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Abstract:    This paper presents a macroblock-level (MB-level) decoding and deblocking method for supporting the flexible 
macroblock ordering (FMO) and arbitrary slice ordering (ASO) bit streams in H.264 decoder and its SOC/ASIC implementation. 
By searching the slice containing the current macroblock in the bit stream and switching slices correctly, MBs can be decoded in 
the raster scan order, while the decoding process can immediately begin as long as the slice containing the current MB is available. 
This architectural modification enables the MB-level decoding and deblocking 3-stage pipeline, and saves about 20% of SDRAM 
bandwidth. Implementation results showed that the design achieves real-time decoding of 1080HD (1920×1088@30 fps) at a 
system clock of 166 MHz. 
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INTRODUCTION 
 

H.264 (Wiegand et al., 2003) is the latest video 
coding standard developed by the ISO/IEC Moving 
Picture Experts Group (MPEG) and the ITU-T Video 
Coding Experts Group (VCEG). Besides many new 
technologies which can bring high compression effi-
ciency, H.264 also provides other tools to flexibly 
adapt to different transmission networks, such as 
flexible macroblock ordering (FMO) (Wenger and 
Horowitz, 2002a; 2002b) for dealing with data er-
rors/losses in error prone environments, arbitrary 
slice ordering (ASO) for networks having a feature 
known as network jitter, etc. FMO and ASO are al-
lowed in Baseline and Extended profiles. Although 
FMO enables more efficient error concealment and 
ASO improves end-to-end delay in real-time appli-
cations, both of them on the other hand increase de-
coder complexity.  

Current researches for the implementation of 
H.264 decoder can generally be divided into two 
categories: Khan et al.(2004), Iverson et al.(2004), 
Lee et al.(2004) and Ramadurai et al.(2005) focused 
on software-based architecture, while Ha et al.(2004), 
Kang et al.(2004), Chen et al.(2005), Park et al.(2005) 
and Lee et al.(2006) are application-specific inte-
grated circuit (ASIC)-based solution. Our decoder is 
an ASIC-based solution and supports Baseline profile 
and Main profile up to level 4 (1920×1088@30 fps). 
For the FMO and ASO bit streams, Ha et al.(2004), 
Park et al.(2005) and Lee et al.(2006) did not consider 
this case, Kang et al.(2004) adopted the same 
two-pass decoding and deblocking method as H.264 
reference decoder, while Chen et al.(2005) switched 
the deblocking pipeline schedule from macrob-
lock-level (MB-level) to frame-level, which increases 
the implementation complexity and hurts the decoder 
performance. Differing from the previous literature, 
in this paper, we propose an approach to decode MB 
in the raster scan order when FMO and ASO are 
adopted in H.264 decoder, and the decoding and de-
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blocking can be performed in pipeline on an MB-by- 
MB basis.  

 
 

IMPACT OF FMO AND ASO ON H.264 DE-
CODER 
 

In H.264, when FMO is not used, a picture is 
divided into one or several slices, and the MBs are 
placed in slices in the raster scan order. FMO extends 
the concept of slices by allowing non-consecutive 
MBs to be placed in the same slice. When using FMO, 
the MBs in a picture are divided into up to 8 slice 
groups, each of which is composed of one or several 
slices. However, the MB addresses within a slice are 
still in the ascending order. MB allocation map 
(MBAmap) has 7 different types, such as interleaved 
slices, dispersed MB allocation, etc. The MBAmap 
consists of one integer per MB of the picture, which 
indicates the slice group id (SGid). When ASO is 
enabled, the slices in the bit stream may arrive at the 
decoder side in an arbitrary order. From an imple-
mentation complexity point of view, ASO is roughly 
comparable with FMO.  

