
Chen et al. / J Zhejiang Univ SCIENCE B   2006 7(1):7-12 7

 
 
 
 

Heuristic algorithm for off-lattice protein folding problem* 
 

CHEN Mao (陈  矛)†, HUANG Wen-qi (黄文奇) 

(School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China) 
 †E-mail: mchen_1@163.com 

Received Aug. 10, 2005;  revision accepted Nov. 28, 2005 
 

Abstract:    Enlightened by the law of interactions among objects in the physical world, we propose a heuristic algorithm for 
solving the three-dimensional (3D) off-lattice protein folding problem. Based on a physical model, the problem is converted from 
a nonlinear constraint-satisfied problem to an unconstrained optimization problem which can be solved by the well-known gra-
dient method. To improve the efficiency of our algorithm, a strategy was introduced to generate initial configuration. Computa-
tional results showed that this algorithm could find states with lower energy than previously proposed ground states obtained by 
nPERM algorithm for all chains with length ranging from 13 to 55. 
 
Key words:  Protein folding, AB off-lattice model, Gradient method 
doi:10.1631/jzus.2006.B0007                     Document code:  A                    CLC number:  TP3; Q67 
 

 
INTRODUCTION 
 

Protein folding problem, or protein structure 
prediction problem, is one of the central problems in 
the field of bioinformatics. Studies indicated that 
proteins’ biological functions are determined by their 
dimensional folding structures (Anfinsen, 1973). 
Since the structure of a protein is strongly correlated 
with the sequence of amino acid residues, predicting 
the native states of a protein from its given sequence 
by using theoretical computing method is a feasible 
approach and of great significance for protein engi-
neering (Lau and Dill, 1989).  

Since the problem is too difficult to be ap-
proached with fully realistic potentials, the theoretical 
science community has introduced and examined 
several highly simplified models, one of which is the 
HP lattice model of Dill (1985) where each amino 
acid is treated as a point particle on a regular (quad-
ratic or cubic) lattice, and only two types of amino 
acids−hydrophobic (H) and hydrophilic (P)−are con-

sidered. The energy between any two neighboring 
non-bonded hydrophobic monomers (H-H) is defined 
as −1, otherwise 0. 

Being the most simplified and most popular 
model, HP model only considers the interactions 
between neighboring non-bonded H monomers, ne-
glecting the other nonlocal effects caused by P-P, H-P 
and non-neighbored H-H pairs, which also exert sig-
nificant statistical influence on the conformation of 
the monomers in the properly folded state. 

To illustrate the influence of nonlocal effects on 
protein folding, Stillinger (1995) proposed a more 
realistic simplified model, namely, AB off-lattice 
model, which also uses only two types of monomers, 
now called “A” (hydrophobic) and “B” (hydrophilic). 
The distances between consecutive monomers along 
the chain are held to be 1, while nonconsecutive 
monomers interact through a modified Lennard-Jones 
potential. In addition, there is an energy contribution 
called bending energy from each bond angle θi be-
tween successive bonds. Hence, the total energy 
function U1 for an n monomers chain is expressed as 
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where 
V1(θi)=(1−cosθi )/4,                         (2) 

12 6
2 ( , , )=4[ ( , ) ].ij i j ij i j ijV r r C rζ ζ ζ ζ− −−              (3) 

 
Here rij is the distance between monomer i and j 

(with i<j). Each ζi is either A or B, and C(ζi, ζj) is +1, 
+1/2 and –1/2 respectively, for AA, BB, and AB pairs, 
thus producing strong attraction between AA pairs, 
weak attraction between BB pairs, and weak repul-
sion between AB pairs, roughly analogous to the 
situation in real proteins. 

Even in this highly simplified model, it is not 
easy to predict the native state for the protein folding 
problem. This problem has been recognized to be 
NP-complete, which means that it is not solvable in 
polynomial time, even for an optimal algorithm 
(Crescenzi et al., 1998). Consequently, various heu-
ristic schemes have been proposed for approaching 
this problem.  

