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Abstract:    A Galerkin method was used to investigate steady, fully developed flow of Oldroyd-B fluids through curved pipes of 
circle cross-section. By using Galerkin method, large values of curvature ratio, Reynolds number and Weissenberg number can be 
discussed. The powers of the series of the Galerkin method in the present work are chosen carefully. Both effects of Reynolds 
number and Weissenberg number on axial velocity and stream function are discussed even for large values of the two 
non-dimensional parameters. It was discovered that the combined effect of large Reynolds number and Weissenberg number 
decreases the outward shifts of maximum axial velocity and maximum stream function. Axial normal stress of creeping flow is 
also studied here. The large Weissenberg number makes the stress concentration occur on the inner bend of the pipe. 
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INTRODUCTION 
 

In this study, we obtained the Galerkin solution 
for steady, fully developed flow of viscoelastic fluids 
through curved pipes of circular cross-section. 
Galerkin technique yielding high-order semi-analytical 
solutions will provide valuable tests for numerical 
simulations of viscoelastic flows without the small 
parameters limit of perturbation technique. In addi-
tion, it is suitable for examining the coupled effects of 
viscous, centrifugal and elastic forces on the flow of 
viscoelastic fluids through curved pipes. 

The motion of the steady, fully developed flow 
in curved pipes has been studied extensively for the 
case of Newtonian fluids due to its practical impor-
tance in various industrial applications. The first 
analytical solution for such flows was obtained by 
Dean (1927; 1928) using perturbation technique. He 
was the first one who found the theoretical existence 
of cross-section secondary flow. To recognize the 

importance of centripetal force, in his studies, Dean 
simplified the equations of motion by ignoring all 
terms arising due to the pipe curvature except the 
centripetal force terms. Topakoglu (1967) later ex-
tended Dean’s work to the full equations of flow for 
pipes of both circular and annular cross-sections. 
From then on, many researchers have joined hands to 
study such flows using both analytical methods and 
numerical methods. Ito (1969) obtained solutions by 
using boundary layer method, which could deal with 
the large Dean number problem. Nandakumar and 
Masliyah (1982) presented some finite difference 
solutions for curvature ratio κ as large as 0.1, while 
Soh and Berger (1987) solved the full N-S equations 
from κ=0.01 to κ=0.2 using a finite different method. 
More recently, Zhang et al.(2000), Zhang and Zhang 
(2003) and Chen et al.(2003) systemically investi-
gated flow and heat transfer in various types of pipes. 

For the case of viscoelastic fluids flow, it is quite 
surprising to find that, despite its important applica-
tions such as food and pharmaceutic products, oil 
transportation and blood flow, much less attention has 
been paid to such flow in curved pipes by the mono-
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graphers than its Newtonian counterpart. Using the 
simplifications introduced by Dean, the flow of vis-
coelastic fluids in curved pipes of circular 
cross-section has been examined for the Bingham 
fluid (Clegg and Power, 1963; Das, 1992), the 
Reiner-Rivlin fluid (Jones, 1960), the second order 
fluid (Sharma and Prakash, 1977) and the Oldroyd-B 
fluid (Thomas and Walters, 1963). Bowen et al.(1991) 
later solved the UCM constitutive equations for the 
creeping flow without invoking Dean’s approxima-
tion. More recently, Robertson and Muller (1996) and 
Jitchote and Robertson (2000) presented perturbation 
solutions for Oldroyd-B fluid and second order fluid, 
respectively. Almost at the same time, Fan et al.(2001) 
investigated the comparison between fully developed 
viscous and viscoelastic flows in curved pipes by 
using finite element method. In their work, they in-
vestigated not only the flow characteristic but the two 
normal stress differences as well. 

This paper is aimed at obtaining analytical solu-
tions of Galerkin method for Oldroyd-B fluids and 
exploring the secondary flow structures, the axial 
flow and the axial normal stress distribution of such 
flow in curved pipes. The governing equations in 
toroidal coordinate system are obtained by using the 
tensor analysis from many references to Bolinder 
(1996)’s work. 
 
