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Abstract:    A new approach is proposed in this paper for the problem of the target motion analysis (TMA) with signal propagation 
time delay. This problem is an unobservable tracking problem in which the acoustic signal transmits with time delay. We present 
an intelligent range parameterized unscented Kalman filter (IRPUKF) algorithm to estimate the state of the nonlinear unobservable 
tracking system and propose a recursive model parameter online adjustment method to deal with the time delay in signal propa-
gation. In a simulation of tracking target using a maneuvering acoustic sensor with signal time delay case study, the effectiveness 
and efficiency of the proposed algorithm is testified to perform better, compared with the range parameterized extended Kalman 
filter (RPEKF) algorithm. 
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INTRODUCTION 
 

In a standard target motion analysis (TMA) 
problem, we want to estimate the target kinematics 
parameter using the bearings only from measurement 
of one maneuvering sensor platform or sensor array 
(Kronhamn, 1998). The motion of the target is 
assumed to be constrained to a straight line, constant- 
speed segments separated by maneuvers in course and 
speed (Peach, 1995). The range parameterized ex-
tended Kalman filter (RPEKF) algorithm (Peach, 
1995) can be applied to this case with satisfying result. 
Here we focus on a special TMA issue, in which the 
signal transmits with time delay. This problem arises 
in many important practical applications, such as 
submarine tracking with sonar or aircraft surveillance 
with radar in a passive mode (Ristic et al., 2004). 
Some batch type estimation algorithms for this case 
have been presented, such as the nonlinear square 
(NLS) method (Lo et al., 2000), the maximum 

likelihood (ML) method (Dommermuth and Schiller, 
1984) and the Taylor series (TS) method (Foy, 1976), 
etc. These approaches all need measurement data 
from sensor array or sensor network. In this paper, we 
propose a recursive intelligent range parameterized 
unscented Kalman filter (IRPUKF) algorithm which 
only needs data from a single maneuvering sensor. It 
combines the merit of the RPEKF and the variable 
structure multiple model (VSMM) algorithm (Li et al., 
2005) and can deal with the bearings only target 
tracking with signal time delay. 
 
 
PROBLEM DESCRIPTION  
 
System model  

In general, we consider the TMA problem in 2D 
space for simplicity (Passerieux and van Cappel, 
1998). Assume the target kinematics parameter in 
Cartesian coordinate at time k is t t t t

,[ , , ,k k x k kx v y=X  
t T

, ] ,y kv where t t( , )k kx y  is the target position and 
t t
, ,( , )x k y kv v  is the target velocity. Because of the time 
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delay in the signal propagation time delay—the speed 
of the target is comparable with the sound in air—the 
acoustic signal emitted by the target at time k will 
arrive at the sensor at time k′. The sensor state at time 
k′ is denoted as s s s s s T

, ,[ , , , ] .k k x k k y kx v y v=X  k and k′ sat-
isfy the following time delay function: 

 
                         t,s ( ) / ,k k R k c′ = +                               (1) 
 

where Rt,s(k) is the distance between the target (at 
time k) and the sensor (at time k′), c is the sound speed 
in air. It is easy to conclude that if the sensor scan 
period ∆T is constant, the signal emitted interval Tk 
will be variable. Define the system state as Xk= 

t s T
, ,[ , , , ]k k k x k k y kx v y v− =X X and k ′z as the noise- 

corrupted bearing measurement, we can get the fol-
lowing dynamic model: 
 

                      s
1 ,k k k k k k+ = + −X F X G v a                  (2) 

                        ( ) ,k k k′ ′= +z h X w                      (3) 
where  

 

1 0 0
0 1 0 0

,
0 0 1
0 0 0 1

k

k
k

T

T

 
 
 =
 
 
 

F
2

2

0
/ 2 0

,
0
0 / 2

k

k
k

k

k

T
T

T
T

 
 
 =
 
 
 

G     (4) 

and 

         

s s s
( 1) ,

s s
,( 1) ,s

s s s
( 1) ,

s s
,( 1) ,

,

k k x k

x k x k
k

k k y k

y k y k

x x T v
v v

y y T v
v v

′ ′ ′+

′ ′+

′ ′ ′+

′ ′+

 − − ∆ ⋅
 − =  − − ∆ ⋅
 

−  

a                (5) 

