
Qi et al. / J Zhejiang Univ SCIENCE A   2006 7(Suppl. II):223-227 223

 
 
 
 

Passive control of a class of chaotic dynamical systems  
with nonlinear observer*

 

 
QI Dong-lian†1, SONG Yun-zhong1,2 

(1School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China) 
(2Department of Electrical Engineering, Henan Polytechnic University, Jiaozuo 454000, China) 

†E-mail: qidl@zju.edu.cn 
Received Jan. 15, 2006;  revision accepted Mar. 23, 2006 

 

Abstract:    A passive control strategy with nonlinear observer is proposed, which can be used to control a class of chaotic dy-
namical systems to stabilize at different equilibrium points. If the nonlinear function of chaotic system satisfies Lipschitz condition, 
the nonlinear observer can observe the state variables of the chaotic systems. An important property of passive system is studied to 
control chaotic systems, that is passive system can be asymptotically stabilized by state feedback controller whose state variables 
are presented by nonlinear observer. Simulation results indicated that the proposed chaos control method is very effective in a class 
of chaotic systems. 
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INTRODUCTION 
 

Chaos plays an important role in dynamical 
systems and is applied in many fields such as physics, 
chemistry, economics, and so on. The dynamical 
characters of chaos have been proved to be useful in 
describing and diagnosing nonlinear systems (Ott et 
al., 1990). However, it is harmful to many systems 
because of the characters of chaotic systems. People 
seek for ways to avoid and eliminate it. In general, 
through modifying parameters or controlling chaotic 
system, some ways can be found to affect the existing 
conditions of chaos so that chaos can be avoided 
(Yang and Liu, 1998; Chen and Chen, 1999).  

Many people have begun to give their attention 
to passive network theory (Hill and Moylan, 1976; 
Wen, 1999; Byrnes and Isidori, 1991). The character 
of passive system is one of the network theory con-
cepts, which show characteristics of dissipative net-

work. Passive network theory can be used to analyse 
the dynamical character of system, such as stabiliza-
tion, dynamic characteristics. In order to improve the 
control property of chaotic system, state feedback 
should be applied to the controlled system when the 
controller is designed for chaotic system, and the state 
variables used to complete the state feedback can be 
detected through sensor. However, the state variables 
cannot be detected in some conditions (Qi et al., 2004; 
Nam et al., 1997; Femat and Alvarez-Ramirez, 1997). 
Hence, the method of nonlinear systems’ observer can 
be used to design observer of the chaotic system, and 
realize the control of chaotic system (Li et al., 2005). 

A new chaos control method useful for avoiding 
chaos is proposed in this paper. The remainder of the 
paper is organized as follows. In Section 2, a 
nonlinear observer of chaotic system is given if the 
nonlinear function of chaotic system satisfies 
Lipschitz condition. In Section 3, through giving 
some definitions and reasoning, we research the 
properties of passive system. In Section 4, taken the 
Lorenz system as example, the essential conditions 
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are studied, by which Lorenz chaotic system could be 
equivalent to passive system with nonlinear observer. 
Section 5 gives the conclusion.  
 
 
NONLINEAR OBSERVER OF CHAOTIC SYS- 
TEMS 
 

Consider the following chaotic dynamical sys-
tem described by 
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where n∈z are state variables, n n×∈A and n∈B  
constitute system parameters matrix, and : n →q  
is a nonlinear function. 
Theorem 1    Suppose chaotic system having the form 
as Eq.(1) and for 1 2,  ,nz z∀ ∈  the function q(z) 

satisfies the Lipschitz condition on ,n that is  
 

1 2 1 2( ) ( ) ,z z r z z− ≤ −q q                  (2) 
 

where r is positive constant and ||⋅|| is the standard 
Euclidean norm. 

