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Abstract:    A new multi-step adaptive predictive control algorithm for a class of bilinear systems is presented. The structure of the 
bilinear system is converted into a simple linear model by using nonlinear support vector machine (SVM) dynamic approximation 
with analytical control law derived. The method does not need on-line parameters estimation because the system’s internal model 
has been transformed into an off-line global model. Compared with other traditional methods, this control law reduces on-line 
parameter estimating burden. In addition, its overall linear behavior treating method allows an analytical control law available and 
avoids on-line nonlinear optimization. Simulation results are presented in the article to illustrate the efficiency of the method. 
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INTRODUCTION 
 

Bilinear systems are a kind of important 
nonlinear systems with relatively simple structure, 
and many industrial processes can be described as a 
bilinear system. Thus research on the control of this 
kind of systems is very important. On the other hand, 
model predictive control (MPC) (Clarke et al., 1987) 
has been widely used in industrial applications and 
many predictive control methods focusing on bilinear 
systems are emerging (Bloemen et al., 2001; Fontes et 
al., 2004; He et al., 1999; Lakhdari et al., 1995; Liu 
and Li, 2004; Yao and Qian, 1997). These methods 
have solved some problems facing bilinear systems 
and resulted in good control performance. However, 
there are still some problems remained to be solved, 
for instance: (1) If direct use of nonlinear models are 
adopted, the controller design may result in on-line 
solving a high order nonlinear optimization problem 

which may get stuck in some local minimum area; (2) 
Piecewise linearization method results in the easy 
solution of a (or a set of) quadratic programming 
problem(s), but on-line estimation of many linear 
models in only small regions is difficult in real ap-
plications; (3) Some methods take bilinear systems as 
time-varying linear systems and on-line estimating 
methods are applied, however, these bilinear systems 
are nonlinear systems in nature and quick and accu-
rate on-line estimating of parameters is not easy. 

In many cases, a lot of nonlinear systems can be 
regarded as a kind of systems in which operating 
points vary with operating conditions (Peng et al., 
2002). This means that nonlinear systems can be 
locally linearized at any operating points. By doing so, 
linear time-varying model may be used as the internal 
model for MPC, however, this method needs on-line 
parameter estimating.  

In this paper, a MPC design method for a class of 
bilinear systems is presented, which is based on an 
off-line support vector machine ARX model 
(SVM-ARX). This SVM-ARX model is identified 
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off-line and used as the global model to represent the 
system dynamics within the whole range of operation. 
By doing so, the tiring on-line estimation of parame-
ters is not required anymore, and as the obtained 
model is a global linear model, nonlinear optimization 
is not required, either. Thus the obtained control law 
is analytical. To illustrate this method, two examples 
are given. The rest of the paper is organized as fol-
lows: Section 2 deals with the system model and gives 
a new global off-line model design method. Control-
ler design method is presented in Section 3. Section 4 
gives comparison studies on different types of bilin-
ear systems. Conclusion is in Section 5. 

 
 

SYSTEM MODEL AND ITS PRESENTATION 
 
Model structure  

Consider the following SISO discrete time-    
invariant bilinear system 

 
A(z−1)y(t)=B(z−1)u(t−1)+D(z−1)u(t−1)y(t−1)+e(t)/∆, 

(1) 
 

where y(t) is the output, u(t) is the input, e(t) denotes 
white noise independent of the observations. ∆=1-z−1 

is the difference operator. z is the z transfer operator.  
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Lemma 1 (Peng et al., 2002; Priestley, 1980)    
Nonlinear system 
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where f(⋅) is the unknown nonlinear function, 
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can be described by the following global AR model: 
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Eq.(3) is the global linear model of the original 

nonlinear model shown in Eq.(2); the coefficients of 
Eq.(3) are expressed by some functions of the state 
X(t−1). Based on Lemma 1, considering the bilinear 
system Eq.(1) to be controlled, introduce the follow-
ing method to construct a global linear model for the 
bilinear system. 