 
GOVERNING EQUATIONS 
 

Fig.1 shows a curved pipe of circular 
cross-section and the toroidal coordinate system used 
in the present work. The coordinates are ,  ,  ,x y s  
where s  is the centerline of the pipe. R and a are the 
radius of the curved pipe and the radius of the circular 
cross-section, respectively. The velocities in the di-
rections of ,  ,  x y s  are denoted by ,  ,  u v w , respec-
tively. Fig.1 also shows the orthonormal basis (ex, ey, 
es) defined relative to the rectangular Cartesian basis 
(e1, e2, e3) as 

 
1 2 3

1 2

cos( / ) sin( / ) ,   ,

sin( / ) cos( / ) .
x y

s

s R s R
s R s R

= + =

= − +

e e e e e
e e e

           (1) 

 
In the constitutive equation of Oldroyd-B fluids, 

the extra stress tensorτ can be written as  

 
 
 
 
 
 
 
 
 
 
 

 
s p ,= +τ τ τ                              (2) 

where sτ  and pτ  are defined by 

s p p
s p2 , 2 , η λ η

∇

= + =D Dτ τ τ               (3) 
 
where λ is the fluid relaxation time and ηs, ηp the 
viscosity contribution from the solvent and the 
polymers, respectively. The symbol “∇” stands here 
for the upper-convected derivative which, for an ar-
bitrary second-order tensor S  with coordinates ijS  

relative to a rectangular coordinate system, is 
 

.ij ij ji
ij k kj ik

k k kt x x x

∇ ∂ ∂ ∂∂
= + − −

∂ ∂ ∂ ∂

S S vvS v S S         (4) 

 

The D  in Eq.(3) called rate of deformation tensor is 
the symmetric part of the velocity gradient. The 
components of D  relative to a rectangular coordinate 
system are 
 

1 .
2

ji
ij

j i

vvD
x x

 ∂∂
= +  ∂ ∂ 

                       (5) 

 
If ηp=0, the Oldroyd-B equation reduces to the 

upper converted Maxwell constitutive equation, if 
λ=0, it further reduces to the Newtonian constitutive 
equation. 

The non-dimensional quantities are introduced 
as follows: 
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Fig.1  The curved pipe and the coordinate system 
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o o
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W a Wa p GaW Re = We
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ρ λ
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(6) 

 
where Wo is a characteristic velocity of the flow and η 
is the sum of ηp and ηs. p is the non-dimensional 
pressure. It is assumed that the Oldroyd-B fluid flow 
is fully developed and incompressible. For fully de-
veloped flows, the velocity field is independent of ,s  
consequently the axial component of the pressure 
gradient /p s∂ ∂  is a constant denoted as −G. Using 
the definition of Wo and p, the negative of the axial 
component of the non-dimensional pressure gradient, 
∂p/∂s, takes the value of 4. κ is the non-dimensional 
curvature ratio; ρ is the density of the fluid; Re is the 
Reynolds number; We is the Weissenberg number. 
For fully developed impressible flow of Oldroyd-B 
fluid in curved pipes, the non-dimensional continuity 
equation, the non-dimensional momentum equation 
and the non-dimensional constitutive equation are 
given as: 
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where                     M=1+κx.                                  (23) 
 

The stream function ψ satisfying the continuity 
function equation, is defined as 
 

1 1 1 1,  .y xu v
M y M M x M

ψ ψψ ψ∂ ∂
= = = − = −

∂ ∂
    (24) 

 
After substituting Eq.(24) into Eq.(9), the equa-

tions are as  
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y x y
Re w w w
M x y M

κψ ψ ψ ∂ ∂
+ + ∂ ∂ 

 

2 .ysxs
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p
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ττ κ τ
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               (25) 

 
The stream function for Eq.(7) and Eq.(8) is 

obtained by substituting Eq.(24) in the two equations, 
differentiating Eq.(7) with respect to y and adding the 
result to the negative of the derivative with respect to 
x of Eq.(8). The result is 
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The boundary conditions are:  

 
w|Γ=0, ψ|Γ=u|Γ=v|Γ, ∂ψ/∂n=0                (27) 
 

where Γ and n are the wall boundary of the pipes and 
the independent variable along the direction of the 
inner normal of the wall boundary, respectively. 
 
 
GALERKIN METHOD 
 

The Galerkin method is adopted to investigate 
flow through curved pipes with circular cross-section. 

According to Xue (2002)’s work, first, the base 
function series p p p{ },  { },  { },  { },  { },

xx xy xsi j j i jwψ τ τ τ  
p p { },  { }
yy ysj iτ τ  and { }

ss

p
jτ  (i, j=1, 2, …) are chosen, 

the variables are expressed as 
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where m1 and m2 denote the number of the terms of 
series {ψi} and {wj}. In curved pipes variables ψ, for 

p
xyτ  and p

ysτ  are antisymmetric and w, p
xxτ , p

yyτ  and 
p
ssτ  symmetric, the numbers of the terms of series 

p{ }
xy iτ  and p{ }

ys iτ  are the same as those of series {ψi}. 