For its two-dimensional (2D) version, neural 
networks (Stillinger, 1995), Monte Carlo (Irback et 
al., 1997) and biologically motivated methods (Tor-
cini et al., 2001) were used to find the native state. An 
improved pruned enriched Rosenbluth method with 
importance sampling, namely, nPERM was proposed 
by Hsu et al.(2003), which found states with lower 
energy than previously proposed putative ground 
states for all four Fibonacci sequences with chain 
lengths≥13. Without modifying the energy function, 
Hsu et al.(2003) extended the 2D AB model to 3D 
version and presented some putative lowest energy 
states for the four sequences. Although the resulting 
configuration corresponding to the lowest energy has 
a single hydrophobic core for the short sequence with 
length 13, the longer sequences with length ranging 
from 21 to 55 do not fold into configurations with 
single hydrophobic cores. Recently, better results in 
three dimensions for the four sequences were 
achieved by means of energy landscape paving (ELP) 
minimizer (Bachmann et al., 2005) and conforma-
tional space annealing (CSA) method (Kim et al., 
2005). 

In this paper, we propose a quite different class 
of heuristic algorithm for predicting the native struc-
ture for the 3D AB off-lattice model. The proposed 
algorithm integrates the well-known gradient method 
and a novel strategy of generating promising initial 
configuration in order to find the globally optimal 

state. Compared with nPERM, the experimental re-
sults showed that our algorithm can find lower energy 
states and that each of the four resulting configura-
tions has single hydrophobic cores. 
 
 
PROPOSED ALGORITHM 
 
Mathematical formulation  

Consider the problem in 3D Euclidean space. 
Consider an amino acid sequence as a chain of black 
balls (A) and white balls (B) with radius R=0.5, with 
the balls being numbered from 1 to n. Denote the 
coordinates of the center of the ith (i=1, 2, …, n) ball 
by (xi, yi, zi). At any moment, the entirety of the co-
ordinates of the center of the n balls, x1, y1, z1, …, xn, 
yn, zn, is called a configuration.  

Now, the protein folding problem can be de-
scribed as the following mathematical model: 

 
min(U1),                              (4) 

subject to 
2 2 2

+1 +1 1( ) +( ) +( ) =1,i i i i i ix x y y z z +− − −  
  i=1, 2, …, n−1                            (5) 

  −∞<xi, yi, zi<+∞,  i=1, 2, …, n−1.            (6) 
 

In this model, there are 3n continuous determi-
nistic variables and n−1 constraints where n is the 
number of balls. Constraint Eq.(5) ensures that the 
distances between the centers of two consecutive 
balls along the chain are equal to 1. A configuration 
that satisfies constraint Eq.(5) is termed a legal con-
figuration. 

Eqs.(4)~(6) form a specific type of nonlinear 
constraint-satisfied problem. This is just the mathe-
matical model for our protein folding problem. It is 
rather difficult to solve this kind of problem directly 
due to the loss of smoothness in the solution space. 
Therefore, a scheme is proposed below to convert this 
problem into an unconstrained optimization problem 
which is smooth in the solution space. 
 
New mathematical description 

Instead of fixing the distances between two 
successive balls, we imagine the centers of two con-
secutive balls i and i+1 (i=1, 2, …, n−1) are con-
nected by a fictitious spring with natural length held 
to be 1. Springs have the tendency to return to their 
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natural length after being compressed or stretched. So 
springs can be used to relax the requirement on the 
solvability of the original constraint-satisfied problem. 

