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Abstract:    Fault diagnosis is an important method of improving the safety and reliability of air conditioning systems. When the 
fan in fan-coil unit is shut down, there are temperature variations in the conditioned space. The heat exchanger efficiency is lower 
and the temperature in the room will change while the heat load of the room is stable. In this study, fault data are obtained in an 
experimental test rig. Thermal parameters as suction pressure and room temperature are selected and measured to establish a 
characteristic description to represent states of system malfunction. A new approach to fault diagnosis is presented by using real 
data from the test rig. Using the artificial neural network (ANN) in self-learning and pattern recognition modes, the fault is di-
agnosed with the perceptron (one type of ANN model) suitable for pattern classification problems. The perceptron network is 
shown to distinguish types of system faults correctly, and to be an artificial neural network architecture especially well suited for 
fault diagnosis. 
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INTRODUCTION 
 

The extensive research that has gone into fault 
diagnosis of air conditioning systems thus far has 
been motivated by several concerns, ranging from the 
need to reduce power consumption and energy costs, 
improving comfort levels in buildings, reducing wear 
on air-conditioning equipment, reducing the magni-
tude of greenhouse emission, to assisting in optimal 
building operation (Wang and Xiao, 2004; Yoshida 
and Kumar, 2001; Soteris, 2001). When faults are 
diagnosed and eliminated, the comfort level and re-
liability of building air conditioning system will im-
prove, thus enabling buildings to be more occupant 
friendly. 

Several researchers have applied fault diagnosis 
methods to air conditioning systems. Wagner and 
Shoureshi (1992) evaluated two different fault diag-
nosis methods when applied on a small scale ex-
perimental heat pump. Rossi and Braun (1996) pre-

sented an air-conditioner fault diagnosis method 
based on a statistical rule which takes 9 measured 
temperatures and a relative humidity as input data. 
This method successfully diagnosed 5 faults, includ-
ing air-side fouling of the condenser, air-side fouling 
of the evaporator, partial blockage of the refrigerant 
flow, and leakage of the compressor valve plate. 
However, this prior work only provides fault diagno-
sis demonstration; a fully functional fault-diagnosis 
system is not completed. These fault diagnosis sys-
tems are all based on system models, and their diag-
nosistic fidelity is strongly dependent on the precision 
and accuracy of the model. Model-based fault diag-
nosis systems require that every sub-system or com-
ponent can be described in quantitative functional 
form. Meanwhile, air conditioning systems are 
nonlinear, multi-parameter systems. It is challenging 
to develop a precise and general model for all kinds of 
air-conditioning systems. Therefore, model-based 
fault diagnosis systems are not extensively applied, 
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because of system complexity and equipment-specific 
features of system behavior. 

In this paper, a fault diagnosis method for 
air-conditioning systems is presented; the method is 
different from model-based methods. It makes use of 
the pattern-classification capabilities of percepron 
networks, and introduces artificial neural networks as 
a fault diagnosis method for air-conditioning sys-
tems. 
 
 
FAULT SIMULATION TEST RIG  
 

For a fault diagnosis system to work, the criteria 
used to represent the system must be established. As 
far as air-conditioning systems are concerned, the 
thermal parameters such as temperatures and pres-
sures of the system are of importance to characterize 
the fault. These parameters provide self-contained 
information about the system running state. So, a 
characteristic description formed from some typical 
thermal parameters can be the input data for fault 
diagnosis (House et al., 1999; Chia et al., 1999; 
Gordon and Ng, 1995). These characteristic vectors 
belonging to various running state are used as the 
training examples for the fault diagnosis purpose 
neural network. 

To obtain a dataset for training the neural net-
work, a test rig was used. During the fault simulation 
test, important thermal parameters are measured to 
form characteristic descriptions that represent ab-
normal running state. 
 
Test rig 

Experiments and fault diagnosis system devel-
opment were carried out on an air-conditioning test 
rig, shown in Fig.1. This apparatus is based on a re-
ciprocating air-conditioning system using refrigerant 
R-22 with a cooling capacity of 2.2 kW. 

Components of the air-conditioning system in-
clude a hermetic reciprocating compressor, a refrig-
erant-to-water plate heat exchanger (PHX) acting as a 
condenser, and a fin-tube outdoor heat exchanger 
acting as an evaporator. The system is equipped with 
a thermal expansion valve (TEV). Using a circulation 
pump and a hot-water supply, an air-conditioning 
load is supplied to the room.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Instrumentation and data-acquisition system 

The instrumentation of the test rig is composed 
of four platinum resistance temperature detectors 
(RTDs) (tolerance: (±0.25+0.0042) °C), and one 
pressure transducer is given in Table 1. 

