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Abstract:    A time-domain solution of layered ground vibration due to moving load has been developed based on the thin layer 
method. Fourier-Laplace transforms are applied to derive the transformed domain solution that satisfies the boundary conditions of 
horizontal infinities. The eigen-decomposition approach is used with respect to the Laplace parameter, and the final ground re-
sponse solution is constructed with the mode superposition method. The reliability and computation accuracy of the solution are 
proved by comparison with a closed-form solution. A single soil stratum on rigid bedrock is used to reveal the vibration features 
induced by a rectangular load moving at speeds below or above ground Rayleigh wave velocity. 
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INTRODUCTION 
 

Cole and Huth (1958) and Fryba (1972) ana-
lyzed the responses of a 2D elastic body subjected to a 
moving point load using the technique of triple Fou-
rier integral transform. Eason (1965) studied the 3D 
steady-state problem of a uniform half-space sub-
jected to moving forces distributed over a rectangular 
area at uniform speeds. Lefeuve-Mesgouez et 
al.(2000) gave a semi-analytical solution for the 
half-space ground responses due to a moving strip 
load. The layering effect is of importance in inter-
preting the wave field induced by external excitations.  
de Barros and Luco (1994) proposed a procedure for 
obtaining the steady-state displacements and stresses 
within a multilayered viscoelastic half-space gener-
ated by a buried or surface point load moving along a 
horizontal straight line at subsonic, transonic or su-
personic speeds. Grundmann et al.(1999) studied the 
response of a layered half-space subjected to a single 

moving periodic load, and critical velocities of the 
moving force were identified. Lieb and Sudret (1998) 
used the decomposition in wavelets to perform the 
inverse transformation for the ground responses due 
to moving loads. Andersen and Nielsen (2003) stud-
ied with the boundary element method the 
steady-state wave propagation through an elastic 
medium due to a source moving with constant veloc-
ity. Lefeuve-Mesgouez et al.(2002) investigated the 
3D vibrations of a multilayered ground for loads 
moving with speeds up to and beyond the Rayleigh 
wave speed of the half-space. 

This paper is aimed at developing an explicit 
time domain solution of ground responses due to 
moving loads to replace the traditional fre-
quency-domain solutions. The thin layer method 
originally proposed by Tassoulas and Kausel (1983) 
in frequency domain is a high-efficiency 
semi-analytical solution for dynamic analysis of 
laminated media. The Fourier transform technique is 
traditionally applied to obtain the algebraic governing 
equations in the wavenumber and frequency domain. 
Instead, the Laplace transform with respect to time 
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variable is used in this study to express the governing 
equations with the Laplace parameter, and the explicit 
time domain formulations for ground vibrations are 
obtained. Some numerical studies for the ground 
responses due to moving load acting on ground sur-
face have been conducted. The accuracy of the pro-
posed approach has been checked with a closed-form 
solution.  
 
 
PHYSICAL MODEL AND MATHEMATICAL 
FORMULATIONS 
 
Physical model and governing equations  

The ground model adopted in this study is shown 
in Fig.1. The positive z direction is downward and at 
the ground surface, z=0 m. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this study, the following Laplace transform 

with respect to time t and Fourier transform pairs with 
respect to x and y coordinates are used to simplify the 
governing equation, 
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Variables with bar ‘-’ and tilde ‘~’ represent the 
components in frequency domain and wave number 
domain respectively.  

Applying the predefined transforms to the Na-
vier equations describing ground motions yields, 
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where 

/ i( ),z x x y yu z u uξ ξ∆ = ∂ ∂ − + 2 2 2.x yξ ξ ξ= +  
 

Vp and Vs are dilatational velocity and shear velocity 
of soil material, p ( 2 ) /V λ µ ρ= +  and s / .V µ ρ=  

uj (j=x, y, z) represent displacement components in 
three directions. λ and µ are the Lame constants of 
ground material, ρ is the density, fj  (j=x, y, z) are body 
forces.  

