) 
(2CEETI, Central University of Las Villas, Santa Clara 54830, Cuba) 

(3Department of Physics, Central University of Las Villas, Santa Clara 54830, Cuba) 
†E-mail: henry@finf.ucf.edu.cu 

Received Mar. 1, 2006;  revision accepted July 17, 2006 
 

Abstract:    In this paper, the inverse problem of reconstructing reflectivity function of a medium is examined within a blind 
deconvolution framework. The ultrasound pulse is estimated using higher-order statistics, and Wiener filter is used to obtain the 
ultrasonic reflectivity function through wavelet-based models. A new approach to the parameter estimation of the inverse filtering 
step is proposed in the nondestructive evaluation field, which is based on the theory of Fourier-Wavelet regularized deconvolution 
(ForWaRD). This new approach can be viewed as a solution to the open problem of adaptation of the ForWaRD framework to 
perform the convolution kernel estimation and deconvolution interdependently. The results indicate stable solutions of the esti-
mated pulse and an improvement in the radio-frequency (RF) signal taking into account its signal-to-noise ratio (SNR) and axial 
resolution. Simulations and experiments showed that the proposed approach can provide robust and optimal estimates of the 
reflectivity function. 
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INTRODUCTION 
 

Deconvolution of ultrasonic signals is defined as 
the solution of the inverse problem of convolving an 
input signal, known as the system function h(n), with 
a medium reflectivity function x(n) and can be rep-
resented by  

 
y(n)=h(n)*x(n)+η(n),                      (1) 

 
where y(n) is the measured signal, * denotes the 
convolution operation and η(n) is the additive noise. 

Recovering x(n) from the observation y(n) leads 
to improving the appearance and the axial resolution 
of the RF-signals by removing the dependent effects 

of the measuring system (Wan et al., 2003). The 
signal y(n) corresponds to RF lines of 2D acoustic 
image or 1D signal, where the problem is addressed 
by taking the desired signal x(n) as the input of a 
linear time invariant (LTI) system with impulse re-
sponse h(n). The output of the LTI system is blurred 
by Gaussian white noise η(n) of variance σ2. In the 
frequency domain Eq.(1) can be expressed as 
 

Y( f )=H( f )X( f )+N( f ),                       (2) 
 
where Y( f ), H( f ) and N( f ) are the Fourier transfor-
mations of y(n), h(n) and η(n), respectively.  

If the system frequency response H( f ) has no 
zeros, an estimation of x(n) can be obtained by using a 
simple inverse filter (Neelamani et al., 2004). How-
ever, where H( f ) takes values close to zero, the noise 
is highly amplified, leading to incorrect estimates. In 
such case it is necessary to include a regularization 
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parameter in the inverse filter, which reduces the 
variance of the estimated signal. The best-known 
example of regularized filter for stationary signals is 
the Wiener filter (Adam and Michailovich, 2002). 

When the signals under analysis show non-sta-
tionary properties, such as abrupt changes, the Wiener 
filter based on the Fourier transform does not give 
satisfactory results in the estimation. This is condi-
tioned by the characteristics of the Fourier basis of 
complex exponentials (Wan et al., 2003). It is known 
that wavelets orthonormal basis achieves a better 
matching with the transmitted pulse and leads to a 
better localization in time and frequency domain 
(Neelamani et al., 2004). One of the advantages of 
wavelets is that the signals can be represented with 
some few coefficients different from zero, which 
corresponds with the sparse characteristics of the 
ultrasonic signals, where the trace is only composed 
by values different from zero in cases of abrupt 
changes of acoustic impedance.  

Neelamani et al.(2004) proposed a wave-
let-based regularized deconvolution technique (For-
WaRD) to solve the inverse filtering process, which 
will be used in this paper for the deconvolution of 
ultrasonic signals; furthermore, we adapt the For-
WaRD, by adding the pulse estimation as a prior step 
of the ForWaRD process. 

The initial problem in deconvolution is the ex-
isting or absence of prior knowledge of the system 
impulse response h(n). Oppenheim and Schafer (1989) 
defined the case of estimating x(n) from h(n) as the 
well-known homomorphic deconvolution using the 
real cepstrum for minimum phase signals, or the 
complex cepstrum for the most general case. Taxt 
(1997) compared seven cepstrum-based methods for 
blind deconvolution in the estimation of the reflec-
tivity function in biological media. Michailovich and 
Adam (2003) proposed wavelet-based projection 
methods (WBPM) and wavelet-based denoising 
methods, and achieved significant results in the es-
timation. However, in all these methods some previ-
ous knowledge of the system is required, or the as-
sumption of minimal-phase pulse must be considered. 
This is something that depends on the construction of 
the housing of the piezo-electric and of the impedance 
matching between the transmitter and the crystal. 