 
 
 
 
 
 
 
 
Dry surface-mounted RTDs are used. This type 

of installation was chosen not only to avoid problems 
with refrigerant leaks, but also to duplicate the most 
likely way in which RTDs would be installed in the 
field. Pressure is measured using an optical pressure 
transducer (accuracy: ±6.5 kPa) mounted in the man-
ner usually employed for pressure gauges and as close 
to the desired point as conditions would allow; the 
measurement point is also shown in Fig.1. 

Data acquisition is carried out using a com-
puter-based system that enables the user to establish 
sampling frequencies of up to 1 Hz. The output data 
files can be stored on the computer serving the test 
unit and can be transferred to other platforms with 
specialized software applications for further analysis 
as shown in Fig.2. 

 

Fig.1  Diagram of the air conditioning system test rig 
1: Compressor; 2: Four-way-reversing valve; 3: Outdoor
heat exchanger; 4: Check valve; 5: Drier and filter; 6:
Solenoid valve; 7: Sight glass; 8: Thermal expansion
valve; 9: Plate heat exchanger; 10: Expansion vessel; 11:
Circulation pump; 12: Fan coil unit; 13: Conditioned room
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Table 1  Measured variables 
Variables Descriptions 
t_TEV_in Entering temperature of TEV (°C) 
t_PHX_in Entering temperature of PHX (°C) 
t_PHX_out Leaving temperature of PHX (°C) 
t_ROOM Room temperature (°C) 
p_SUCT Suction pressure (kPa) 
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Experimental methodology 

The air-conditioning system is at its normal state 
for times less than t=9 min, and data are recorded as in 
Fig.3a. At t=9 min, the fan of fan-coil unit in the 
air-conditioning room is shut down. The temperature 
of the air in the conditioned space changes because 
the heat load to the room is steady. The refrigerant 
temperature at the plate heat exchange increases, 
owing to insufficient heat rejection at the evaporator. 
The COP of the system decreases because of the high 
condensing temperature, and the cooling capacity of 
the system is reduced. The thermal parameters are 
shown in Fig.3a. By analyzing the experimental re-
sults, characteristic descriptions can be developed for 
the faults, distinguishing one fault from another. 
Analysis of Fig.3 shows that two of the parameters 
can represent the malfunction. Suction pressure is the 
most quick to respond to the fault, and conditioned- 
space temperature is an important parameter because 
controlling the air temperature is the function of the 
system. Suction pressure and temperature of the 
conditioned space are selected as the parameters to 
provide a characteristic description. 
 
 
PERCEPTRON NETWORK FAULT DIAGNOSIS  
 

Artificial neural networks can classify patterns, 
using distributed information distributed storage and 
parallel computation features. The ANN has batch 
calculation capacity and self-learning ability. The 
ANN is a powerful tool for solving many nonlinear 
mapping problems which cannot be solved with 
conventional methods (Peitsman and Bakker, 1996; 
Mohamed et al., 2005).  
 
Perceptron network 

The   general   approach   to   solving   real-world 
complex classification problems that  relies  upon  an 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
MLP (Multi-Layer Perceptron) network is adopted 
(Weng and Wang, 2002), which is more precisely the 
so-called BP (Back Propagation) network. However, 
there is no theoretical basis for deciding how many 
neurodes to use, nor is there an established theory for 
deciding network architecture, such as the number of 
layers and neurode distribution for each particular 
problem. In most cases, finding workable networks 
are implemented through a trial-and-error procedure. 

The perceptron is one of the most classical arti-
ficial neural networks (Rosenblatt, 1961). The sim-
plest perceptron network is a single-layer network, 
with its input weights and biases set by training. After 
that, when an input vector is presented to the trained 
perceptron network, the desired output target can be 
obtained. The algorithm used in the training process is 
called the perceptron learning rule. If the problem is 
linearly separable, the perceptron network is always 
the most powerful and reliable problem-solving 
network. It is especially well suited for solving simple 
pattern classification problems. 
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Fig.2  Data-acquisition system 0
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Fig.3  Thermal parameters of the normal state (a) and
the fan shutdown of fan-coil unit (b) 
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Perceptron neurode 
A perceptron neurode using the hard-limit 

transfer function hardlim (Rosenblatt, 1961), is 
shown in Fig.4. Each external input is weighted with 
an appropriate weight W1j, and the sum of the 
weighted inputs is sent to the hard-limit transfer 
function, which also has an input of 1 transmitted to it 
through the bias. The hard-limit transfer function, 
which returns a 0 or a 1, is shown in Fig.5. The per-
ceptron neurode produces a 1 if the net input into the 
transfer function is equal to or greater than 0; other-
wise it produces a 0. The hard-limit transfer function 
gives the perceptron the ability to classify input vec-
tors by dividing the input space into two regions. Two 
classification regions are formed by the decision 
boundary line, which is determined by Eq.(1). This 
line is perpendicular to the weight matrix W and 
shifted according to the bias b. 

