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Abstract:    In this work, synchronization of chaotic Colpitts circuits, using adaptive controllers to combat circuit parameter 
mismatches and channel distortions, is studied by numerical simulations. Synchronization errors caused by different main circuit 
components are compared, and compensation for time-constant and time-varying circuit parameter mismatches is demonstrated. 
Different kinds of channel distortions, including time-constant and time-varying channel attenuation, Additive White Gaussian 
Noise (AWGN) are all investigated by numerical simulations and discussed. Simulation results indicated that the synchronization 
performance of chaotic Colpitts circuits can be greatly improved by applying adaptive controllers when parameter mismatches and 
channel attenuation are considered as time-constant or time-varying, but have no obvious enhancements regarding the effect on 
AWGN channel. 
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INTRODUCTION 
 

There has been considerable interest in chaos 
communication over the past several years. Since 
Pecora and Carroll (1990) discovered that chaotic 
systems can be synchronized, research into applica-
tions of chaos communication has been greatly mo-
tivated, as synchronized systems could offer potential 
advantage over non-coherent detection in terms of 
noise performance and data rate when the information 
is recovered from a noisy distorted received signal 
(Kolumban et al., 1998). The use of synchronized 
chaotic systems for communications relies largely on 
the robustness of synchronization within the trans-
mitter-receiver pair. 

The choice of Colpitts circuit, first studied by 
Kennedy (1994), as the drive and response system in 
the chaotic communication was motivated by the 
observation of Ababei and Marculescu (2000) on the 

simple implementation and reduced power consump-
tion of chaotic Colpitts circuits. Synchronization of 
Colpitts circuits was discussed by Baziliauskas et 
al.(2001), Shi et al.(2003; 2004), Shi and Ran (2004), 
Rubezic and Ostojic (1999), Rubezic et al.(2002), etc. 
But in most of previous work, the drive and the re-
sponse systems were assumed to be identical and their 
parameters were assumed to be time-constant. The 
channel between the two systems was also assumed to 
be perfect. However, both parameter mismatches and 
channel distortions exist in the actual circumstance. In 
real-world communications, channel distortions in-
cluding fading, additive noise and the like are un-
avoidable. The parameters of the transmitter (drive 
system) and the receiver (response system) also 
cannot be identical and time-constant. These channel 
distortions and parameter mismatches will cause 
considerable synchronization mismatch between the 
transmitter and the receiver, and make difficult the 
recovery of transmitted signals in the receiver (Shi et 
al., 2004). 

To maintain synchronization in such circum-
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stances, one good approach (to utilize adaptive con-
trollers to offset the effects of parameter mismatches 
and channel distortions on transmitted signals) shows 
tremendous potential for developing practical chaotic 
spread-spectrum communication systems. Chua et al. 
(1996) successfully applied this method in Chua’s 
circuits. Enhanced synchronization performances 
were obtained in their simulations and experiments. 

In this work we studied the adaptive controllers 
and their capabilities for synchronizing chaotic Col-
pitts circuits when channel distortions and parameter 
mismatches were taken into account; and used error 
feedback synchronization scheme as Shi et al.(2004) 
found that it outperformed other schemes like the 
Pecora-Carroll synchronization scheme. We com-
pared the influence exerted by each of the three main 
parameters on the synchronization performance, and 
found the most pivotal parameter whose mismatch 
had the most negative influence on the synchroniza-
tion performance. Then we used adaptive controllers 
to compensate for the time-varying parameters of the 
transmitter. Also, we studied the synchronization 
performance under two main channel distortions, 
namely channel fading and Additive White Gaussian 
Noise (AWGN), and employed adaptive controllers to 
combat such distortions. 
 
 
SYSTEM CONFIGURATION 
 

Generally a chaotic communication system 
consists of three parts: a transmitter based on chaotic 
generator, a channel and a receiver based on a corre-
sponding chaotic circuit of the generator. In the sys-
tem for considered, we used two identical chaotic 
Copitts circuits as the transmitter and the receiver, and 
adopted the error feedback synchronization scheme, 
with the resistor R1 coupling received signals into the 
receiver. The signal VC2, serving as the transmitted 
signal, passes through a time-varying channel be-
tween the transmitter and the receiver, and becomes a 
distorted signal defined as TrV . To implement adap-
tive synchronization in the system, we construct an 
adaptive controller before the resistor R1. The re-
ceived signal TrV  is processed by the adaptive con-
troller and is then coupled into the receiver through 
resistor R1. The whole system configuration is shown 
in Fig.1. 