We have selected the method of higher order 
spectral analysis (HOSA) because of its immunity to 
noise, and to avoid the assumption of minimum phase 

for the transducer’s electromechanical impulse re-
sponse.  

The process is divided into two stages. The first 
one is the estimation of the ultrasound pulse from the 
bicepstrum. Once an estimation of this function is 
obtained, it is used to cancel out the blurring effect of 
the pulse from the observation data by the selected 
deconvolution procedure.  
 
 
ULTRASOUND PULSE ESTIMATION  
 

The system function described in Eq.(1) as the 
transducer impulse response h(n) is a deterministic 
and causal FIR filter, x(n) representing the medium 
response function assumed by the authors initially, 
without loss in generality, stationary, zero mean and 
non-Gaussian distribution. This last property guar-
antees that its third-order cumulant exists, with η(n) 
representing the zero mean Gaussian noise which is 
uncorrelated with x(n). The third-order cumulant of 
the zero mean signal y(n) is represented by Abeyratne 
et al.(1995) 
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where L is the correlation lag.   

From Eq.(3), the bicepstrum can be computed by 
using the algorithm reported in (Pan and Nikias, 
1988) 
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where F2D and 1

2DF −  are the direct and inverse bidi-
mensional Fourier transform respectively.  

The cepstrum ˆ( )h n  of h(n) is obtained by 
evaluating the bicepstrum along the diagonal m1=m2 
for all n≠0 (Abeyratne et al., 1995) 
 

ˆ( ) ( , ),    0.yh n b n n n= − ∀ ≠                  (5) 

 
Then, from Eq.(5) we may estimate h(n) as 

(Oppenheim and Schafer, 1989) 
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{ }1 ˆ( ) exp ( ( )) .h n F F h n−  =                     (6) 

 
The bispectrum of the white Gaussian noise is 

zero, which allows estimation of h(n) without taking 
into account the contribution of η(n) in Eq.(1). 
 
 
WIENER INVERSION 
 

Once the pulse is estimated to perform decon-
volution the Wiener filter is used. The common ac-
cepted expression to obtain the estimation from Eq.(2) 
is presented in (Honarvar et al., 2004) as follows: 
 

*

est 2 2

( ) ( )( ) ,
( )

Y f H fX f
H f Q

=
+

                    (7) 

 
where Xest( f ) is the Fourier transform of the estimated 
reflectivity function, and Q2 is the regularization pa-
rameter, which is properly selected to control the 
noise content and to avoid the indetermination of 
Eq.(7).  

In (Honarvar et al., 2004), Q2 was called noise 
desensitizing factor and established as: Q2= 
max(|H( f )|2)/100, which uses a fixed value as regu-
larization parameter. Instead of this approach, we 
used a median absolute deviation (MAD) estimator, 
following the method proposed by Donoho (1995), 
which estimates the noise variance on the finest scale 
wavelet coefficients of the observation y(n). 
 
 
ForWaRD IMPLEMENTATION 
 

Reflectivity function estimation by means of 
Eq.(7) implies a Fourier shrinkage. Neelamani et al. 
(2004) proposed another step, so that the signal with 
less Fourier representation may be treated by shrink-
ing its wavelet coefficients, leading to better repre-
sentation of both, smooth signals and highly spiky 
signals, as it is expected from the ultrasonic reflec-
tivity function.  
 
ForWaRD algorithm  

Given the observation y(n) and the ultrasound 
pulse h(n), and setting them to pairs of wavelets 
functions (φ1,ψ1) and (φ2,ψ2), the first one is used for 

the denoising stage and Fourier shrinkage. Then, the 
second one is used for wavelet shrinkage and inverse 
wavelet transformation. The ForWaRD algorithm can 
be summarized as: 

(1) Noise variance estimation ση: 
Discrete wavelet transform (DWT) of the ob-

servation y, to obtain the detail coefficients dL, on the 
finest decomposition level L. The noise standard de-
viation ση is obtained by using an MAD estimator, as 
was proposed by Donoho (1995) 

 
ση=Median(|dL|)/0.6745.                  (8) 

 
(2) The regularization parameter τ for Tikhonov 

shrinkage was determined by Neelamani et al.(2004), 
to achieve the best results in the mean square error 
(MSE) sense, in the range [0.01~10]Nση

2/|y−µy|2, 
where N is the length of y, and µy its mean. 

(3) The first estimation of the reflectivity func-
tion is as follows: 
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where the term in brackets is the shrinking function in 
the Fourier domain. 

