
Wang et al. / J Zhejiang Univ Sci A 2007 8(1):36-41 36

Macroblock-level decoding and deblocking method and its pipeline
implementation in H.264 decoder SOC design*

WANG Shu-hui†, LIN Tao, LIN Zheng-hui

(Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200030, China)
†E-mail: wangshuhui_cn@yahoo.com.cn

Received Apr. 4, 2006; revision accepted July 6, 2006

Abstract: This paper presents a macroblock-level (MB-level) decoding and deblocking method for supporting the flexible
macroblock ordering (FMO) and arbitrary slice ordering (ASO) bit streams in H.264 decoder and its SOC/ASIC implementation.
By searching the slice containing the current macroblock in the bit stream and switching slices correctly, MBs can be decoded in
the raster scan order, while the decoding process can immediately begin as long as the slice containing the current MB is available.
This architectural modification enables the MB-level decoding and deblocking 3-stage pipeline, and saves about 20% of SDRAM
bandwidth. Implementation results showed that the design achieves real-time decoding of 1080HD (1920×1088@30 fps) at a
system clock of 166 MHz.

Key words: Flexible macroblock ordering (FMO), Arbitrary slice ordering (ASO), System-on-chip (SOC), Raster scan order,

Pipeline
doi:10.1631/jzus.2007.A0036 Document code: A CLC number: TN919.81

INTRODUCTION

H.264 (Wiegand et al., 2003) is the latest video
coding standard developed by the ISO/IEC Moving
Picture Experts Group (MPEG) and the ITU-T Video
Coding Experts Group (VCEG). Besides many new
technologies which can bring high compression effi-
ciency, H.264 also provides other tools to flexibly
adapt to different transmission networks, such as
flexible macroblock ordering (FMO) (Wenger and
Horowitz, 2002a; 2002b) for dealing with data er-
rors/losses in error prone environments, arbitrary
slice ordering (ASO) for networks having a feature
known as network jitter, etc. FMO and ASO are al-
lowed in Baseline and Extended profiles. Although
FMO enables more efficient error concealment and
ASO improves end-to-end delay in real-time appli-
cations, both of them on the other hand increase de-
coder complexity.

Current researches for the implementation of
H.264 decoder can generally be divided into two
categories: Khan et al.(2004), Iverson et al.(2004),
Lee et al.(2004) and Ramadurai et al.(2005) focused
on software-based architecture, while Ha et al.(2004),
Kang et al.(2004), Chen et al.(2005), Park et al.(2005)
and Lee et al.(2006) are application-specific inte-
grated circuit (ASIC)-based solution. Our decoder is
an ASIC-based solution and supports Baseline profile
and Main profile up to level 4 (1920×1088@30 fps).
For the FMO and ASO bit streams, Ha et al.(2004),
Park et al.(2005) and Lee et al.(2006) did not consider
this case, Kang et al.(2004) adopted the same
two-pass decoding and deblocking method as H.264
reference decoder, while Chen et al.(2005) switched
the deblocking pipeline schedule from macrob-
lock-level (MB-level) to frame-level, which increases
the implementation complexity and hurts the decoder
performance. Differing from the previous literature,
in this paper, we propose an approach to decode MB
in the raster scan order when FMO and ASO are
adopted in H.264 decoder, and the decoding and de-

* Project (No. 2002AA1Z1190) supported by the National Hi-Tech
Research and Development Program (863) of China

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):36-41 37

blocking can be performed in pipeline on an MB-by-
MB basis.

IMPACT OF FMO AND ASO ON H.264 DE-
CODER

In H.264, when FMO is not used, a picture is
divided into one or several slices, and the MBs are
placed in slices in the raster scan order. FMO extends
the concept of slices by allowing non-consecutive
MBs to be placed in the same slice. When using FMO,
the MBs in a picture are divided into up to 8 slice
groups, each of which is composed of one or several
slices. However, the MB addresses within a slice are
still in the ascending order. MB allocation map
(MBAmap) has 7 different types, such as interleaved
slices, dispersed MB allocation, etc. The MBAmap
consists of one integer per MB of the picture, which
indicates the slice group id (SGid). When ASO is
enabled, the slices in the bit stream may arrive at the
decoder side in an arbitrary order. From an imple-
mentation complexity point of view, ASO is roughly
comparable with FMO.