In H.264, deblocking is performed on an MB 
basis, with all MBs in a picture processed in the raster 
scan order. Therefore, MBs in the FMO/ASO bit 
stream is not in the same order as deblocking should 
be performed. It is very challengeable for the decoder 
implementation. When FMO and ASO are used, 
H.264 reference decoder decodes the slices in the 
receiving order, which results in the following prob-
lems: (1) The deblocking of MB cannot be carried out 
until the entire picture is first decoded and stored 
completely. Thus, this lack of concurrency means that 
decoding and deblocking tasks have to run faster. (2) 
The newly reconstructed picture has to be stored first, 
and later swapped in for deblocking. As a result, the 
necessary SDRAM bandwidth is roughly doubled for 
data transfer of current picture.  
 
 
PROPOSED SCHEME OF MB-LEVEL DECOD-
ING AND DEBLOCKING 
  

In order to do MB decoding and deblocking in 
pipeline on an MB-by-MB basis, it is necessary to 
ensure MB decoding in the raster scan order. When 

FMO and ASO are used, we can do it as follows: (1) 
Set up an incremental counter of MB address; (2) 
Locate the slice including the current MB; (3) If the 
previous MB and the current MB are in different 
slices, switch to the slice containing the current MB.  

In H.264 reference decoder, before decoding the 
current picture, we can get the SGid for every MB 
from the MbToSliceGroupMap[] array. Meanwhile, 
the first MB address of each slice can be obtained 
from the first_mb_in_slice syntax element in the slice 
header. By using MbToSliceGroupMap[] array and 
first_mb_in_slice of each slice, the slice containing 
the current MB can be found correctly. 

Fig.1 shows the flowchart of the MB-level de-
coding and deblocking. Normally, there are two ap-
proaches to implement the MB-level decoding and 
deblocking. In the first approach, decoding process 
can start only after reading all the slices of the current 
picture and in the second one, once the slice including  
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the current MB is found, the decoding process can 
immediately begin. Understandably, depending on 
the design of MBAmap, the second approach has less 
delay between decoding and display than the first one. 
In this decoder, the latter is used, and in order to re-
duce SDRAM cost and D-cache access penalty, two 
slice header buffers with different sizes are allocated 
to keep the slice header information. One is used for 
storing the common information for different slices, 
while the other is used for storing other information 
which varies with slices, such as the first MB address, 
quantization parameter QP, etc. Similarly, the slice 
data content is put in the slice data buffer. To switch 
among these slices exactly, a list of pointers is used to 
indicate the slice header position in the second buffer 
and the slice data position in the slice data buffer.  

Fig.2 is the block diagram of the MB-level de-
coding and deblocking. We can divide the project into 
several modules.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) Module of decoding slice header (DSH 
module) parses the slice header information in the bit 
stream.  

(2) The read slice buffer is used to keep the con-
tents of the slices that have been read out from the bit 
stream, and includes Unit for buffering slice header 
(BSH unit), Unit for buffering slice data (BSD unit), 
MAP unit and Unit for determining whether one slice 
is finished (Dete. unit). Hereinto, MAP unit keeps the 
MBAmap information and computes the SGid of each 
MB in one picture.  

(3) Incremental MB address counter generates 

the incremental MB address i.  
(4) Slice selector locates the slice containing the 

current MB i, and consists of Unit for determining 
slice group (DSG unit) and Unit for comparing the 
first_mb_in_slice in one slice with i (Comp. unit). The 
two units are used for searching the slice containing 
the current MB in the read slice buffer. If such slice 
already exists, then the decoder decodes the current 
MB; otherwise, the decoder continues to read the 
slices in the bit stream till such slice is found.  

(5) MB decoding (MBD) module reconstructs 
the current MB after slice selector finds the slice 
containing the current MB. 

(6) Deblocking (Debl.) module filters the re-
constructed MB.  

(7) Postprocessing module includes Buffer used 
for deblocking and intra prediction (D&IP buffer) and 
Unit used for displaying or storing picture (Disp. unit). 
Here, D&IP buffer keeps the data to be used in the 
deblocking and intra prediction of the succeeding 
MBs.  
 