(4) The fourth step involves only an inverse 
Fourier transformation (IFT) to obtain the first esti-
mation of the reflectivity function. 

(5) The estimated reflectivity function is de-
composed in the wavelet domain by using the pair 
(φ1,ψ1) in the DWT for denoising purpose. The 
wavelet ψ1 must be selected between those which best 
represent the ultrasound pulse h. 

(6) This step is similar to the previous one, but 
uses the pair (φ2,ψ2), with a smooth wavelet, i.e. only 
few vanishing moments. Finally, we obtained a2,j and 
d2,j, the approximation and detail coefficients respec-
tively. 

(7) A level dependent threshold is applied over 
the detail coefficients d1,j (Donoho, 1995) 

 

2 lg ,j jT Nσ=                         (10) 
 
where σj is the noise standard deviation at each de-
composition level and N is the number of samples . 
The hard thresholding is selected to obtain dth,j 
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(Neelamani et al., 2004). 
(8) The shrinkage in the wavelet domain w

jλ  is 

expressed as  
  

2
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2 2

th, 
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j j
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d
λ

σ
=

+
                      (11) 

 
(9) Eq.(11) is used to shrink the detail coeffi-

cients obtained from Step (8). This is an extension of 
Wiener filter to the wavelet domain, which is ob-
tained by 
  

      w
sh, 2, .j j jd d λ=                        (12) 

 
(10) The final step is the inverse discrete wavelet 

transformation (IDWT) by using the approximations 
a2,j, the detail coefficients obtained from Eq.(12) and 
the pair (φ2,ψ2) to obtain the reflectivity function xF(n). 

The pseudo-code description is as follows: 
(1) DWT {y, (φ1,ψ1)}→estimate ση using MAD; 
(2) Obtain τ using ση and y;  
(3) Xest=Y/H and shrink Xest using τ→Xλ1; 
(4) IFT {Xλ1}→xλ1; 
(5) DWT {xλ1, (φ1,ψ1)}→a1,j, d1,j; 
(6) DWT {xλ1, (φ2,ψ2)}→a2,j, d2,j; 
(7) Apply hard thresholding to d1,j→dth,j; 
(8) Calculate λj

w using dth,j and σj; 
(9) Shrink dsh,j=d2,jλw; 
(10) IDWT {a2,j, dsh, (φ2,ψ2)}→xF(n). 

 
 
COMPUTER SIMULATIONS 
 
Pulse estimation  

For comparating purposes in this section we 
used the same simulated ultrasound pulse as in (Adam 
and Michailovich, 2002), which is a damped sine 
function generated according to 
 

 
2

( ) sin(2π 0.07 )exp 0.005 ,
2
Ph k k k k

  = ⋅ − −  
   

 (13) 

 
where k=1, …, P, with P being the pulse length. In-
stead of a Gaussian reflectivity function used in the 
cited study, we used a Bernoulli-Gaussian distribu-

tion to represent x(n) as was defined in (Kaaresen and 
Bolviken, 1999) a logical computation with a Gaus-
sian white noise (GWN), [GWN<ρr]⋅GWN, where the 
probability ρr governs the sparsity of the distribution. 
We have called ρr as density of reflectors.  

The first simulation is based on a reflectivity 
function (1024 samples) with ρr=0.03.  

The convolution process is depicted in Fig.1, 
where the generated observation y is contaminated 
with GWN distribution N(0, 2

ησ ), while 2
ησ  is se-

lected to have a signal to noise ratio SNR=14 dB, and 
its calculation is given by SNR=20lg(||y||/||y−yη||), 
where yη is the noisy signal.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The pulse estimation using the described model 
was achieved over 50 randomly generated reflectivity 
functions with the same ρr, with the results being 
shown in Fig.2, where all the estimated pulses in the 
upper plot are superimposed; and are shown in the 
lower plot, the mean in solid line, and ±2 standard 
deviation (SD) in dotted line.  

The same procedure was followed using an 
SNR=10 dB, and 7 dB to test the performance of the 
algorithm in different situations as it is found in non- 
destructive evaluation (NDE). The results are shown 
in Table 1, where the mean square error (MSE) of the 
estimation is used to quantify the quality of the esti-
mation.  

Fig.1  Convolution process with SNR=14 dB. (a) Ul-
trasound pulse h; (b) Reflectivity function x, with
ρr=0.03; (c) Observation y 
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The W+D method in Table 1 is the wave-

let-based denoising method proposed by 
Michailovich and Adam (2003). From these results 
we concluded that W+D outperforms the HOSA 
based method for high SNR values, while the HOSA 
shows a small improvement in the MSE at SNR=7 dB. 
In spite of the fact that the statistical difference is not 
significant, the HOSA model does not have the re-
striction of minimum phase of the other methods. 
Both cases in Table 1 outperform the cepstrum and 
wavelet-based projections methods reported in 
(Michailovich and Adam, 2003). 
 