Under any configuration, the length of a spring 
connecting the centers of two consecutive balls along 
the chain is  

 
2 2 2

, +1 +1 +1 +1= ( ) +( ) +( )i i i i i i i il x x y y z z− − − , 
   i=1, 2, …, n−1.                           (7) 

 
If li,i+1>1, it means that the spring is extended; if 
li,i+1<1, the spring is compressed. According to 
Hook’s law, the elastic potential energy of a spring is  
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Here, Ks is the spring coefficient, Ks>0. Then the 

total spring potential energy of the whole configura-
tion is  
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Now, the total potential energy function of the 

whole configuration consists of three types of con-
tributions: bond angle, Lennard-Jones and spring. The 
new energy function can be rewritten as: 
 

1 2

1 1 s 1 1 1 2
2 1 2

1
2

s , 1
1

= + = ( )+ ( , , )

1                      + ( 1) .                         (10)
2

n n n

i ij i j
i i j i

n

i i
i

U K U U K V K V r

K l

θ ζ ζ
− −

= = = +

−

+
=

−

∑ ∑ ∑

∑
 

Here K1 is a proportional coefficient, whose use 
will be discussed later. It can be seen from Eqs.(1)~(3) 
to Eqs.(7)~(10) that the potential energy U of the 
whole configuration is a known function of the coor-
dinates x1, y1, z1, …, xn, yn, zn of the centers of all the 
balls: 
 

1 1 1= ( , , ,..., , , ).n n nU U x y z x y z               (11) 
 

U(x1, y1, z1, …, xn, yn, zn) is defined on the entire 
3n-dimentianal Euclidean space (−∞, +∞)3n, smooth, 
continuous and differentiable everywhere. Based on 
this new energy function, the protein folding problem 
is converted to a problem of optimization of the total 
potential energy U(x1, y1, z1, …, xn, yn, zn). The aim is 

to find a configuration * * * * * *
1 1 1( ,  ,  ,  ,  ,  ,  )n n nx y z x y z…  

with minimum energy: 
 

* * * * * *
1 1 1( ,  ,  ,  ,  ,  ,  )= min( ).n n nU x y z x y z U…       (12) 

 
Obviously, this problem is an unconstrained op-

timization problem, for which, there exists a ready- 
made algorithm for its solution, the gradient method, 
or the steepest descent method (Wang et al., 2002). 

Eq.(8) and Eq.(9) show that the spring potential 
energy is non-negative. According to Eq.(8), if the 
coefficient Ks is set to be large enough, a spring with 
length differing slightly from the natural length 1 can 
considerably increase the whole energy of the con-
figuration. Accordingly, if a configuration is not a 
legal one, that is, there are some springs compressed 
or stretched, the total energy of the configuration will 
not be very low. Therefore, we can see that the total 
elastic energy of the springs acts as a penalty function 
of the degree of departure of a configuration from a 
legal one, thus ensuring that the resulting configura-
tion is legal.  
 
Gradient method 

Randomly define 3n real numbers in 3D 
Euclidean space as the initial configuration 

(0) (0) (0) (0) (0) (0)
1 1 1( , , , , , , ).n n nx y z x y z… Calculate gradU at 
(0) (0) (0) (0) (0) (0)
1 1 1( , , , , , , ) :n n nx y z x y z…  
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,    i=1, 2, …, n.        (14) 

 
Then a new configuration can be calculated following 
the gradient method: 
 

(1) (0)= + ( / ),i i ix x U xε −∂ ∂  
(1) (0)= + ( / ),i i iy y U yε −∂ ∂  

(1) (0)= + ( / ),i i iz z U zε −∂ ∂    i=1, 2, …, n,         (15) 
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where the partial derivatives ∂U/∂xi, ∂U/∂yi, ∂U/∂zi, 
i=1, 2, …, n are defined at (0) (0) (0) (0) (0)

1 1 1( , , , , , ,n nx y z x y…  
(0) )nz  in a 3n-dimensional space. ε is step size, which 

is a small positive real number. We let ε be 10−6 in our 
procedure. Using vector representation,  
 

(1) (1) (1) (1) (1) (1)
1 1 1( , , ,..., , , )n n nx y z x y z  

(0) (0) (0) (0) (0) (0)
1 1 1=( , , ,..., , , )+ ( grad ).n n nx y z x y z Uε −   (16) 

 
After moving towards the opposite direction of 

the gradient by ε|gradU|, configuration (0) (0) (0)
1 1 1( , , ,x y z  

(0) (0) (0), , , )n n nx y z… becomes (0) (0) (0) (0) (0)
1 1 1( , , , , , ,n nx y z x y…  