Define 
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Eq.(1) can be rewritten as  
 

A(z−1 )y(t)=[B(z−1) +D(z−1) y(t−1)] u(t−1)+e(t)/∆.    (5) 
 

Introduce a SVM (Suykens and Vandewalle, 
1999) to construct the global linear model for Eq.(5), 
and the derived SVM-ARX model is 
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Compare Eq.(5) with Eq.(6), let 
 

ϕ0(W(t−1))=0, 
φy,r(W(t−1))=ar  (r=1,2,…,na), 
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                            (r=0, 1, …, nb),                           (7) 
 
where αi,r, σ2, β are the parameters of SVM, Wi(t−1) 
is the ith item of training data, N is the number of 
training data. 

Note that the parameters of the global linear 
model shown in Eq.(6) are functions of W(t−1), and 
local linearization of the system can also be obtained 
at any operating point by fixing W(t−1) into Eq.(6), it 
means that the evolution of the process at time t−1 is 
governed by a set of coefficients {φy,r(W(t−1)), 
φu,r(W(t−1))}, all of which depend on the operating 
point of the process at time t−1. 
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Note that in Eq.(5) 
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And the ith term of Eq.(8) is  
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Using the operating point dependent coefficients 
of Eq.(6), especially in view of the perfect properties 
of SVM in function approximation, makes the 
SVM-ARX model very efficient in representing the 
behaviour of the system at each operating point. In 
this paper, Eq.(6) is taken as the internal model for the 
predictive controller design. All the parameters of 
Eq.(6) are identified off-line, which avoids the prob-
lems of on-line parameter estimation, such as diver-
gence and computing burden, etc. 

 
Off-line parameter identification 

The parameter estimation of SVM model shown 
in Eq.(7) is a nonlinear parameter optimization 
problem. For the SVM model Eq.(7), select the in-
put-output data within the whole operating area, and 
take T
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The cost function is selected as  

 

T 2

, , 1

1 1min ( , ) ,
2 2

N

ke k
J e e

β
γ

=

= + ∑w
w w w              (9) 

 

such that dk=wTϕ(Xk)+θ+ek (k=1, 2, …, N) with ϕ(⋅): 
hnn→ a function which maps the input space into 

a so-called higher dimensional (possibly infinite di-
mensional) feature space, weight vector hn∈w in 
primal weight space, error variables ke ∈  and bias 
term θ. 

After elimination of w and e, the solution is 
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where D=[d1,d2,…,dN]T, 1=[1,1,…,1]T, α=[α1,r,α2,r, 
…,αN,r]T, Ωij=ϕ(Xi)Tϕ(Xj)=K(Xi, Xj), i, j=1, 2, …, N, 
I is the unit matrix with proper dimension. 

 
 

PREDICTIVE CONTROL BASED ON SVM-ARX 
MODEL 
 
Multi-step-ahead prediction  

For simplicity, let n=na, m=nb+1, then Eq.(6) can 
be written as  

 
y(t)=A1y(t−1)+…+An+1y(t−n−1)+B1,0∆u(t−1) 

+…+B1,m−1∆u(t−m)+e(t),                        (11) 
 

where A1=1+φy,1, Ai=φy,i−φy,i−1 (i=2, 3, …, n), An+1= 
−φy,n, B1,i=φu,i  (i=0, 1, …, m−1). 

The optimal predictive output Y consists of three 
parts: the first part is determined by past inputs and 
outputs, which is denoted as Ypast; the second part is 
determined by present and future inputs, which is 
denoted as GU; the third part is prediction error, de-
noted as E. Note that for simplicity, take both the 
prediction horizon and control horizon as p, and E is 
just the feedback correction part whose elements are 
y(t)−ŷ(t), where ŷ(t) is the estimated output of the 
process. 