And so are those in the case of symmetric variables. 
Considering the boundary condition, the ψi and 

the wj are simply given as follows: 
 
ψi=[1−(x2+y2)]2αi,  wj=[1−(x2+y2)]βj.             (29) 

 
The components of τp are as follows: 

 
p p p

p p p

,  ,  ,

, ,  .
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yy ys ss

j j i i i i

j j i i j j

β τ α β

β τ α β

τ τ

τ τ

= =

= =

=

=
             (30) 

 
Series {αi} and {βj} must be linearly independ-

ent. The forms of {αi} and {βj} in the present work are 
as follows: 
 
{αi}={y,xy,x2y,y3,x3y,xy3,x4y,x2y3,y5,x5y,x3y3,xy5}, (31) 
{βj}={1,x,x2,y2,x3,xy2,x4,x2y2,y4,x5,x3y2,xy4,x6,x4y2, 

x2y4,y6}                                                         (32) 
 

Second, substituting Eqs.(29) and (30) into 
Eqs.(11)~(22), (25) and (26) and integrating them by 
Galerkin criterion, with the aid of computer symbolic 
manipulation technique, a set of non-linear equations 
on ai to hj can be obtained. The Newton-Raphson 
method is adopted to solve the resulted non-linear 
equations. With the coefficients ai to hj being obtained, 
it is easy to obtain both the whole flow structure and 
the distribution of extra stresses. Similar to other 
numerical methods, the Galerkin method also con-
siders accuracy. The global accuracy of the method is 
determined by the number of base function terms. In 
Fig.2, we present the contours of axial velocity for 
Re=25, ηp/η=0.2, We=5, κ=0.1 in two different sets of 
base functions. In one set the maximum powers of 
terms for stream function, axial velocity and extra 
stresses are 6 while in the other set the powers are 7. 
The two contours are almost the same.  Taking both 
the accuracy and CPU time into consideration, the 
former set of base functions are chosen for the rest of 
the computations. 

Comparisons with the available results in Fig.3 
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showed that the Galerkin results of the present work 
and the perturbation results of Robertson’s work 
confirm each other very well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESULTS AND DISCUSSION 
 

Because of the small parameters limit of per-
turbation technique, the curvature ratio, the Reynolds 
number and the Weissenberg number of the pertur-
bation solutions reported are limited to less than 0.1, 
25 and 5, respectively. However, in the present work 
such parameters can be much larger by using Galerkin 
method. 

The axial flow of Oldroyd-B fluid in curved 
pipes is showed in Fig.4 and Fig.5. One of the dis-
tinctions between Newtonian and Oldroyd-B fluids is 
in the degree of inward or outward shift of the 
maximum in axial velocity. It can be observed in 
Fig.5 that for small Reynolds number, the maximum 
in axial velocity is shifted toward the inner bend of 
the pipe. The inward shift decreases and becomes an 
outward shift gradually as Re or We is increased. 
Fig.4 is the example of outward shift (Re=25, 
ηp/η=0.2, We=8, and κ=0.1). However, for the case of 
large values of Re, the maximum in axial velocity is 
shifted outward for values of We beyond a critical 
value. The critical values of We decrease with in-
creasing Re. The non-linear interaction of inertia and 
elasticity results in a greater shift toward the outer 
bend in the case of small values of Re. For large value 
of Re such interaction results in a smaller outward 
shift than in the non-elastic case as the We becomes 
bigger enough such as shown in the curve of Re=50 in 
Fig.5. 

In curved pipes, centripetal acceleration and 
fluid elasticity cause secondary flow characterized by 
a pair of counter-rotating vortices. Fig.6 is a represen- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Comparisons of the Oldroyd-B fluid flow in 
curved pipe of w (left) and ψ (right). (Re=25, ηp/η=0.2, 
We=5, κ=0.1). (a) 6 powers solution; (b) 7 powers so-
lution 
 

Fig.3  Comparisons of the Oldroyd-B fluid flow in 
curved pipe of w (left) and ψ (right). (Re=10, ηp/η=0.2, 
We=5, κ=0.01). (a) Present work; (b) Robertson’s 
work 

Fig.4  Contours of axial velocity for Re=25, ηp/η=0.2,
We=8, and κ=0.1 
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tative  one  of  the  contours  of  stream  function  in 
curved pipes. To compare Fig.7 with the Robertson 
and Muller (1996)’s analogous result, it is obvious 
that for small value of Reynolds number, the outward 
shift of maximum increases monotonously as Weis-
senberg number is increased, but for large value of Re, 
the monotonicity is broken. Together with the result 
of axial flow discussed above, the vanishing of the 
monotonicities indicates that the combined effect of 
inertia and elasticity is much weaker than the inde-
pendent effect of inertia or elasticity as Reynolds 
number and Weissenberg number are both large 
enough, which is the result of the complex non-linear 
interaction of inertia and elasticity with large pa-
rameters. 