The coordinate transform is also applied to 
change the governing equations of ground motions 
from the Cartesian coordinate system to the cylin-
drical coordinate system. The radial, circular and 
vertical components in the new system are denoted 
with subscript ‘1’, ‘2’ and ‘3’ respectively. To solve 
the wave equations in the transformed domain, the 
medium is divided into several sublayers that are thin 
in finite element sense, and the physical interfaces of 
natural soil layers are also used as sublayer interfaces. 
The thin layers are labelled consecutively as 1, 2, …, 
N from the ground top, and the layer interfaces are 
also labelled as 1, 2, …, N+1, with the interface 1 for 
the ground surface and N+1 for the rigid ground bot-
tom. The ground model with layered discretization is 
depicted in Fig.1. 

By introducing the linear interpolation function 
for the jth layer, the governing equations of inplane 
and antiplane motions can be expressed in the com-
pact matrix forms from the virtual work principle, 
 

Inplane motions (with ‘p-sv’ notation), 
p-sv 2 p-sv p-sv 2 p-sv p-sv p-sv( ) = .j j j j j jpξ ξ+ + +A B C M U F (6) 

Antiplane motions (with ‘sh’ notation), 
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Fig.1  Layered discretization model of ground on rigid
bedrock 
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sh 2 sh 2 sh sh sh( ) ,j j j j jpξ + + =A C M U F          (7) 
 

in which, the displacement and force vectors for the 
jth layer are given by, 
 

p-sv 1 1 T
1 2 1 2{ } ,j j j j

j u u u u+ +=U  sh 1 T
3 3{ } ,j j

j u u +=U   (8) 
p-sv 1 1 T

1 2 1 2{ } ,j j j j
j f f f f+ +=F sh 1 T

3 3{ } .j j
j f f +=F (9) 

 
The detailed expressions of the coefficient matrices in 
the above equations are given by Tassoulas and 
Kausel (1983). 
 
Engen-decomposition and mode superposition 

The global system matrix with N layers is gen-
erated by overlapping the results of a single layer with 
those of all other layers like the element matrices in a 
finite element formulation. To solve the system 
equations of ground motions, the eigen decomposi-
tion procedure is applied to enable integration with 
respect to the Laplace parameter p in closed form by 
using the residue theory.  

If we denote 
 

p-sv,sh p-sv,sh 2 p-sv,sh p-sv,shˆ ,ξ ξ= + +K A B C  
 

in which, superscript ‘p-sv,sh’ is used for either in-
plane or antiplane wave motion. The uniform ex-
pressions of the global system equations for inplane 
and antiplane motions can be given by, 
 

p-sv,sh 2 p-sv,sh p-sv,shˆ{ ( ) } 0.p φ+ =K M        (10) 
 

Since the ground is divided into N layers, 2N and 
N eigenvalues can be obtained from Eq.(10) for in-
plane and antiplane motions individually. The ei-
genvectors satisfy the standard orthogonality condi-
tions, and can be assumed to be normalized with re-
spect to the mass matrix for both inplane and anti-
plane motions, hence the eigen-matrices Φp-sv, Φsh 
can be given as, 
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The displacement solution can be obtained from 
the conventional mode superposition method as, 
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The solution of ground motions in the original 

Cartesian system can be obtained by the inverse co-
ordinate transform. Now the governing equations of 
ground motions for an elasto-dynamic problem are 
formulated in the wavenumber domain with the 
Laplace parameter p, which will be eliminated from 
Eq.(13) by the analytical inverse Laplace transform. 
 
Analytical solution with rectangular moving load 

A unit load acting on ground surface is distrib-
uted in a square area whose sizes in x and y directions 
are 2a×2b. The load is assumed to move in the posi-
tive x direction at a constant speed c. The mathe-
matical description of the load distribution can be 
given by,  

 
1, ,  ,

( , , )
0,         otherwise,

a x a b y b
F x y t

− ≤ ≤ − ≤ ≤
= 


    (16) 

 
and the corresponding Laplace transform of Eq.(16) 
in wavenumber domain is given by, 
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Since the eigen-matrices Φp-sv and Φsh are in-

dependent of the Laplace parameter p, the transient 
responses of the decomposed modes can be obtained 
by applying the inverse Laplace transforms to Eqs. 
(14) and (15) combining Eq.(17), 
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which is evaluated by the residue theory. The damp-
ing effect is taken into account by introducing the 
damping ratio β in each decomposed mode. The time 
domain solution can be given in an explicit way as, 
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in which the diagonal elements can be given by, 
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The formulations of ground responses in the 
time-wavenumber domain can be achieved by sub-
stitution of Eq.(20) into Eq.(13). While the inverse 
Fourier transforms with respect to wavenumbers ξx 
and ξy will be performed with the discrete wavenum-
ber convolution method (Bouchon and Aki, 1977) to 
get the moving load induced ground responses in the 
space and time domain. 
 