 
ASIC IMPLEMENTATION OF MB-LEVEL DE-
CODING AND DEBLOCKING  
 
MB-level decoding and deblocking pipeline 

The complete decoding system is shown in Fig.3. 
The dual parallel bus (CPU System Bus and 
High-Speed Memory Bus) architecture is used to 
satisfy the requirement of high data bandwidth. Pre-
diction (include intra and inter prediction) and de-
blocking&storing modules are implemented in dedi-
cated hardware, and other modules, such as CAVLC 
(context-based adaptive variable length coding)/ 
CABAC (context-based adaptive binary arithmetic 
coding) and IQ&IT (inverse quantization and inverse 
transform), are implemented by a 32 bit RISC CPU. 

Software part works concurrently with hardware 
part. In the design, the main function of storing 
module includes: (1) Storing the deblocked picture 
data. (2) Access to temporary picture data for de-
blocking of the succeeding MBs. By using the 
MB-level decoding and deblocking method proposed 
in Section 3, deblocking module directly receives the 
MB data from the prediction module. Considering the 
unfixed time consumed by prediction module (espe-
cially for inter prediction) and the similarly frequent 

Fig.2  Block diagram of MB-level decoding and de-
blocking 

Slice selectorRead slice buffer

Generate MB  address i

DSH 
module BSH unit MAP unit

BSD unit

Dete. unit

DSG unit

Comp. unit 

Incremental MB  
address counter

MBD 
module

Debl. 
module

Postprocessing module

D&IP 
buffer 

Disp. unit 

Bit stream 
input



Wang et al. / J Zhejiang Univ Sci A   2007 8(1):36-41 39

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SDRAM access of prediction module and deblock-
ing&storing module, prediction module runs serially 
with deblocking&storing module, while deblocking 
and storing operations are parallel, and the two op-
erations take similar cycles in this decoder, thus ar-
ranging specialized storing module can greatly im-
prove decoder performance. The 3-stage pipeline 
schedule for the decoder is shown in Fig.4, Pred(n) 
and Deb(n) represent prediction and deblocking op-
erations of the nth MB, respectively.  
 
Storage of temporary data for deblocking and 
intra prediction 

In H.264, all MBs in a picture are filtered in the 
raster scan order, and deblocking is applied to all 4×4 
block edges of a picture, except the edges at the 
boundary of the picture. When filtering each MB, the 
deblocked samples of the above and left MBs of the 
current MB must be available, as shown in Fig.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Fig.5, the above 4×4 blocks (16~19) and the 

left 4×4 blocks (20~23) are needed in the deblocking 
process of the current MB. Therefore, we need to 
store the left four 4×4 blocks and the above one line of 
4×4 blocks of the current MB in the decoding process. 
For YCbCr 4:2:0 video, the two chroma components 
(Cb and Cr) each has half the horizontal and vertical 
resolution of luma component (Y). Thus, the buffer 
used to store the left 4 blocks (LB) is (16×4×8)+ 
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Fig.3  Architecture diagram of H.264 decoder

Fig.5  Data used in deblocking one MB 
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(8×2×8)×2=16×4×8×1.5=768 bits. And the buffer 
used to store the above one line of 4×4 blocks (AB)   
is (1920×4×8)+(960×2×8)×2=1920×4×8×1.5=92160 
bits.  

LB can be implemented by on-chip SRAM to 
improve performance, but obviously, AB is too big to 
be implemented totally by SRAM. As a tradeoff, we 
use on-chip SRAM of 6336 bits size as a cache to 
store the above 33 4×4 blocks, and a space in 
SDRAM is allocated to store one line of 4×4 blocks 
(chroma and luma samples are arranged side-by-side). 
Here, arranging cache size of 33 4×4 blocks is be-
cause of the special positions of blocks 23 and 15, 
thus the data transfer between cache and SDRAM 
happens at eight-MB intervals. Compared with the 
method to only use SDRAM for AB, this method 
spends identical time transferring data, but reduces 
the request overhead of SDRAM.  

For intra prediction, H.264 uses the recon-
structed but undeblocked MB data from the 
neighboring MBs to predict the current MB coeffi-
cients, and the used neighboring data are: (1) one 
sample of the above-left MB; (2) one line of samples 
of the above MB; (3) four samples of the above-right 
MB (only for luma components in intra 4×4 mode); (4) 
one column of samples of the left MB. We use 
on-chip SRAM to store the above one line of unde-
blocked data, and because of relatively small data 
structures of one column of data of the left MB, reg-
ister is used to store them to speed up data access. 
 