 

1

1

1

1

tan ( / ),        0, 0;
tan ( / ) π,  0, 0;

( )
tan ( / ) π,  0, 0;
tan ( / ),        0, 0,

k k k k

k k k k
k

k k k k

k k k k

y x x y
y x x y
y x x y
y x x y

−

−

−

−

 > >
 + < >= 

+ < <
 > <

h X         (6) 

 
vk, k ′w  are i.i.d. zero-mean Gaussian white noise 

vectors with covariance matrices Q, R. s
ka  caters for 

the sensor accelerations (Ristic et al., 2004). 
The time delay function can be converted into 

the following equation: 
 

t,s t,s , 1

t

( ) ( 1)
,k kR k R k R

T
c c c

++
+ ∆ = +  

where Rk,k+1 is the displacement of the target from 
time k to time k+1, ct is the target velocity. Denoting 
the state estimation at time k as |

ˆ ,k kX  yields the fol-
lowing formula: 
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   (7) 
 

Eqs.(2), (3) and (7) form the TMA model with 
signal time delay. 
 
 
IRPUKF ALGORITHM 
 
Division and intelligent management 

The division strategy of the range interval is like 
the RPEKF algorithm. Suppose the target valid range 
interval is (Rmin,Rmax), divide it into NF,k sub-intervals 
according to geometrical progression as follows (Gai 
et al., 2005; Julier et al., 2000): 

 
,1/

max min( / ) F kNR Rρ = , ( ) 1min ( ),
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where ρ is the ratio, r(i) and σ (i) are the range and 
standard deviation of the ith subinterval, and CR is the 
variance. Each subinterval is endowed with an un-
scented Kalman filter and its probability ( )i

kw  is up-
dated according to Baye’s rule: 
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( | )kp i′z  is the likelihood of the measurement. 

During the recursive course, some tracker 
weight becomes so small that it has little effect on the 
state estimation. We design a threshold PLB for the 
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tracker weight and delete the subintervals whose 
weight is smaller than it. Under the Gaussian as-
sumption, the low-bound is given according to the 
“3σ rule”: 

 
         |

ˆ( 3k kp σ−X ( )
|

ˆ i
k k≤ ≤X | LB

ˆ 3 ) 1 ,k k Pσ+ ≤ −X    (11) 

         LB 1 (3),P Φ= −                         (12) 
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∫              (13) 

 
where Φ(ξ) is the standard normal cumulative prob-
ability function. If ( )

LB ,i
kw P≤  the corresponding 

subinterval is deleted and the other weights are 
renormalized. 
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In another case, the maximum weight subinter-

val may be in the margin of the range interval. We 
will add a new subinterval close to it and assign an 
initial weight to the new tracker. See Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The weights are renormalized as follows: 
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Using the intelligent management method, we 
reduce the elapsed time and improve the precision of 
the algorithm. 
 
Algorithm flow 

Step 1: Initialization 
The range interval is divided into NF,0 sub re-

gions with each initial weight ( )
0 ,01/ .i

Fw N= The 
posterior probability density of the ith filter is as-
sumed Gaussian ( ) 0 ( ) ( ) ( )

0 0 0|0 0|0
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Represent the density by a set of 2a+1 sample 

points ( )( ) 2 1
0 1{ }i j a

j
+

=X and their weights ( )( ) 2 1
0 1{ }i j a

jω +
= ac-

cording to the unscented transform (Ristic et al., 2004) 
(Julier et al., 2000), where a is the dimension of the 
system state: 
 

( )(0) ( )
0 0|0

ˆi i=X X ,      ( )(0)
0 ,

( )
i

a
κω
κ

=
+

 

( )( )( ) ( ) ( )
0 0|0 0|0

ˆ ( ) ,  1,  ...,  ,i j i i

i
a j aκ= + + =X X P  

         ( )(0)
0 ,  

2( )
i

a
κω
κ

=
+

                  (19) 

( )( )( ) ( ) ( )
0 0|0 0|0

ˆ ( ) ,  1,  ...,  2 ,i j i i

i
a j a aκ= − + = +X X P  

( )(0)
0 ,

2( )
i

a
κω
κ

=
+

 

