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Abstract:    This paper presents the matrix representation for the hyperbolic polynomial B-spline basis and the algebraic hyper-
bolic Bézier basis in a recursive way, which are both generated over the space Ωn=span{sinht, cosht, tn−3, …, t, 1} in which n is an 
arbitrary integer larger than or equal to 3. The conversion matrix from the hyperbolic polynomial B-spline basis of arbitrary order 
to the algebraic hyperbolic Bézier basis of the same order is also given by a recursive approach. As examples, the specific ex-
pressions of the matrix representation for the hyperbolic polynomial B-spline basis of order 4 and the algebraic hyperbolic Bézier 
basis of order 4 are given, and we also construct the conversion matrix between the two bases of order 4 by the method proposed in 
the paper. The results in this paper are useful for the evaluation and conversion of the curves and surfaces constructed by the two 
bases. 
 
Key words:  Matrix representation, Hyperbolic polynomial B-spline basis, Algebraic hyperbolic Bézier basis, Conversion matrix 
doi:10.1631/jzus.2006.AS0181                     Document code:  A                    CLC number:  TP391.72 
 
 
INTRODUCTION 
 

The Bézier basis and B-spline basis are two 
important bases over the space span{tn, tn−1, …, t, 1} 
that are widely used to construct freeform curves and 
surfaces. However, there still exist several limitations 
of the NURBS model that are shown in (Mainar et al., 
2001). These limitations motivate the research of 
several new spline curve and surface schemes for 
geometric modelling in CAGD. Two new bases over 
the space Ωn=span{sinht, cosht, tn−3, …, t, 1}, n≥3 
were proposed in (Lü et al., 2002; Li and Wang, 2005) 
respectively. The hyperbolic polynomial (HP) 
B-spline basis (Lü et al., 2002) and the algebraic 
hyperbolic (AH) Bézier basis (Li and Wang, 2005) 
are both defined by the integral approach. In CAGD, 
it is both convenient and practical to describe curves 

and surfaces by matrix representation having advan-
tages of efficient evaluation using Horner’s schema 
and easy conversion between different shape repre-
sentations as shown in (Grabowski and Li, 1992). In 
this paper, we will present the matrix representation 
for the two bases and the conversion matrix from the 
HP B-spline basis to the AH Bézier basis.  
 
 
MATRIX REPRESENTATION FOR THE AH BÉ-
ZIER BASIS 
 

In (Li and Wang, 2005) the AH Bézier basis 
functions are constructed in a recursive way, starting 
with the two initial functions: 

 

0,1 1,1
sinh( ) sinh( )= , ( )= ,

sinh sinh
t tB t B tα

α α
− t∈[0,α], α∈[0,∞]. 

 
For n>1, the AH Bézier basis functions {B0,n(t), 
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B1,n(t), …, Bn,n(t)} of the  space Ωn+1=span{sinht, 
cosht, tn−2, …, t, 1} are defined recursively by: 
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where , ,0
1 ( )d ,i n i nB t t

α
δ = ∫ 0<i<n. So the definition of 

the AH Bézier basis can be described as follows:   
Definition 1    The AH Bézier basis over the space 
Ωn+1=span{sinht, cosht, tn−2, …, t, 1} is given by the 
above functions {B0,n(t), B1,n(t), …, Bn,n(t)}. 

From the recursive definition of the AH Bézier 
basis, we can easily obtain two properties of the basis: 
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From the definition of the AH Bézier basis and 
the two above properties, we can obtain the matrix 
representation of this basis. Now supposing that we 
have got the matrix ,( )n

i j n ne ×  representing the AH 

Bézier basis over the space Ωn, we will derive the 
matrix 1

, ( 1) ( 1)( )n
i j n ne +

+ × +  that is the matrix representation 

of the AH Bézier basis over the space Ωn+1 on the 
basis of ,( ) ,n

i j n ne ×  which can be described by the fol-

lowing theorem:    
Theorem 1    Suppose (B0,n(t), B1,n(t), …, Bn,n(t))= 
(sinht, cosht, tn−2, …, t, 1) 1

, ( 1) ( 1)( )n
i j n ne +

+ × + and the matrix 

,( )n
i j n ne ×  is known, then 
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Proof    Considering the derivatives of the AH Bézier 
basis functions, we can easily get the following result: 
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And from Eq.(1), we can derive 
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where 
0 1 0 0
1 0 0
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n n
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Comparing the above two equation, Eq.(3) is 

obvious. 
In order to prove Eq.(4), we let t=0 in the sup-

position and have 
 

1
0, 1, , , ( 1) ( 1)( (0), (0),..., (0)) (0,1,...,0,1)( ) .n
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Applying Eq.(2), we can get 

 

2,1 1 2,2 2 2, 1 1(1,0,...,0) ( , ,..., ).n np w p w p w+ += + + +  
 
Hence Eq.(4) holds. 