Reflectivity function estimation 

To demonstrate the performance of the For-
WaRD algorithm we use a simulated reflectivity 
function with a low density of reflectors ρr=0.01. 
After the convolution a GWN was added to the re-
sultant signal so as to obtain an SNR of 14 dB (shown 
in Fig.3). 

The deconvolution algorithm must be able to 
distinguish between near reflectors, as shown in the 
reflectivity function in Fig.3. See samples from 450 to 
500; 750 to 800, where the pulses are overlapped, and 
from 950 to 1000. Some of these reflections have an  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

inverted phase which must be resolved by the For-
WaRD algorithm. Initially the pulse was estimated by 
using HOSA. The conventional Wiener filter was 
regularized with Q2 followed by autoregressive 
spectral extrapolation (ASE) as in (Honarvar et al., 
2004) with a Burg model of order 20. 

The result is shown in Fig.4, where we included 
the simulated reflectivity function traced to facilitate 
the visual comparison. In Fig.4b the Wiener filter was 
applied; the result in Fig.4c was obtained following 
the model proposed by Honarvar et al.(2004). This 
result is outperformed by the application of the sub-
sequent step of Wiener filtering in the wavelet domain 
as it is shown in Fig.4d. We used the Daubechies 
wavelets DB12 and DB6 as the pairs described to 
implement the ForWaRD denoising and inversion 
stages respectively. 

The quality of the estimation is measured as the 
reduction of the time support of the ultrasound pulse, 
i.e. the axial resolution, and it is evaluated as the 
autocovariance of the RF signals before and after 
deconvolution calculated from the envelope. Fig.5 
shows the main lobe of the covariance function for the 
two methods tested in this study; the axial resolution 
gain is taken as the difference in number of samples at 
−3 dB drop as in (Adam and Michailovich, 2002). 
The original RF signal in dotted line has a −3 dB 
width of 16 samples; the processed signal using the 
regularized Wiener filter, in dashed line, has 12 

Table 1  MSE results 
SNR (dB) HOSA [MSE±2 SD] W+D* [MSE±2 SD]

14  0.043±0.031 0.034±0.030 
10  0.059±0.038 0.045±0.034 
 7  0.082±0.058 0.086±0.051 

* W+D results given in (Michailovich and Adam, 2003) 
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Fig.2  Pulses estimated using HOSA. (a) Estimated 
pulses; (b) Mean±2 SD 
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Fig.3  Simulated observation with ρr=0.01 and SNR=14 
dB. (a) Ultrasound pulse; (b) Reflectivity function x, 
with ρr=0.01; (c) Observation y 
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samples; while the deconvolved signal using For-
WaRD, in solid line, has 7 samples at the same 
measure. Thus, the axial resolution gain achieved by 
WienerQ is 1.33, and for the implemented method 
using ForWaRD is 2.31. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
As in (Neelamani et al., 2004) we evaluated the 

improvement in SNR (ISNR). In the presented ex-
ample this value was 0.12 dB and 3.29 dB for 
WienerQ and ForWaRD methods respectively.  

The ForWaRD algorithm was tested with the 
inclusion of the pulse estimation step. The results in 
a simulated signal have been successful because the 

Bernoulli-Gaussian distribution has been carefully 
calculated with a value of ρr which guarantees that it 
is non-Gaussian or symmetrically distributed. In 
other cases the application of the bicepstrum concept 
fails. 

The Hinich’s criterion (Swami et al., 1998) was 
used as Gaussianity test providing an upper limit of 
ρr=0.2, starting from which the process becomes 
Gaussian. In real NDE data the reflectivity will be 
sparce (Kaaresen and Bolviken, 1999) and thus far 
from Gaussian. 
 