 
NUMERICAL STUDIES 
 

A single soil stratum on rigid bedrock is used to 
check the reliability and applicability of the proposed 
approach for ground responses under moving load 
actions. The moving load has a rectangular distribu-
tion of 2 m×2 m with total load of 1.0 N as shown in 
Fig.2. In the same figure, properties of ground mate-
rial including density ρ, shear velocity Vs, Poisson 
ratio υ and damping ratio β are also given. 

The ground of half-space is approximated with a 
homogeneous soil stratum of 20 m height on the rigid 
bedrock. In the numerical computations, two kinds of 

 
 
 
 
 
 
 
 
 
 
 
 

soil sublayer thickness are used. For the load with 
moving speed below 150 m/s, the soil stratum is di-
vided into 40 sublayers with height of 0.5 m, while for 
high speed cases, the soil stratum is divided into 80 
sublayers with height of 0.25 m. These two kinds of 
thin-layer sizes give satisfying numerical results.  

The transient ground responses due to a uniform 
moving load at constant speed c=100 m/s are inves-
tigated, and the computed results of vertical and lon-
gitudinal ground responses at y=0 m are presented in 
Fig.3. In the same figures, results given by Eason 
(1965)’s analytical solution for a homogeneous elas-
tic half-space are also depicted for the comparison 
purpose. A good agreement is attained between these 
two solutions. 

Totally 7 observation points denoted in Fig.2 are 
used to inspect the time histories of ground dynamic 
responses due to moving loads’ passages. The time 
histories of responses at specific observation points 
are shown in Fig.4. Here, two speeds of 100 m/s and 
250 m/s are used to represent moving speed below and 
above the ground’s Rayleigh velocity. From the 
computation results, it is found that two horizontal 
components of ground responses at nearby ground 
surface increase significantly, while the vertical one 
only has a little increase in the amplitude. For the 
low-speed moving load case, the wave forms are al-
most symmetric about the time when the load center 
passes the origin point (x=0 m and y=0 m), while for 
high-speed case, the amplitudes of ground responses 
are very small before the moving load reaches the 
origin point, and become very significant when the 
load passes. 

The dynamics responses of the overall ground 
surface are studied for the moving loads at different 
speeds. The ratio of the load’s moving  load  speed  to  
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the Rayleigh velocity (VR) of ground is defined as 
Mach number Mg=c/VR. The contour lines of ground 
response amplitudes due to the moving loads with 
different Mach numbers are presented in Fig.5. It is 
found that ground vibrations are mostly confined in a 
local area when the load’s Mach number is small (i.e. 
Mg<<1.0). The wave propagation phenomena in the 
ground are not obvious and the vibration amplitudes 
on the ground surface are almost symmetric about the 
load center. With the increasing of the moving speed, 
wave propagation in the surrounding ground grows. 
When Mg approaches or exceeds 1.0, ground vibra-
tions increase dramatically. Ground deformations in 
front of the load position become very small, while at 
rear part become very significant as the load passes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

An explicit time domain solution base on the thin 
layer method for ground responses due to moving 
load has been developed in this study. The Laplace 
transform with respect to time variable instead of the 
traditional Fourier transform is applied to simplify the 
governing equations, and the explicit time domain 
solution is derived by using the eigen-decomposition 

technique in the transformed domain. The accuracy of 
the proposed approach is validated by comparison 
with a closed-form solution. From the numerical 
computations, it is found that the Mach number of the 
moving load is critical in determining the ground 
responses due to moving loads. The ground vibrations 
are confined in a local area if the Mach number is 
small. When the Mach number approaches or exceeds 
1.0, ground vibration amplitudes and affected area 
increase dramatically.  
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Fig.5  Vertical responses on ground surface due to moving
loads with different Mach numbers 
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