The state equations for the Colpitts circuit (the 
transmitter in Fig.1) are as Eq.(1): 

 

1
2

1

2
0

2

1 2

d 1 ( ( ) ),
d

d 1 ( ),
d

d 1 ( ),
d

C
C L

C
L

L
C C L CC

V f V I
t C

V I I
t C

I V V I R V
t L

 = − − +

 = −



= − − − +


         (1) 

 

where f(⋅) is the driving-point characteristic of the 
nonlinear resistor of the BJT, given by Maggio et al. 
(1999). 

In most literatures it was described by: 
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In Colpitts circuits, this characteristic can be 
expressed as IE = f(VC2) = f(−VBE) and from Eq.(1) it 
follows that 
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When no adaptive controller is employed in the 

system, the resistor R1 couples the received signal TrV  
directly into the receiver, and the state equations of 
the receiver can be written as: 
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where TrV is a distorted signal from the non-ideal 
channel, as shown in Fig.1. 

In our simulations, the parameters of Colpitts 
circuits are: C1=C2=237 nF, L=2.1 mH, R=74.5 Ω, 
VCC=5 V, I0=2.5 mA. With these parameters, both the 
transmitter and the receiver exhibit chaotic oscillation 
separately. While the circuit parameters are time- 
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constant and the channel has no distortion, that is 

Tr 2 ,CV V=  the synchronization between systems 
Eqs.(1) and (4) can be achieved by properly selecting 
the value of coupling resistor R1. This was demon-
strated by Baziliauskas et al.(2001) by numerical 
simulations and experimental investigation.  

In our simulations, we use the initial conditions 
of the transmitter and the receiver as (VC1(0), VC2(0), 
IL(0))=(4.9 V, −0.4 V, 0 mA), 1 2( (0), (0), (0))C C LV V I  
=(5.9 V, −0.4 V, 0 mA). The fourth order Runge- 
Kutta method with fixed step-size h=10−6 s is used to 
simulate the system. 

With the coupling resistor R1=100 Ω, perfect 
synchronization between the transmitter and the re-
ceiver could be easily achieved in simulations. Fig.2 
plots the synchronization error 2 2( )C CV V−  of the 
chaotic Colpitts circuit system, under the above given 
conditions, without parameter mismatches and 
channel distortions. Although the system is initially 
desynchronized, the synchronization is rapidly 
achieved with a settling time of about 0.8 ms. 

However, as the parameter mismatches or 
channel distortions are exerted, the synchronization 
performance will undoubtedly be degraded. To 
compare the synchronization performance, we define 
the average attractor distance between the transmitter 
and the receiver as: 
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where 1 1 1C Ce V V= − , 2 2 2C Ce V V= − , 3 L Le I I= − , and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

t0 denotes the settling time when the transient parts of 
the signals have passed. When the transmitter and the 
receiver are in perfect synchronization state, D equals 
zero. A bigger value of D means worse synchroniza-
tion performance. 
 
 
ADAPTIVE CONTROL FOR TIME-VARYING 
PARAMETER COMPENSATION 
 

Generally the corresponding circuit parameters 
in the transmitter and the receiver of a chaotic com-
munication system cannot be exactly the same. It is 
necessary to consider the case of parameter mis-
matches between the transmitter and the receiver, and 
examine their effects on the recovery of a transmitted 
signal in a chaotic communication system. 

The three main passive circuit components, 
namely the inductor L, the capacitors C1 and C2, 
compose the Colpitts circuit together with BJT, and 

Fig.2  The synchronization error −2 2( )C CV V  without pa-
rameter mismatches and channel distortions  
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Fig.1  Synchronization scheme of two chaotic Colpitts circuits with an adaptive controller over a time-varying channel 
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generate the chaotic waveforms studied by Kennedy 
(1994) and Baziliauskas et al.(2001). Thus, the sta-
bility of these three circuit components plays a sig-
nificant role in the synchronization performance of 
chaotic Colpitts circuits. In this section, we examine 
the effects of parameter mismatches (of these three 
circuit components) between the transmitter and the 
receiver on the synchronization performance. By 
comparing the performance degradation caused by 
each of these three parameter mismatches, we found 
the most pivotal circuit parameter from transmitter to 
receiver having the most negative influence on the 
synchronization performance. Then, we studied the 
adaptive control for time-varying parameter com-
pensation. Note that no channel distortion is consid-
ered in this section. 