(0) ).nz The physical meaning of the negative gradient, 
−gradU, in the gradient method is the generalized 
force in the system. (−∂U/∂xi, −∂U/∂yi, −∂U/∂zi) 
represents the magnitude and direction of the total 
force exerted on the ith ball. It should be pointed out 
that the evolution of (x1, y1, z1, …, xn, yn, zn) in the 
gradient method is a series of movements of the po-
sitions of the n balls to a legal configuration with 
minimum energy.  

To adjust the proposition of U1 in the total en-
ergy, we multiply U1 by a proportional coefficient K1. 
At the initial phase of the iteration process, we let K1 

be much larger than Ks so that U1 dominates the 
evolution of the configuration to low energy states. 
As pointed out earlier, to ensure that the resulting 
configuration is a legal one, the coefficient Ks should 
be large enough so that a little deformation of the 
springs away from the natural length will cause con-
siderable increase of the total energy. So we increase 
Ks and decrease K1 gradually as the iteration contin-
ues, which will increase Us to drive the configuration 
to a legal configuration. At the end of the iteration 
process, the configuration becomes a legal one with 
low energy.  

The calculating procedure is presented as fol-
lows: 

(1) Randomly give n points (x1, y1, z1), …, (xn, yn, 
zn) in 3D Euclidean space as the initial configuration 

(0) (0) (0) (0) (0) (0)
1 1 1( , , , , , , ).n n nx y z x y z… Let t=0, K1=4001, 

Ks=1. Choose a very small positive number, λ, as the 
criterion for judging gradU to be zero approximately.  

(2) Calculate |gradU| under configuration ( )
1( ,tx  

( ) ( ) ( ) ( ) ( )
1 1, , , , , ).t t t t t

n n ny z x y z… If |gradU|<λ, go to Step (6). 

(3) ( +1) ( +1) ( +1) ( +1) ( +1) ( +1)
1 1 1( , ,  ,  ,  ,  ,  )t t t t t t

n n nx y z x y z… ⇐ 
( ) ( ) ( ) ( ) ( ) ( )
1 1 1( , , , , , , )+ ( grad ).t t t t t t

n n nx y z x y z Uε −…  
(4) If K1>1, then K1⇐K1−0.001. 
(5) Ks⇐Ks+10, t⇐t+1 and turn to Step (2). 
(6) Now, the gradient is approximately zero. 

Calculate the energy of the resulting configuration 
according to Eq.(1) as the solution and then stop the 
computation procedure. 

Since Ks is rather large (Ks>107) at the end of the 
calculation, the resulting configuration satisfies Eq.(5) 
approximately, that is, the length of the springs satis-
fies the following requirement:  

 
|li,i+1−1|<10−6,    i=1, 2, …, n−1.           (17) 

 
Strategy of generating promising initial configu-
ration 

It should be pointed out that the solution of the 
algorithm above might just be a local (and hopefully 
also global) minimum. Since gradient method is a 
deterministic algorithm and the initial configurations 
are generated randomly, the resulting solutions are 
very unstable. So we start from a new initial con-
figuration and the above-described computation re-
sumes over again. From many solutions, we choose 
the best one. Experiments showed that a good result 
would be obtained from more than one hundred times 
computation. Thus ensuring that the initial configu-
ration is certainly desirable. 

Inspired by the phenomenon that hydrophobic 
amino acids are lumped together as a compact core 
surrounded by hydrophilic amino acids in a protein 
molecule, we put forward a heuristic strategy to gen-
erate promising initial configuration that simulates 
the real protein structure.  