 
                             Y=Ypast+GU+E,            (12) 

 
where  

Y=(ŷ(t+1/t), ŷ(t+2/t), …, ŷ(t+p/t))T, 
Ypast=(ypast(t+1), ypast(t+2), …, ypast(t+p))T, 
U=(∆u(t), ∆u(t+1), …, ∆u(t+p−1))T, 
E=(y(t)−ŷ(t), y(t)−ŷ(t), …, y(t)−ŷ(t))T, 
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Ypast can be calculated through Eq.(6), the ele-
ments in G are calculated as follows (Jin and Gu, 
1990): 
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Predictive control law  
The reference trajectory is 
 

yr(t)= y(t), 
           yr(t+k)=µky(t)+(1−µk)ys,    k=1, 2, …, p,       (14) 
 
where µ is the smoothing factor, ys is the set point. 

Let us form a trajectory vector and a cost func-
tion as  

 
Yr=(yr(t+1), yr(t+2), …, yr(t+p))T, 
J=min{(Yr−Y )T(Yr−Y )+λ2U TU},                 (15) 

 

where λ2 is the weighting part on control increments, 
from ∂J/∂U=0, the control increments are 
 
           U=(GTG+λ2Ĩ)−1GT(Yr−Ypast−E),                   (16) 
 

where Ĩ is the unit matrix with appropriate dimension. 
Define qT as the first row of (GTG+λ2Ĩ)−1GT, 

then 
 

    u(t)=u(t−1)+qT(Yr−Ypast−E).                (17) 
 

This algorithm is summarized as follows: 
Step 1: Get the process output y(t) and substitute 

it into Eq.(6) to gain the linear model at the present 
operating point; 

Step 2: Calculate Ypast using Eq.(6); 
Step 3: Calculate the reference trajectory using 

Eq.(14); 
Step 4: Calculate the elements of G using 

Eq.(13); 
Step 5: Get the control law u(t) using Eq.(17); 
Step 6: Return to Step 1. 

 
 
SIMULATION STUDIES  
 
Example 1    A minimum phase system  
 

y(t)−1.5y(t−1)+0.7y(t−2) 
=u(t−1)−0.7u(t−2)+0.3u(t−1)y(t−1) 

+0.1u(t−2)y(t−2)+e(t)/∆.                               
 

The global off-line SVM-ARX model of bilinear 
system Eq.(18) is derived through the method de-

scribed in Section 2, the control parameters are p=5, 
λ2=1, µ=0.65, e(t) is white noise independent of the 
observations ranging from −0.01 to 0.01. This paper 
gives a comparison of the proposed method with Liu’s 
method (Liu and Li, 2004) which is recognized widely 
in the area. The simulation procedure is as follows: 

A unit step change is added to the setpoint input 
at time t=0 s and a step change of load disturbance 
with magnitude −0.2 is added to the process at time 
t=150 s. Simulation results are illustrated in Fig.1. It 
can be seen that the proposed method results in the 
improved tracking performance (Fig.1a) and distur-
bance rejection (Fig.1b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 2    A nonminimum phase system (Lakhdari 
et al., 1995) 

Simulation conditions remain the same as those 
in Example 1, tracking performance is shown in Fig.2 
and disturbance rejection performance is shown in 
Fig.3. It is seen that the proposed method provides 
satisfactory tracking performance (Fig.2a) and dis-
turbance rejection (Fig.3a). 
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Fig.1  Tracking performance (a) and disturbance re-
jection (b) for Example 1 
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CONCLUSION  
 

This paper proposed a new off-line SVM-ARX 
model based predictive control method for a class of 
bilinear systems. The SVM-ARX model has the ad-
vantages of linear model and the merit of support 
vector machine (SVM) in function approximation. 
The derived off-line model can represent the whole 
behavior of the bilinear systems and thus on-line 
parameter estimation is not necessary. 

A derived off-line model based MPC is pro-
posed with good performance results. The control law 
is analytical and on-line nonlinear optimization is not 
required anymore. 
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Fig.2  Tracking performance of proposed method (a) and Liu’s method (b) for Example 2 

Fig.3  Disturbance rejection performance of proposed method (a) and Liu’s method (b) for Example 2 
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