If control parameter k is properly chosen, the 
state observer of the chaotic system has the form 
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where ẑ  denotes the dynamic estimate of the state z, 
ŷ  is the estimated system output, ˆ( )q z represents the 

estimated function q(z). 
The observability parameter could be chosen as 
 

  1
0( ) ( ),k k−= ×L P L                       (4) 

 
where L0(k)=(c1k c2k2 … cnkn)T, control parameter 
satisfies k≥1, matrix P is constructed with ob-
servability matrix O=(CT CTA … CTAn−1)T, and pa-
rameters {ci, i=1, 2, …, n} are chosen such that all the 
roots of pn(s)=sn+c1sn−1+…+cn are contained in the 
left-hand side of the complex plane. 
Proof    rank(O)=r≤n means that there are r rows of 

linearly independent vectors {p1,p2,…,pr} in matrix O. 
In order to construct the singularity linear transfor-
mation matrix P, n−r rows of vectors {pr+1,pr+2,…,pn} 
are completed besides {p1,p2,…,pr}, which is linearly 
independent with {p1,p2,…,pr}. So T T

1 2[ , ,...,=P p p  
T T] .np  Consider the linear transformation of coordi-

nates w=Pz. Because matrix P is invertible, system 
Eq.(1) can be described as 
 

0 0

T
0

( ),

,

= +


=

w A w B f w
y C w

                     (5) 

 

where f(w)=q(P−1w), A0=PAP−1, B0=PB, T T 1
0 = .−C C P  

Letting PL(k)=L0(k), we have 
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Define error ˆ .= −e w w  Since k≥1 and matrix P 

is an invertible matrix, e(t)→0 implies that 
ˆ( ) ( ).t t→z z  Hence, it suffices to prove that e(t)→0. 

According to Eqs.(5) and (6) 
 

0 0 ˆ[ ( ) ( )],= + −e M e B f w f w               (7) 
 
where T

0 0 0 0( ) ,k= −M A L C  whose eigenfunction is 
pn(s)=sn+c1sn−1+…+cn. 

Through properly chosen parameter ci, all roots 
of pn(s) can be contained in the left-hand side of the 
complex plane. Lyapunov equation T

0 0 0 0+P M M P  
=−In has P0>0. 

Choosing Lyapunov function V=eTP0e, we have 
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Since q(w) is a globally Lipschitz function on ,n  
f(w) is also a globally Lipschitz function. In this case, 
there exists r>0, such that 
 

ˆ ˆ( ) ( ) .r− ≤ −f w f w w w                  (9) 
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From Eqs.(8) and (9), we have 
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where kf=2r. 

If kfλmax(P0)||B0||<1, there should be <0.V  The 
error system is globally stable, that is, the state vari-
ables of observer can approximate the state variables 
of the chaotic system. 
 
 
PROPERTIES OF PASSIVE SYSTEM 
 

Consider a continuous chaotic system given by 
difference equation as follows 

 
( ) ( ) ,
( ),

= + ⋅
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                   (11) 

 
where, n∈x are the state variables, m∈u  is the 
input, p∈y  is the output, f and g are smooth vector 
fields. Function h is smooth mapping. We suppose 
that the vector field f has at least one equilibrium 
point, without loss of generality, we can assume that 
the equilibrium point is x=0.  
Theorem 2 (Byrnes and Isidori, 1991)    A system of 
the form Eq.(11) is said to be passive if function f(x) 
and g(x) exist and there is a real-valued constant d, 
such that ∀t≥0 
 

T

0
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t
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or if there is a constant kp>0 and real-valued constant 
d, such that ∀t≥0 
 

T T
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( ) ( )d ( ) ( )d .
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In other words, a system of the form Eq.(11) is 

said to be passive if there is a nonnegative function 
( ) : ,  (0)=0,→V x X V named storage function, 

such that ∀x∈X, ∀t≥0 
 

T
0 0

( ) ( ) ( ) ( )d .
t

s s s− ≤ ∫V x V x y u            (14) 

A passive system with storage function V(x) is 
said to be strictly passive if there exists a positive 
definite function S(x), such that ∀x∈X, ∀t≥0 

 

 T
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( ) ( ) ( ) ( )d ( ( ))d .
t t
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According to Kalman-Yacubovitch-Popov 

lemma and the definition of zero-state detectable 
property discussed in (Byrnes and Isidori, 1991; Qi et 
al., 2005), Theorem 3 can be drawn. More details are 
omitted there. 
Theorem 3 (Byrnes and Isidori, 1991)    Suppose a 
system is passive with storage function V(x) which is 
positive definite and suppose the system is locally 
zero-state detectable. Let w be any smooth function 
such that yTh(y)>0 and h(0)=0 for each nonzero y. 
The control law u(t)=−h(y) asymptotically stabilizes 
at the equilibrium point x=0. 