In H.264, deblocking is performed on an MB
basis, with all MBs in a picture processed in the raster
scan order. Therefore, MBs in the FMO/ASO bit
stream is not in the same order as deblocking should
be performed. It is very challengeable for the decoder
implementation. When FMO and ASO are used,
H.264 reference decoder decodes the slices in the
receiving order, which results in the following prob-
lems: (1) The deblocking of MB cannot be carried out
until the entire picture is first decoded and stored
completely. Thus, this lack of concurrency means that
decoding and deblocking tasks have to run faster. (2)
The newly reconstructed picture has to be stored first,
and later swapped in for deblocking. As a result, the
necessary SDRAM bandwidth is roughly doubled for
data transfer of current picture.

PROPOSED SCHEME OF MB-LEVEL DECOD-
ING AND DEBLOCKING

In order to do MB decoding and deblocking in
pipeline on an MB-by-MB basis, it is necessary to
ensure MB decoding in the raster scan order. When

FMO and ASO are used, we can do it as follows: (1)
Set up an incremental counter of MB address; (2)
Locate the slice including the current MB; (3) If the
previous MB and the current MB are in different
slices, switch to the slice containing the current MB.

In H.264 reference decoder, before decoding the
current picture, we can get the SGid for every MB
from the MbToSliceGroupMap[] array. Meanwhile,
the first MB address of each slice can be obtained
from the first_mb_in_slice syntax element in the slice
header. By using MbToSliceGroupMap[] array and
first_mb_in_slice of each slice, the slice containing
the current MB can be found correctly.

Fig.1 shows the flowchart of the MB-level de-
coding and deblocking. Normally, there are two ap-
proaches to implement the MB-level decoding and
deblocking. In the first approach, decoding process
can start only after reading all the slices of the current
picture and in the second one, once the slice including

Start

Initialize the MB address i=0

Read a slice from the current picture

Put the slice into the found slice set

P=MbToSliceGroupMap[i]

Is the slice in which
 first_mb_in_slice<=i and

MbToSliceGroupMap[first_mb_in_slice]
= = P in the found slice set?

Decode and deblock MB i

MB address i++ Is the current picture
finished?

Is the whole bit stream
finished?

End

Is the current slice
finished?

Delete the current slice
from the found slice set

Yes

Yes

Yes

Yes

No

No

No

No

Fig.1 Flowchart of the MB-level decoding and de-
blocking

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):36-41 38

the current MB is found, the decoding process can
immediately begin. Understandably, depending on
the design of MBAmap, the second approach has less
delay between decoding and display than the first one.
In this decoder, the latter is used, and in order to re-
duce SDRAM cost and D-cache access penalty, two
slice header buffers with different sizes are allocated
to keep the slice header information. One is used for
storing the common information for different slices,
while the other is used for storing other information
which varies with slices, such as the first MB address,
quantization parameter QP, etc. Similarly, the slice
data content is put in the slice data buffer. To switch
among these slices exactly, a list of pointers is used to
indicate the slice header position in the second buffer
and the slice data position in the slice data buffer.

Fig.2 is the block diagram of the MB-level de-
coding and deblocking. We can divide the project into
several modules.

(1) Module of decoding slice header (DSH
module) parses the slice header information in the bit
stream.

(2) The read slice buffer is used to keep the con-
tents of the slices that have been read out from the bit
stream, and includes Unit for buffering slice header
(BSH unit), Unit for buffering slice data (BSD unit),
MAP unit and Unit for determining whether one slice
is finished (Dete. unit). Hereinto, MAP unit keeps the
MBAmap information and computes the SGid of each
MB in one picture.