 
PROCESSING REAL NDE DATA 
 
Experimental results for pulse estimation 

All experiments were carried out with a 
Krautkramer-Branson USN 52R as transmitter. The 
received signal was acquired with a Tektronix TDS 
220 digital oscilloscope connected to a personal 
computer by an RS232 interface. In this experiment a 
16 mm diameter Krautkramer unfocused ultrasonic 
transducer able to transmit a pulse at 2.25 MHz was 
used. The international test block (STBA1, see Fig.9) 
in a cross-section of 25 mm was tested to obtain 
various back wall reflections, as is depicted in Fig.6 
with its power spectrum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

The sampling frequency was 50 MHz and the 
estimated velocity in the medium was 5931 m/s. The 
acquired sequence of 2500 samples length was trun-

Fig.5  Autocorrelation of the envelope of original and
deconvolved signals 
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Fig.6  Signal from STBA1 and power spectrum. 
(a) Acquired signal; (b) Signal power spectrum 
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Fig.4  Deconvolution methods. (a) Simulated reflectivity 
function; (b) Signal obtained by Wiener filter; (c) Signal
obtained by Wiener filter+ASE; (d) Signal obtained by 
ForWaRD+ASE 
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cated to 2048 samples. For the pulse estimation 
process this signal was divided into 16 non-over- 
lapping segments with 128 samples for each segment, 
and the same length was considered for the Fourier 
transform.     

We can clearly see from Fig.7 that the fre-
quency spectrum of estimated pulse has the salient 
features contained in the second back wall echo 
measured experimentally. The center frequency of the 
transducer is 2.25 MHz represented by a peak in the 
power spectrum plot. The real MSE for our estimated 
pulse is 0.0682. 
 
Deconvolution of pulses 

With the estimated pulse the deconvolution pro-
cedure is applied to a sequence of multiple reflections 
from the 25 mm thick section of the STBA1, whose 
result is shown in Fig.8, where two methods are con-
sidered. The WienerQ is related to the Wiener filtering 
using the parameter Q2 as has been used in the simu-
lations, and the ForWaRD is our implementation of 
the algorithm proposed by Nelamani et al.(2004).  

Location and phase of all the three echoes (Fig.8) 
were detected by both methods. Although, the esti-
mated reflectivity function using the approach pro-
posed in this paper shows better resolved peaks 
quantified by axial resolution gain of 2.18 and an 
improvement in SNR (ISNR) of 5.6 dB. Whereas, 
these values for the WienerQ were 1.88 dB and 2.4 
dB respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
Resolving closely positioned reflectors 

Using the same experimental conditions in the 
STBA1 the depth of the notch was tested to seek near 
reflections to be separated as is depicted in Fig.9. 

The signal acquired in the position shown in 
Fig.9 presupposes a difficult test for the algorithm, 
two reflections are overlapped (H2 and H3) while a 
positive phase is expected for all reflections. Again, 
the same pairs of wavelets were used and the For-
WaRD deconvolution procedure was followed by 
ASE. The estimated pulse by HOSA was used as the 
wavelet for deconvolution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.7  Estimated pulse and the power spectrum. (a) Second reflection pulse; (b) Estimated pulse; 

(c) Power spectrum of the second reflection pulse; (d) Power spectrum of the estimated pulse 
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Fig.8  Deconvolution of three back wall echoes. (a) Three 
echoes from the backwall; (b) Estimated reflectivity using 
WienerQ; (c) Estimated reflectivity using ForWaRD 
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Fig.10 shows the initial pulse corresponding to 
the reflection in the front wall; the three sharp peaks 
located at 85, 91 and 100 mm, with positive phase, are 
the echoes at depths H1, H2 and H3 in Fig.9. The 
axial resolution gain for this experiment was 2.33 
with an ISNR=7.86 dB. 

The hypothesis of non-Gaussianity was accepted 
for all the real NDE signals under test. This was ex-
pected as only a limited number of samples had 
nonzero values. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
CONCLUSION 
 

In this paper, we introduced a new method for 
deconvolution of ultrasonic signals in NDE based on 
the ForWaRD concepts. The main goal of our ap-
proach is to obtain the reflectivity function from the 
blurred observation in a blind deconvolution frame-
work. The goal was successfully achieved, with the 
resolution gain in simulations and experiments show- 

ing the feasibility of the method proposed in this work.  
Some problems related to the selection of the 

appropriate wavelet pairs may be overcome by the use 
of adapted wavelets (Mesa, 2005) to the estimated 
ultrasound pulse. The algorithm proved its robustness 
using the same wavelets in both simulated and real 
data.  

The non-Gaussianity assumption of the RF sig-
nal is supported by the success in the pulse estimation 
stage being tested with Hinich’s criterion. Further-
more, the use of HOSA-based models avoids the 
restriction of minimum phase for the ultrasound pulse 
as needed in cepstrum-based methods and WBPM. 
The sparse properties of reflectors were successfully 
represented using the Bernoulli-Gaussian distribution 
in the computer generated RF sequences. 
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Fig.10  Estimated reflectivity function from three 
closely positioned echoes. (a) Signal from three near 
reflectors; (b) Estimated reflectivity function 
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