Estimation of SDRAM bandwidth 

Considering the High-Speed Memory Bus as 
shown in Fig.3 is the performance bottleneck of the 
whole system, the highest work frequency of the 
hardware part is decided by the High-Speed Memory 
Bus. Because the SDRAM access performance of 
each module is unknown, at the beginning of this 
design, we can only approximately estimate the 
SDRAM bandwidth as shown in Table 1. 

Output control module, which takes charge of 
playing the decoded video data, needs one Frame 
Volume. For bit stream input, the data and instruction 
access of RISC and other unconsidered demands, we 
arrange 2 Frame Volumes. According to the design 
requirement of 30 fps, the Bus bandwidth is 
0.72~1.08 GBps. Under an 80% conservative esti-
mate of SDRAM, the final SDRAM bandwidth is 

 
 
 
 
 
 
 
 
 
 
 
 
1.08/80%=1.35 GBps, thus the work frequency of the 
decoder is 166 MHz (64-bit SDRAM). 

It is easily deduced that by the architectural 
modification of Section 3, the SDRAM bandwidth is 
reduced by 2/(12+2)~2/(8+2), namely 14%~20% 
compared with the method used in H.264 reference 
decoder. 
 
 
IMPLEMENTATION RESULTS 
 

In the development process of the decoder, we 
use FPGA prototype for design verification. The im-
plementation results for the main modules of FPGA 
and ASIC are shown in Table 2.  
 
 
 
 
 
 
 
 
 
 
 

Among the modules, SDRAM Controller con-
nects SDRAM to High-Speed Memory Bus. The 
FPGA is Xinlinx Virtex II 6000 and our chip has been 
synthesized in Simic 0.18 µm CMOS technology at 
200 MHz. Considering the work frequency of 166 
MHz of this decoder, the number of cycles needed to 
decode one MB is within 166×106/(1920×1088× 
30÷256)=678.  

In this design, the simulation results of the de-
coder performance are shown in Table 3. On the av-

Table 1  Estimation of SDRAM bandwidth 

Module Value* 

Output control 1 
Store 1 
Motion compensation 4~8 
Other 2 
Total 8~12 
Bus bandwidth 0.72~1.08 GBps 

* Default unit: Frame Volume, which is the reconstructed pixel 
data (for 4:2:0 sub-sampling format) of one frame with the 
1920×1088 resolution, namely about 3 MB 

Table 2  Implementation results of our decoder 

Module 
Resources used 
for the FPGA 
(×103 LUT) 

Resources used 
for the ASIC 
(×103 Gate)

SDRAM controller  2.5   21 
Deblocking&storing  11   93 
Intra prediction   7   55 
Inter prediction   8   64 
Total 48 557 
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erage, for decoding I-slice, P-slice and B-slice MBs, 
deblocking&storing module takes comparatively 
steady cycles (78), while prediction module takes 156 
cycles, 354 cycles and 546 cycles, respectively. Thus 
the requirement of 678 cycles needed per MB is sat-
isfied. 
 
 
 
 
 
 
 
CONCLUSION 
 

In this paper, we proposed an MB-level decod-
ing and deblocking method for H.264 decoder when 
FMO and ASO are used. The whole system is a sys-
tem-on-chip (SOC) solution. In order to reduce the 
implementation difficulty and hardware implementa-
tion cost, the architecture is modified to decode MB in 
the raster scan order, which makes the decoder work 
on an MB basis, thus MB-level decoding and de-
blocking 3-stage pipeline is implemented in this de-
sign. On our FPGA verification platform, the highest 
work frequency is 50 MHz, and the decoding speed of 
video with 1920×1088 resolution is 6.7 fps when the 
work frequency is 32 MHz. Thus when the decoder 
works at 166 MHz, the decoding speed can reach 35 
fps, which means this implementation can achieve the 
real-time decoding of 1080 HD (1920×1088@30 fps).   
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