(3) Incremental MB address counter generates

the incremental MB address i.
(4) Slice selector locates the slice containing the

current MB i, and consists of Unit for determining
slice group (DSG unit) and Unit for comparing the
first_mb_in_slice in one slice with i (Comp. unit). The
two units are used for searching the slice containing
the current MB in the read slice buffer. If such slice
already exists, then the decoder decodes the current
MB; otherwise, the decoder continues to read the
slices in the bit stream till such slice is found.

(5) MB decoding (MBD) module reconstructs
the current MB after slice selector finds the slice
containing the current MB.

(6) Deblocking (Debl.) module filters the re-
constructed MB.

(7) Postprocessing module includes Buffer used
for deblocking and intra prediction (D&IP buffer) and
Unit used for displaying or storing picture (Disp. unit).
Here, D&IP buffer keeps the data to be used in the
deblocking and intra prediction of the succeeding
MBs.

ASIC IMPLEMENTATION OF MB-LEVEL DE-
CODING AND DEBLOCKING

MB-level decoding and deblocking pipeline

The complete decoding system is shown in Fig.3.
The dual parallel bus (CPU System Bus and
High-Speed Memory Bus) architecture is used to
satisfy the requirement of high data bandwidth. Pre-
diction (include intra and inter prediction) and de-
blocking&storing modules are implemented in dedi-
cated hardware, and other modules, such as CAVLC
(context-based adaptive variable length coding)/
CABAC (context-based adaptive binary arithmetic
coding) and IQ&IT (inverse quantization and inverse
transform), are implemented by a 32 bit RISC CPU.

Software part works concurrently with hardware
part. In the design, the main function of storing
module includes: (1) Storing the deblocked picture
data. (2) Access to temporary picture data for de-
blocking of the succeeding MBs. By using the
MB-level decoding and deblocking method proposed
in Section 3, deblocking module directly receives the
MB data from the prediction module. Considering the
unfixed time consumed by prediction module (espe-
cially for inter prediction) and the similarly frequent

Fig.2 Block diagram of MB-level decoding and de-
blocking

Slice selectorRead slice buffer

Generate MB address i

DSH
module BSH unit MAP unit

BSD unit

Dete. unit

DSG unit

Comp. unit

Incremental MB
address counter

MBD
module

Debl.
module

Postprocessing module

D&IP
buffer

Disp. unit

Bit stream
input

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):36-41 39

SDRAM access of prediction module and deblock-
ing&storing module, prediction module runs serially
with deblocking&storing module, while deblocking
and storing operations are parallel, and the two op-
erations take similar cycles in this decoder, thus ar-
ranging specialized storing module can greatly im-
prove decoder performance. The 3-stage pipeline
schedule for the decoder is shown in Fig.4, Pred(n)
and Deb(n) represent prediction and deblocking op-
erations of the nth MB, respectively.

Storage of temporary data for deblocking and
intra prediction

In H.264, all MBs in a picture are filtered in the
raster scan order, and deblocking is applied to all 4×4
block edges of a picture, except the edges at the
boundary of the picture. When filtering each MB, the
deblocked samples of the above and left MBs of the
current MB must be available, as shown in Fig.5.

In Fig.5, the above 4×4 blocks (16~19) and the

left 4×4 blocks (20~23) are needed in the deblocking
process of the current MB. Therefore, we need to
store the left four 4×4 blocks and the above one line of
4×4 blocks of the current MB in the decoding process.
For YCbCr 4:2:0 video, the two chroma components
(Cb and Cr) each has half the horizontal and vertical
resolution of luma component (Y). Thus, the buffer
used to store the left 4 blocks (LB) is (16×4×8)+

RISC

I-cache D-cache I2C

CPU System Bus

buffer

Input control

DMA

Bus bridge

buffer
Prediction

module
DMA

buffer
Deblocking

&storing
DMA

buffer
Output
control
DMA

Arbiter
SDRAM
controller

 High-Speed Memory Bus SDRAM

Video outputUSB
core

St
re

am
 in

pu
t

Fig.3 Architecture diagram of H.264 decoder

Fig.5 Data used in deblocking one MB

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

19

18

20

21

22

23

CAVLC(n)/
CABAC(n) IQ&IT(n)