 
Comparison between synchronization perform-
ances resulting from each time-constant parame-
ter mismatch 

To study the degradation of synchronization 
performance caused by a certain circuit parameter 
mismatch, taking the inductor L for example, we use 
the following method. We set a certain mismatch of 
the inductor L between the drive system and the re-
sponse system and fix the values of all other circuit 
parameters in the drive system to the corresponding 
values in the response system in each simulation step. 
To compare effects of parameter mismatches of dif-
ferent degrees on the synchronization, we vary the 
value of L in the drive system in the range from 0.9 to 
1.1 (Parameter deviation scale) times that of its cor-
responding value in the response system, and record 
the average attractor distance D for each value of L. 
Then we employ the same method on parameters C1 
and C2, respectively, and record the average attractor 
distance D each time. 

Fig.3a plots the average attractor distance D 
versus the transmitter circuit parameter deviation 
scale. This figure shows effects of parameter mis-
matches of the three main circuit components, namely 
L, C1 and C2 on the synchronization of Colpitts circuit 
system. Comparing the average attractor distances D 
of the three curves, one can see that the mismatch of 
inductor L (solid line) causes the greatest degradation 
on synchronization performance. Thus, we conclude 
that the synchronization of Colpitts circuit system is 
more sensitive to the mismatch of L than that of C1 

(dashed line) and C2 (dotted line), or in other words, 
the stability of parameter L has the most significant 
influence on the synchronization. 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 

Furthermore, when the value of L, C2 or C1 in the 
transmitter deviates to 1.1 or 0.9 times that of their 
corresponding values in the receiver, corresponding to 
10% parameter mismatch, the average attractor dis-
tance D in all cases rises above 0.05, which stands for 
bad synchronization state. The synchronization error 

2 2( )C CV V−  is shown in Fig.3b, where the value of C2 
in the transmitter is 0.9 times that of its corresponding 
value in the receiver. Obviously, the synchronization 
performance is sharply degraded, compared with 
Fig.2. So we conclude that the tolerance degree of 

Fig.3  Synchronization of chaotic Colpitts circuits with
time-constant parameter mismatches  
(a) Average attractor distance between the transmitter and the
receiver when three transmitter circuit parameters L, C1 and C2
deviate respectively from 0.9 to 1.1 times of their corre-
sponding values in the receiver; (b) Synchronization error

2 2( )C CV V−  when the capacitor C2 in the transmitter is 0.9
times of its corresponding value in the receiver 
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Colpitts system on parameter mismatches is very low. 
 

Compensating for time-varying parameter mis-
match 

In this case, we consider the parameter mismatch 
being time-varying. We rewrite the drive system as 
Eq.(6): 
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where KC1(t), KC2(t) and KL(t) are the time-varying 
factors of circuit parameters C1, C2 and L, respec-
tively. 

The response system is as Eq.(7): 
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where 1( )CK t , 2 ( )CK t and ( )LK t  are compensating 
adjustments of circuit parameters C1, C2 and L, re-
spectively, which are adaptively modified by using 
adaptive controllers. 

In this simulation, we consider the case when the 
transmitter parameter L mismatches with that of the 
receiver. We make the value of inductor L 
time-varying in the transmitter, with a time-varying 
factor KL(t) as defined by the following sinusoidal 
function: 

 
KL(t)=1−0.1sin(10πt).                       (8) 

 
The dynamics of the compensating adjustment 

( )LK t  is given as 
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where k1=5×104. The simulation time is 0.3 s. 

Fig.4 shows the adaptive synchronization of 
Colpitts circuits when mismatch of L exists in the sys- 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2

1.5

1

0.5

Time (s) 
(a) 

0       0.05     0.1     0.15      0.2      0.25     0.3 

A
m

pl
itu

de
 (V

) 
0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2
0       0.05     0.1     0.15       0.2     0.25     0.3 

Time (s) 
(b) 

Sy
nc

hr
on

iz
at

io
n 

er
ro

r (
V

) 

Fig.4  Synchronization of chaotic Colpitts circuits when 
the inductor L is time-varying in the transmitter 
(a) ( )LK t and KL(t); (b) The synchronization error 2 2( )C CV V−
when the adaptive controller is used; (c) The synchronization
error 2 2( )C CV V−  when no adaptive controller is used 
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tem, where the L in the transmitter varies as a sinu-
soidal function of time. Both KL(t) (solid line) and 

( )LK t  (dashed line) are plotted in Fig.4a, with mag-
nified details of the foremost simulation time in the 
rectangle. From this figure, one can see that 

( )LK t asymptotically approaches KL(t) after the tran-
sient parts of the signal passed with a settling time of 
about 2 ms. Hence, the parameter L in the receiver can 
track the variation of L in the transmitter, and keeps 
matching it.  