 

where κ is a scaling parameter and ( )( )
0|0( ) i

i
a κ+ P  is 

the ith row of the matrix square root of ( )
0|0( ) .ia κ+ P  

Step 2: Recursive estimation 
(1) At time k, represent the density by a set of 

particles ( )( ) 2 1
1{ }i j a

k j
+

=X with weights ( )( ) 2 1
1{ }i j a

k jω +
= accord-

ing to the unscented transform; 
(2) Estimate the model parameter online 
 

Maximum weight tracker 

New tracker for case 2 New tracker for case 1 

Rmax,k 

Rmax,k 

Rmin,k 

Fig.1  The augmentation of the range interval 
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for λ=0; λ≤Λ; λ++ 
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break; 
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end 
 

Note that the search step λ may also take nega-
tive value in practice; the above code is just for sim-
plicity. Λ is the parameter’s perturbation bound, and 
can be calculated approximately as follows:   
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If λ takes negative value, we use the upper bound 

and vice versa. Thus we get the estimated model pa-
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(4) Calculate the likelihood and the gain 
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(5) Update the filter weights and manage the 
trackers intelligently 
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If ,( )

1 LBmin{ } F kNi
k iw P= ≤  

        {Delete the minimum weight tracker and renormalize the 
other weights, NF,k+1=NF,k−1} 

Else if ,( )
1 1 ,arg max{ } F kNi

k i F ki
w N+ = = or 1 

{Add a new tracker by the corresponding side with a 
given weight and renormalize the other weights, 
NF,k+1=NF,k+1} 

 
(6) Update 
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(7) Output and return to Step 2(1) 
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Performance analysis 

For the nonlinear property of the problem, we 
replace the EKF with the UKF to improve the esti-
mation precision at the cost of the elapsed time and 
computing resource. Each sample particle of the UKF 
can be regarded as a single Kalman filter, whose 
computational complexity approximately equals an 
extended Kalman filter. Except that, the proposed 
algorithm estimates the model parameter online using 
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the linear search method to handle the signal time 
delay problem, the total elapsed time of the search 
method is related to the search step λ, the search 
original point and the bound γ. Denote the computa-
tion complexity of the EKF as Ω, the RPEKF is about 
NF×Ω, the IRPUKF is about (2a+1)×NF,k×Ω+Ψ. Ψ 
caters for the linear research consuming time.  

From the above analysis, we can conclude that 
the IRPUKF algorithm improves the nonlinear esti-
mation precision at the cost of the computation com-
plexity. Compared with the batch type approaches, 
the proposed method costs less time.  
 
Simulation  

In the simulation, the IRPUKF approach is 
compared with the RPEKF for two cases: signal with 
time delay and signal without time delay. The given 
parameters are as follows: ∆T=1 s, ct=200 m/s, c=340 
m/s, NF,0=5, a=4, [Rmin,Rmax]=[0.5 km,0.5 km]. In the 
evaluation M=100 Monte Carlo simulations are per-
formed. The track scenario is presented in Fig.2, 
Fig.3a and Fig.3b show the root mean square error 
curves for the range estimation of the two methods, 
respectively without and with signal time delay. Table 
1 is the elapsed time of the methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

Based on the RPKEF approach and the VSMM 
method, we propose a new intelligent range param-
eterized unscented Kalman filter (IRPUKF) algorithm 
to track the target with bearings-only measurement. 
We also present a recursive line research method to 
estimate the model parameter Tk, which does not 
equal the scan period of the sensor in view of the 
signal time delay. In the simulation, the IRPUKF and 
RPEKF are compared respectively with and without 
time delay. The results verify the IRPUKF algorithm 
can improve the estimation precision and can deal 
with the bearings-only tracking with signal time delay. 
The elapsed time in one running is less than the sensor 
scan period and hence is acceptable. 
 
 

Table 1  Elapsed time for 100 Monte Carlo simulations 

Elapsed time (s) 
 

Without time delay With time delay 
RPEKF   4.278   4.286 
IRPUKF 37.021 60.590 
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Fig.3  The RMSE in range comparison without signal
time delay (a) and with signal time delay (b) 
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