This proves the theorem. 
Since Theorem 1 only establishes the relation-

ship between ,( )n
i j n ne × and 1

, ( 1) ( 1)( ) ,n
i j n ne +

+ × +  if we want to 

obtain the specific expression of 1
, ( 1) ( 1)( ) ,n

i j n ne +
+ × +  we 

still have to know the matrix representation of the AH 
Bézier basis of the lowest order which is 3. From the 
definition of the AH Bézier basis, we can easily get 
the matrix representation formula for the AH Bézier 
basis of order 3: 
Proposition 1    The matrix representation formula 
for the AH Bézier basis of order 3 is: 
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Now, we can get the matrix representation of the 

AH Bézier basis of arbitrary order by applying 
Theorem 1 and Proposition 1 recursively. As an in-
stance, let us construct the matrix representation for 
the AH Bézier basis of order 4: 
Proposition 2    The matrix representation formula 
for the AH Bézier basis of order 4 is: 
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where sinh (cosh 1) sinh,  .
cosh 2sinh cosh 1
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− −
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Proof    From Proposition 1 and the definition of δi,n, 
we can get: 
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Then, employing Theorem 1, Eq.(5) holds. 
This proves the proposition.  

 
 
MATRIX REPRESENTATION FOR THE HY-
PERBOLIC POLYNOMIAL (HP) B-SPLINE BASIS 
 

The   HP   B-spline  basis   functions   are   well- 
defined for arbitrary real numbers as shown in (Lü et 
al., 2002). But in order to conveniently acquire the 
matrix representation of the HP B-spline basis we just 
consider an interval (0, α). And through the local 
support property of the HP B-spline basis proposed in 
(Lü et al., 2002), we know that the nonzero HP 
B-spline functions of order n+1 on the interval (0, α) 
are N−n,n+1(t), N1−n,n+1(t), …, N0,n+1(t). Now let us in-
troduce how the HP B-spline is defined recursively in 
(Lü et al., 2002). Beginning with the following func-
tions: 
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Hence the definition of the HP B-spline basis is: 

Definition 2    The hyperbolic polynomial B-spline 
basis of order n is Ni,n+1(t) (i=0, ±1, ±2, …). 

Two basic and useful properties of the HP 
B-spline basis that will be used later are listed below: 
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σ
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We also construct the matrix representation of 
the HP B-spline basis through a recursive approach, 
and now present a theorem describing the relationship 
between matrix representation of the HP B-spline 
basis of the higher order and that of the lower order. 
Theorem 2  Suppose (N−n,n+1(t), N1−n,n+1(t), …, 
N0,n+1(t))=(sinht, cosht, tn−2, …, t, 1) 1

, ( 1) ( 1)( )n
i j n nf +

+ × + and 

the matrix representation ,( )n
i j n nf × for the HP B-spline 

basis of order n is known, then 
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i j n n n n i j n n n nh f× + × × × += M Y Mn×n is the 

matrix shown in Theorem 1, and 
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Proof    The process of the proof is the same as that in 
Theorem 1. So we omit the details. 

This proves the theorem. 
To determine the definitive expression of the 

matrix representation formula for the HP B-spline 
basis of the arbitrary order, we must know the matrix 
representation of the HP B-spline basis of the initial 
order that is 3. Through simple calculation with the 
definition of the basis, we can get the matrix repre-
sentation formula for the HP B-spline basis of order 3: 
Proposition 3    The matrix representation for the HP 
B-spline basis of order 3 is  
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Now the matrix representation of the HP 

B-spline basis of arbitrary order can be obtained 
through a recursive application of Theorem 2 and 
Proposition 3. The following proposition can serve as 
an example for Theorem 2. 
Proposition 4    The matrix representation for the HP 
B-spline basis of order 4 is 
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Proof    Employing the proposition 3, we can get 
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And we also have 
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3 3 3 4
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Applying  σ−2,3, σ−1,3, σ0,3, M3×3, Y3×4 in Theorem 

2, we can obtain the 4
, 4 4( )i jf ×  as shown in Eq.(6). 