Fig.4b plots the synchronization error (VC2− 

2 ),CV  which keeps to almost zero after the system 
archives synchronization. For comparison, the syn-
chronization error in the case when no adaptive con-
troller is used is shown in Fig.4c. One can see that the 
adaptive controller markedly compensates for the 
de-synchronization caused by the time-varying pa-
rameter mismatch, and successfully recovers the 
transmitted signal in the receiver. Furthermore, since 
the synchronization of the Colpitts circuit system is 
more immune to mismatches of C1 and C2, it is safe to 
say that the adaptive controller can also compensate 
for mismatches of C1 and C2, which our simulations 
also verified. 

 
 

ADAPTIVE CONTROL FOR TIME-VARYING 
CHANNEL COMPENSATION 
 

When the system parameters keep identical and 
time-constant, the channel distortions between the 
transmitter and the receiver pose the major problems 
on the synchronization, and are unavoidable in prac-
tical chaotic communications. In this section, two 
major channel distortions, channel fading and Addi-
tive White Gaussian Noise (AWGN), are considered. 
We investigated the impact exerted by each of these 
distortions on the synchronization, and studied the 
adaptive control for combating such distortions. 

First, we introduced the time-varying gain of the 
channel KC(t) into the system (shown in Fig.1), hence 

Tr 2( ) .C CV K t V=  Constant unit gain channel corre-

sponds to KC(t)=1, and Tr 2CV V= . In the receiver, we 
constructed an adaptive gain Kr(t) such that 
KC(t)Kr(t)→1 as t→∞ to maintain the synchronization. 
Then the receiver should be rewritten as: 
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The dynamics of Kr(t) is given by one of the 

following adaptive controllers: 
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Note that no parameter mismatch is considered 
in this section. 

 
Compensating for fading channel 

1. Different time-constant fading factors 
In this simulation, we considered the 

time-constant fading as the only channel distortion. 
The channel gain KC(t) is set as a constant in each 
simulation step. To compare the effects of different 
fading factors on synchronization performance, we 
varied the time-constant channel gain KC(t) in the 
range from 0.1 to 1, and recorded the average attractor 
distance D for each value of KC(t). The second con-
troller Eq.(12) with k1=5×104 is used to compensate 
for such time-constant channel fading. 

The average attractor distance D versus the 
fading factor is plotted in Fig.5a. The dashed line, 
representing the system without adaptive controller, 
shows that the synchronization performance sharply 
declines as the fading factor decreases. Note that even 
when the fading factor is more than 0.95, or to say, 
less than 5% of transmitted signals are attenuated, the 
D rises up to 0.1, which means a bad synchronization 
state. So it can be inferred that the Colpitts circuit 
system can tolerate a very low degree of channel 
fading in practical communications. 
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Fortunately, the adaptive controller can be em-
ployed to greatly compensate for such constant 
channel fading. The solid line, representing the sys-
tem with the adaptive controller, obviously shows that 
the synchronization performance is distinctly im-
proved. Even as 90% of the transmitted signal is at-
tenuated, corresponding to the fading factor of 0.1, the 
D still keeps almost zero, which means the system is 
almost perfectly synchronized. 

Fig.5b plots the synchronization error 2 2C CV V−  
with fading factor of 0.1 when the adaptive controller 
is used. One can see that even when 90% of the 
transmitted signal has been attenuated in channel, the 
signal can be recovered in the receiver at last. Fig.5b 
reveals the process of compensating the time-constant 
channel fading by the adaptive controller. With time 
proceeding, the adaptive controller calculates the 

appropriate adaptive gain Kr(t) to offset the channel 
attenuation, gradually reduces the synchronization 
error, and finally achieves synchronization. It can be 
inferred that as long as the transmitted signal is not 
totally submerged in the channel, the adaptive con-
troller can finally recover it in the receiver. Certainly, 
as the constant channel attenuation worsens, the set-
tling time will be longer. So the adaptive controller is 
powerful in terms of compensating for the time-con-
stant channel fading. 

2. Different frequencies of sinusoidal fading 
channel function 

In this simulation, we consider the case when the 
channel fading is time-varying. We set the channel 
gain KC(t) as a sinusoidal function given by Eq.(14), 

 
KC(t)=0.5−0.1sin(xπt),                   (14) 

 
with a certain frequency in each simulation step. 
Different frequencies reflect different channel varying 
rates. To compare effects of different channel varying 
rates on synchronization performance, we varied the 
frequency of the sinusoidal function in the range of 0 
Hz to 300 Hz, and recorded the average attractor 
distance D for each frequency. The second controller 
Eq.(12) with k1=105 was used to compensate for the 
sinusoidal varying channel attenuation on the trans-
mitted signals. 