Pred(n–1) Deb(n–1)

CAVLC(n+1)/
CABAC(n+1) IQ&IT(n+1)

Pred(n) Deb(n) Pred(n+1) Deb(n+1)

Store(n–2) Store(n–1) Store(n)

Run time

Stage 2 Stage 3Stage 1

Fig.4 Pipeline stages of MB-level decoding and deblocking

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):36-41 40

(8×2×8)×2=16×4×8×1.5=768 bits. And the buffer
used to store the above one line of 4×4 blocks (AB)
is (1920×4×8)+(960×2×8)×2=1920×4×8×1.5=92160
bits.

LB can be implemented by on-chip SRAM to
improve performance, but obviously, AB is too big to
be implemented totally by SRAM. As a tradeoff, we
use on-chip SRAM of 6336 bits size as a cache to
store the above 33 4×4 blocks, and a space in
SDRAM is allocated to store one line of 4×4 blocks
(chroma and luma samples are arranged side-by-side).
Here, arranging cache size of 33 4×4 blocks is be-
cause of the special positions of blocks 23 and 15,
thus the data transfer between cache and SDRAM
happens at eight-MB intervals. Compared with the
method to only use SDRAM for AB, this method
spends identical time transferring data, but reduces
the request overhead of SDRAM.

For intra prediction, H.264 uses the recon-
structed but undeblocked MB data from the
neighboring MBs to predict the current MB coeffi-
cients, and the used neighboring data are: (1) one
sample of the above-left MB; (2) one line of samples
of the above MB; (3) four samples of the above-right
MB (only for luma components in intra 4×4 mode); (4)
one column of samples of the left MB. We use
on-chip SRAM to store the above one line of unde-
blocked data, and because of relatively small data
structures of one column of data of the left MB, reg-
ister is used to store them to speed up data access.

Estimation of SDRAM bandwidth

Considering the High-Speed Memory Bus as
shown in Fig.3 is the performance bottleneck of the
whole system, the highest work frequency of the
hardware part is decided by the High-Speed Memory
Bus. Because the SDRAM access performance of
each module is unknown, at the beginning of this
design, we can only approximately estimate the
SDRAM bandwidth as shown in Table 1.

Output control module, which takes charge of
playing the decoded video data, needs one Frame
Volume. For bit stream input, the data and instruction
access of RISC and other unconsidered demands, we
arrange 2 Frame Volumes. According to the design
requirement of 30 fps, the Bus bandwidth is
0.72~1.08 GBps. Under an 80% conservative esti-
mate of SDRAM, the final SDRAM bandwidth is

1.08/80%=1.35 GBps, thus the work frequency of the
decoder is 166 MHz (64-bit SDRAM).

It is easily deduced that by the architectural
modification of Section 3, the SDRAM bandwidth is
reduced by 2/(12+2)~2/(8+2), namely 14%~20%
compared with the method used in H.264 reference
decoder.

IMPLEMENTATION RESULTS

In the development process of the decoder, we
use FPGA prototype for design verification. The im-
plementation results for the main modules of FPGA
and ASIC are shown in Table 2.

Among the modules, SDRAM Controller con-
nects SDRAM to High-Speed Memory Bus. The
FPGA is Xinlinx Virtex II 6000 and our chip has been
synthesized in Simic 0.18 µm CMOS technology at
200 MHz. Considering the work frequency of 166
MHz of this decoder, the number of cycles needed to
decode one MB is within 166×106/(1920×1088×
30÷256)=678.