 
Wp+b=0.                            (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Implementation of perceptron diagnosis network 
Assume that there are finite possible running 

states which an air-conditioning system can take. For 
instance, there are n types of possible system faults. 
Let S0 represents the normal state, and S1, S2, S3, …, Sn 
each represent one type of fault state. When the sys-
tem is running at state Si, the corresponding observ-
able vector is Yi=(Yi1, …, Yim). Therefore, the process 
of fault diagnosis can be considered as finding the 

state Si according to the given measurable character-
istic vector Yi=(Yi1, …, Yim) of the system. To some 
extent, fault diagnosis can be considered as one kind 
of pattern classification problem. The output values of 
a perceptron can take on only one of two values (0 or 
1) due to the hard-limit transfer function. It is suitable 
in the above fault diagnosis (Zhang, 2006). 

The computer simulation routines of the pre-
ceding diagnosis neural network are implemented 
within the MATLAB computational environment 
(Wasserman, 1993). It includes the network founda-
tion, training program newtrainfdp.m, and the diag-
nosis program simfdp.m. The decision boundaries of 
the trained neurodes within the perceptron network 
are shown in Fig.6. The characteristic description of 
the fault through suction pressure and temperature of 
the conditioned space are given. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

It can be seen that after several iterations in the 
training procedure, the ANN separates the fault state 
successfully from the normal state. That is to say, the 
trained perceptron network is ready for future diag-
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Fig.5  Hard-limit transfer function 
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Fig.6  Results of the network training and identifica-
tion. (a) Results of classification; (b) Result of obtain-
ing error 
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nostic tasks. Moreover, taking the experimental data 
as test inputs to validate the diagnosistic ability of the 
network, the diagnosis outputs are correctly identified 
by the ANN. In a second phase of testing, a set of 
experiments was designed and carried out on the real 
system. In this way, the methods were tested in real 
situations. One strength of the ANN approach, as 
opposed to a full system model, is that it does not 
require long computational time. Once the network is 
trained, the ANN provides fast and precise fault di-
agnosis for faults under conditions similar to the ex-
perimental conditions. 

After making a summary of other researchers’ 
works and the present test rig, six typical faults are 
simulated and the thermal parameters that represent 
their running state are sampled to form the charac-
teristic description shown in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ANN diagnostic tool can distinguish each 

fault correctly. Moreover, using the experimental data 
as testing inputs to validate the diagnosis network, the 
diagnosis outputs are correct. The fault diagnosis 
neural network based on the perceptron approach 
described above can diagnose the system faults rap-
idly and precisely, in real time. The perceptron ar-
chitecture is very well suited for fault diagnosis of 
air-conditioning systems.  
 
 
CONCLUSION 
 

Using an experimental apparatus, a database of 
system response to a range of system faults is ob-
tained. By analyzing the experimental results, char-
acteristic descriptions of each fault, embodied in the 
behavior of the suction pressure and temperature of 

the conditioned space are developed. Perceptron 
neural network fault diagnosis can diagnose the faults 
precisely, and map the fault symptoms to the fault 
using pattern classification techniques. When no 
model of the system is available, or when the model is 
too complex, the use of ANN-based pattern classifi-
cation methods can provide a convenient approach to 
solving the fault diagnosis problem. The work pre-
sented here can serve as a basis for the further de-
velopment of fault-diagnosis systems based on neu-
ral-network frameworks for air-conditioning systems. 
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Table 2  Characteristic description for the other 6 faults 
Fault Characteristic description 

Compressor shutdown Discharge temperature, leaving
temperature of PHX 

Pump halt Leaving temperature of PHX,
suction pressure 

TEV too broad Entering temperature of PHX,
suction pressure 

TEV too narrow Suction temperature, suction
pressure 

Refrigerant too few Discharge temperature, suction
pressure 

Refrigerant too much Discharge temperature, suction
pressure 

 