We define two spherical spaces with radii R1 and 
R2, respectively, where R1 and R2 are positive num-
bers with R2=2R1. The two spherical spaces have the 
same center, which is the origin of the 3D Cartesian 
coordinate system. For a black ball in initial con-
figuration, its center position can only be generated 
randomly in a 3D space confined in the spherical 
space with radius R1. We set 1=R n  in our algorithm. 
For a white ball in initial configuration, its center 
position can only be generated randomly in a 3D 
space confined in the ball with radius R2 but excluding 
the space of ball R1. In a more formal way, it can be 
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stated as follows: 
 

2 2 2
1+ + ,i i ix y z R≤                         (18) 

2 2 2
1 2+ + ,j j jR x y z R< ≤                      (19) 

 
where i is black ball and j is white ball, and x, y, z are 
the coordinates of the center of a randomly generated 
ball.  

Experimental results showed that this strategy 
could generate relatively better initial configurations. 
To illustrate this strategy, an initial configuration of 
13 balls is shown in Fig.1. For ease of visualization, 
the illustration is confined to two dimensions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RESULTS 
 

Table 1 shows the lowest energies obtained by 
our heuristic algorithm, along with the results by 
nPERM, ELP and CSA. It can be seen that our results 
are better than those of the nPERM for all the four 
sequences, with the energy difference increasing 
gradually for longer chains. For sequence with length 
13, our result was also slightly better than that of ELP, 
and was equal to that of CSA. For other cases, how-
ever, we cannot reach the energy yielded by ELP and 
CSA. 

Fig.2 shows the lowest energy configurations 
obtained by our heuristic algorithm, where black 
circles indicate hydrophobic monomers (A) and white 
circles indicate hydrophilic monomers (B). It can be 
seen that the configuration has single hydrophobic 
core for all four sequences, which is analogous to the 
real protein structure.  

It should be pointed out that each of the results is 
the best one of the solutions iterated from several 
(≤10) randomly generated initial configurations. The 
runtime for all the four sequences was less than 2 h on 
a P4 2.4 GHz PC with 512 MB memory, while the 
computation time of nPERM was up to 2 d on Linux 
and UNIX workstation. Obviously, HA is much faster 
than nPERM. Note that the runtime of ELP and CSA 
was not reported in the literature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1   An initial configuration of 13 balls generated by
the strategy of generating promising initial configu-
ration 
 

y 

x 

R2 

R1

Table 1  Test sequences and the lowest energies obtained by heuristic algorithm (HA), in comparison with those 
by nPERM, ELP, and CSA, respectively 

n Sequence nPERM ELP CSA HA 
13 ABBABBABABBAB   −4.9616   −4.967   −4.9746   −4.9746
21 BABABBABABBABBABABBAB −11.5238 −12.316 −12.3266 −12.0617
34 ABBABBABABBABBABABBABABBABBABABBAB −21.5678 −25.476 −25.5113 −23.0441
55 BABABBABABBABBABABBABABBABBABABBAB

BABABBABABBABBABABBAB 
−32.8843 −42.428 −42.3418 −38.1977

 

(a)                                       (b)                                              (c)                                                   (d) 

Fig.2   The lowest energy configurations for the four sequences obtained by heuristic algorithm (a) n=13; (b) n=21; 
(c) n=34; (d) n=55 
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CONCLUSION 
 
The objective of the protein folding problem is to 

find inherent structures for a given set of attracting 
particles (amino acid monomers) that initially are 
widely dispersed. The elastic potential energy of 
spring is introduced into the energy function of the 
configuration to convert the protein folding problem 
to an unconstrained optimization problem solvable by 
the steepest descent method. Random initial con-
figurations of the n particles were mapped onto the 
final inherent structure configurations by a numerical 
steepest descent on the potential energy surface. You 
can watch particles move according to the steepest 
descent algorithm from an initial diffuse random 
array towards a more compact array with lower po-
tential energy.  

Since gradient method is only a local search al-
gorithm, it is possible for the gradient method to fall 
into the trap of local minimum. Selecting the best one 
from many solutions iterated from a promising initial 
configuration in a confined space may help to find a 
comparably good solution, but that will cost much 
computation time. In our future work, we hope to find 
some efficient strategy of jumping out of local 
minimum to develop more efficient algorithm. 
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