Fig.6a plots the average attractor distance D 
versus the frequency of the sinusoidal channel func-
tion. As the frequency increased, the D rose almost 
linearly, which means the synchronization perform-
ance linearly declined. When the frequency was as 
high as 250 Hz, D roses above 0.05, corresponding to 
a bad synchronization state. 

To get deeper insight into the effects of the in-
creasing frequency on the synchronization perform-
ance, we compared the cases of channel function 
frequency being 10 Hz (Figs.6b~6c) and being 300 
Hz (Figs.6d~6e). The synchronization error (VC2− 

2 )CV  is plotted in Fig.6b and Fig.6d respectively. 
Also, KC(t) (dashed line), Kr(t) (dotted line) and 
KC(t)Kr(t) (solid line) are respectively plotted in 
Fig.6c and Fig.6e. Obviously, the synchronization 
performance differed considerably between the two 
cases. The synchronization error corresponded peri-
odically with the variation of sinusoidal channel 
function.  Faster  channel  varying  rate  led  to  higher 
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Fig.5  Synchronization of chaotic Colpitts circuits with
time-constant fading in the channel 
(a) Average attractor distance between the transmitter and the
receiver when the fading factor varies from 0.1 to 1; (b) The
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synchronization error as the adaptive controller be-
came incapable of following the fast changing of 
channel attenuation and hastily calculated an inaccu-
rate adaptive gain Kr(t), and so, cannot easily maintain 
KC(t)Kr(t)→1. Figs.5c and 5e show that the KC(t)Kr(t) 
cannot keep constant unit gain as the channel varying 
rate increases to a certain degree. From the simulation  
results, we concluded that the adaptive controller is 
capable of compensating for sinusoidal channel fad-
ing. But such capability declines with the increasing 
frequency of sinusoidal channel function. Fortunately,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
since the channel fading has low-varying rate in most 
practical environment, the chaotic Colpitts system 
will definitely benefit from the adoption of adaptive 
controllers for practical communications. 
 
Compensating for AWGN channel 

In this simulation, we considered the AWGN as 
the only channel distortion. The AWGN source here 
has zero means, and the noise standard deviation was 
from 0 to 0.06 in the simulation. We used the second 
controller Eq.(12) with k1=10000 to offset AWGN, 
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Fig.6  Synchronization of chaotic Colpitts circuits when the
channel model is a sinusoidal function 
(a) Average attractor distance between the transmitter and the
receiver when the frequency of channel function varies from 0
to 300 Hz; (b) The synchronization error 2 2( )C CV V−  with
frequency being 10 Hz; (c) KC(t), Kr(t) and KC(t)Kr(t) with
frequency being 10 Hz; (d) The synchronization error

2 2( )C CV V−  with frequency being 300 Hz; (e) KC(t), Kr(t) and
KC(t)Kr(t) with frequency being 300 Hz 
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and recorded the average attractor distance D for each 
value of noise standard deviation. 

Fig.7 plots the average attractor distance D ver-
sus the noise standard deviation in two cases, one with 
the adaptive controller (solid line), and one without 
the adaptive controller (dotted line). It can be seen 
that the synchronization performance cannot benefit 
from the adoption of adaptive controllers, but on the 
contrary, is even a little worse than the case without 
using the adaptive controller. The reason lies in that 
the additive noise in the channel is random and un-
predictable, unlike the variation of parameters or 
channel fading simulated above, which changes con-
tinuously and predictably. The adaptive controller 
therefore cannot appropriately calculate the adaptive 
gain Kr(t) to maintain KC(t)Kr(t)→1. However, since 
the feedback scheme applied in our system is rather 
tolerable to the AWGN (Shi et al., 2004), the adaptive 
controller seems not necessary in practical commu-
nications. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

We have demonstrated that two chaotic Colpitts 
circuits can be properly synchronized with employ-
ment of adaptive controllers while the circuit pa-
rameters and the channel are time-varying. The syn-
chronization performance of chaotic Colpitts circuits 
can be markedly improved by applying the adaptive 
controller when time-constant and time-varying cir-
cuit parameter mismatches and channel attenuation 

are considered, but has no obvious enhancement re-
garding the effect of the AWGN channel. Simulation 
results indicated that this approach has tremendous 
potential for developing practical chaotic spread- 
spectrum communication systems. 
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Fig.7  Average attractor distance between the transmitter
and the receiver when the noise standard deviation was 0
to 0.06 
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