According to Theorem 3, if the system is passive, 
there must be a controller u(t)=−h(y), which makes 
the passive system Lyapunov stable at the equilibrium 
point x=0. Therefore, non-passive chaotic systems 
can be equivalent to passive systems through de-
signing system controllers, and then can be stabilized 
at the equilibrium point x=0. 
 
 
PASSIVE CONTROL OF LORENZ SYSTEM 
 

The differential equations of Lorenz chaotic 
system can be described as follows (Lorenz, 1963) 
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Add the controller u to the second equation of 

Eq.(16). Suppose z1=x1, z2=x3, y=x2, then the system 
can be expressed in normal form 
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where f0(z)=[−10z1 (−8/3)z2]T, p(z,y)=[10 z1]T, a(z,y)= 
1, b(z,y)=28z1−y−z1z2. 

Choose a storage function 
 

2( , ) ( ) 0.5 ,= +V z y W z y                 (19) 
 
where 2 2

1 2( ) 0.5 0.5 ,z z= +W z which is the Lyapunov 
function of f0(z), and W(0)=0. We have 
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Because 0,≤W  W(z) is the Lyapunov function 

of f0(z), and f0(z) is globally asymptotically stable. We 
choose 

 
a 1(1 ) 38 ,k v z= − + −u y                   (21) 

 
where ka is a positive real constant, v is the external 
input signal. Enter Eq.(21) into Eq.(16), 
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According to the designing method of nonlinear 

observer, the observer of Lorenz system has the fol-
lowing form 
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Let the initial value of observability parameter 

be L0(k)=(6k 12k2 8k3)T so that the eigenvalues of pn(s) 
are all −2, then  L(k)=(6k 6k+1.2k2 8k3)T. 

Suppose the initial point of Lorenz system is 
(1,−1,1), and the initial point of the observer is (6,6,6). 
The controller a 2 1ˆ ˆ(1 ) 38 .u k x v x= − + −  Enter v=0 
into the controller. Fig.1 is the state error output be-
tween the chaotic system and the observer when ka=1, 
k=1. Fig.2 is the Lorenz system outputs when ka=1, 
k=1. Fig.2 shows that it takes only very short time for 

the system to be rapidly stabilized at the equilibrium 
point (0,0,0) while the outputs of the observer ap-
proximate the state of the chaotic system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We will study how to design the controller to 

stabilize the chaotic system at any equilibrium point 
* * *
1 2 3( , , ).x x x  Let 0x =  and entering * * *

1 2 3( , , )x x x  into 
Eq.(21) 

 
* * * * * * * * *
1 2 3 1 2 1 a 2 1 2,  (3/8) ,  10 .x x x x x v x k x x x= = = + +  

 
Choose the new equilibrium point (1,1,0.375) 

and put v=11+ka into Eq.(22). Fig.3 is the chaotic 
system outputs when ka=0.02, k=1. Fig.3 shows that it 
takes only very short time for the system to be rapidly 
stabilized at the equilibrium point (1,1,0.375) while 
the outputs of the nonlinear observer approximate the 
state variables of the chaotic system. Therefore we 
can stabilize the chaotic system at any desired point 
through varying external input v. 

Fig.1  State variable error output between Lorenz
system and the observer when ka=1, k=1 
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Fig.2  Output of Lorenz system when the equilibrium
point is (0,0,0) and the control parameters ka=1, k=1,
v=0 
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CONCLUSION 
 

A class of chaotic dynamical systems can be 
controlled with passive control theory. This control 
method combines chaotic systems with passive sys-
tems. Based on the nonlinear observer theory, weakly 
minimum phase nonlinear systems and minimum 
phase nonlinear systems transformed by chaotic sys-
tems can be globally asymptotically stabilized at the 
desired point by state feedback, whose state can be 
obtained by the nonlinear observer, and then imple-
ment control of the closed-loop system stabilization. 
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