The volume flux, written with respect to the 
non-dimensional variables introduced in Eq.(6), is 

 
2

2

1 12
o 1 1

d d
x

x
Q W a w y x

−

− − −
= ∫ ∫ .                (33) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The volume flux in a curved pipe is denoted by 
Qc, and that in a straight pipe of the same flow pa-
rameter by Qs. In the present work, Qs equals πWoa2/2. 
The volume flux ratio is defined as 

 
2 2

2 2

1 1 1 12
o 1 1 1 1c

2
s o

d d d d

/ 2 / 2

x x

x x
W a w y x w y xQ

Q W a

− −

− − − − − −= =
π π
∫ ∫ ∫ ∫ .     (34) 

 
The flow resistance (the friction factor) is generally 

expressed in terms of the reciprocal of the volume 
flux ratio 

 
fs/fc=Qc/Qs.                          (35) 

 
Fig.8 indicates that for the case of creeping flow, 

the effect of increasing Weissenberg number 
strengthens flow resistance, which is just the opposite 
to the effect for the case of large value of Reynolds 
number. 
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Fig.5  Location of maximum in axial velocity as a
function of We for ηp/η=0.2 and κ=0.1 
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Fig.7  Location of maximum in stream function as a
function of We for ηp/η=0.2 and κ=0.2 
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Fig.8  Location of friction factor as a function of We
for ηp/η=0.2 and κ=0.2 

Fig.6  Contours of stream function for Re=40,
ηp/η=0.2, We=5 and κ=0.2 
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The axial normal stress, τss, is another distinction 
between Newtonian fluids and Oldroyd-B fluids. 
Through analysis of the constitutive equations, it is 
easy to find that there is no relationship between the 
axial normal stress and the axial flow velocity in 
Newtonian case, while in Oldroyd-B case such rela-
tionship has been established, so the value of τss in 
Oldroyd-B case is much larger than in Newtonian 
case. 

Fig.9 shows the variation of contours of axial 
normal stress with We in creeping flow, which indi-
cates the effects of elasticity on the axial normal stress. 
For creeping flow, similar with the distribution of 
axial flow velocity, the maximum in axial normal 
stress is near the inner bend of the pipe. With in-
creasing elasticity, the distribution of axial normal 
stress becomes more and more even. Meanwhile, the 
maximum in axial normal stress concentrates near the 
center of the inner bend of the pipe. The location of 
the minimum of τss extends to the outer bend of the 
pipe with increasing Weissenberg number. Such 
variation of axial normal stress is just the result of the 
variation of axial flow velocity affected by the elas-
ticity. 
 
 
CONCLUSION 
 

The flow of Oldroyd-B fluid in curved pipes was 
investigated by Galerkin method. The scales of the 
curvature ratio, the Reynolds number and the Weis-
senberg number are widely extended by using 
Galerkin method. The coupled effect of inertia and 
elasticity on Oldroyd-B fluid flow in curved pipes 
was examined in detail. The major conclusions drawn 
are as follows: 

For small value of Reynolds number, the effect 
of increasing Weissenberg number gradually shifts 
the maximum stream function and maximum axial 
velocity toward the outer bend of the pipe. However, 
for the case of large Reynolds number, both the 
monotonicities are broken because of the combined 
non-linearity of large values of Reynolds number and 
Weissenberg number.  

The distribution of τss is also dependent on the 
Weissenberg number. Through the study of creeping 
flow of Oldroyd-B fluid, the independent effect of the 
Weissenberg number on the distribution of τss can be 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

discovered. The maximum value in τss concentrates 
near the center of the inner bend of the pipe with 
increasing Weissenberg number, while the distribu-
tion of the minimum τss extends to the outer bend of 
the pipe.  

(a) 

(b) 

(c) 

(d) 

Fig.9  Contours of axial normal stress for Re=0,
ηp/η=0.2 and κ=0.2. (a) We=2; (b) We=4; (c) We=6; (d)
We=8 
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