This proves the proposition. 
 
 
CONVERSION MATRIX FROM THE HP B-   
SPLINE BASIS TO THE AH BÉZIER BASIS 
 

As two different bases over the same space, we 
spontaneously want to know the relationship between 
the two bases which could be useful for exploring the 
properties of the curves and surfaces constructed by 
the two bases. From what has been discussed above, 
we can find that the conversion matrix between the 
AH basis and the HP basis could be easily obtained by 
some matrix computation. Now we will construct the 
conversion matrix from the HP B-spline basis to the 
AH Bézier basis in a recursive way. If we know the 
conversion matrix ,( )n

i j n na ×  of order ,n  the following 

theorem shows the way in which we can derive the 
conversion matrix 1

, ( 1) ( 1)( )n
i j n na +

+ × + of order ( 1).n +  

Theorem 3   Suppose (N−n,n+1(t), N1−n,n+1(t), …, 
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n n i j n nB t a +
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the conversion matrix from the HP B-spline basis of 
order n to the AH Bézier basis ,( )n
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Proof    Differentiating the HP B-spline basis directly, 
we have 
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The derivative of the HP B-spline basis can also 
be expressed as 
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Comparing Eqs.(11) and (12), we have 
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Now we let t=0 in the two bases, then we have  
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1
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Hence Eq.(7) holds.  

And equalling corresponding components of the 
two matrices in Eq.(13) , we can easily figure out that 
Eqs.(8), (9) and (10) hold. 

This proves the theorem. 
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The specific expression of 1
, ( 1) ( 1)( )n

i j n na +
+ × +  is de-

terminated by the initial conversion matrix indicating 
the relation between the HP B-spline basis of order 3 
and the AH Bézier basis of the same order. Through 
Proposition 1 and Proposition 3, we can get the initial 
conversion matrix as shown in the following propo-
sition. 
Proposition 5    The conversion formula from the HP 
B-spline basis of order 3 to the AH Bézier basis of the 
same order is 
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1 1 0
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1 10
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Now the conversion matrix from the HP 

B-spline basis of the arbitrary order to the AH Bézier 
basis can be derived by recursively applying Theorem 
3 and Proposition 5. As an application of Theorem 3, 
the conversion matrix from the HP B-spline basis of 
order 4 to the AH Bézier basis is presented as follows: 
Proposition 6    The conversion formula from the HP 
B-spline basis of order 3 to the AH Bézier basis of the 
same order is 
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Proof    From the definitions of δi,n and σi,n, we can get 
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and we have 
 

3
, 3 3

1/ 2 1/ 2 0
( ) 0 1 0 .

0 1/ 2 1/ 2
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 =  
 
 

 

 
Employing Theorem 3, we can easily find that 

Eq.(14) holds. 
This proves the proposition. 

 
 
CONCLUSION 
 

In this paper, we present the matrix representa-
tion for the hyperbolic polynomial B-spline basis and 
the algebraic hyperbolic Bézier basis over the space 
Ωn=span{sinht, cosht, tn−3,…, t, 1} (n≥3) and give the 
explicit expressions of the matrix representation for 
the two bases of order 4. We also present the conver-
sion matrix from the HP B-spline basis to the AH 
Bézier basis and show an example of order 4. The 
matrix forms for curves and surfaces are largely 
promoted in CAD. So we expect the results can be 
employed in the CAD/CAM systems. 
 
References 
Grabowski, H., Li, X., 1992. Coefficient formula and matrix of 

nonuniform B-spline functions. Computer-Aided Design, 
24(12):637-642. [doi:10.1016/0010-4485(92)90018-6] 

Li, Y.J., Wang, G.Z., 2005. Two kinds of B-basis of the alge-
braic hyperbolic space. Journal of Zhejiang University 
SCIENCE, 6A(7):750-759. [doi:10.1631/jzus.2005. 
A0750] 

Lü, Y.G., Wang, G.Z., Yang, X.N., 2002. Uniform hyperbolic 
polynomial B-spline curves. Computer Aided Geometric 
Design, 19(6):379-393. [doi:10.1016/S0167-8396(02) 
00092-4] 

Mainar, E., Peña, J.M., Sánchez-Reyes, J., 2001. Shape pre-
serving alternatives to the rational Bézier model. Com-
puter Aided Geometric Design, 18(1):37-60.  [doi:10. 
1016/S0167-8396(01)00011-5] 