In this design, the simulation results of the de-
coder performance are shown in Table 3. On the av-

Table 1 Estimation of SDRAM bandwidth

Module Value*

Output control 1
Store 1
Motion compensation 4~8
Other 2
Total 8~12
Bus bandwidth 0.72~1.08 GBps

* Default unit: Frame Volume, which is the reconstructed pixel
data (for 4:2:0 sub-sampling format) of one frame with the
1920×1088 resolution, namely about 3 MB

Table 2 Implementation results of our decoder

Module
Resources used
for the FPGA
(×103 LUT)

Resources used
for the ASIC
(×103 Gate)

SDRAM controller 2.5 21
Deblocking&storing 11 93
Intra prediction 7 55
Inter prediction 8 64
Total 48 557

Wang et al. / J Zhejiang Univ Sci A 2007 8(1):36-41 41

erage, for decoding I-slice, P-slice and B-slice MBs,
deblocking&storing module takes comparatively
steady cycles (78), while prediction module takes 156
cycles, 354 cycles and 546 cycles, respectively. Thus
the requirement of 678 cycles needed per MB is sat-
isfied.

CONCLUSION

In this paper, we proposed an MB-level decod-
ing and deblocking method for H.264 decoder when
FMO and ASO are used. The whole system is a sys-
tem-on-chip (SOC) solution. In order to reduce the
implementation difficulty and hardware implementa-
tion cost, the architecture is modified to decode MB in
the raster scan order, which makes the decoder work
on an MB basis, thus MB-level decoding and de-
blocking 3-stage pipeline is implemented in this de-
sign. On our FPGA verification platform, the highest
work frequency is 50 MHz, and the decoding speed of
video with 1920×1088 resolution is 6.7 fps when the
work frequency is 32 MHz. Thus when the decoder
works at 166 MHz, the decoding speed can reach 35
fps, which means this implementation can achieve the
real-time decoding of 1080 HD (1920×1088@30 fps).

References
Chen, T.W., Huang, Y.W., Chen, T.C., Chen, Y.H., Tsai, C.Y.,

Chen, L.G., 2005. Architecture Design of H.264/AVC
Decoder with Hybrid Task Pipelining for High Definition
Videos. IEEE International Symposium on Circuits and
Systems. Kobe, Japan, p.2931-2934.

Ha, V.H.S., Choi, S.K., Jeon, J.G., Lee, G.H., Jang, W.K.,
Shim, W.S., 2004. Real-Time Audio/Video Decoders for
Digital Multimedia Broadcasting. The 4th IEEE Interna-
tional Workshop on System-on-Chip for Real-Time
Applications. Banff, Alberta, Canada, p.162-167.

Iverson, V., McVeigh, J., Reese, B., 2004. Real-Time H.264-
AVC Codec on Intel Architectures. IEEE International
Conference on Image Processing. Singapore, p.757-760.

Kang, H.Y., Jeong, K.A., Bae, J.Y., Lee, Y.S., Lee, S.H., 2004.
MPEG4 AVC/H.264 Decoder with Scalable Bus Archi-
tecture and Dual Memory Controller. Proceedings of the
2004 International Symposium on Circuits and Systems.
Vancouver, Canada, p.II-145-148.

Khan, M.O., Khan, U., Rahim, S.A., Ali, S.I., 2004. Optimi-
zation of Motion Compensation for H.264 Decoder by
Pre-calculation. The 8th IEEE International Multitopic
Conference. Lahore, Pakistan, p.55-60.

Lee, J., Moon, S., Sung, W., 2004. H.264 Decoder Optimiza-
tion Exploiting SIMD Instructions. IEEE Asia-Pacific
Conference on Circuits and Systems. Tainan, Taiwan,
p.1149-1152.

Lee, S.H., Park, J.H., Kim, S.W., Ko, S.J., Kim, S., 2006.
Implementation of H.264/AVC Decoder for Mobile
Video Applications. IEEE Asia and South Pacific Con-
ference on Design Automation. Yokohama, Japan,
p.120-121.

Park, S., Cho, H., Jung, H., Lee, D., 2005. An Implemented of
H.264 Video Decoder Using Hardware and Software.
IEEE Custom Integrated Circuits Conference. San Jose,
CA, USA, p.271-275.

Ramadurai, V., Jinturkar, S., Moudgill, M., Glossner, J., 2005.
Implementation of H.264 Decoder on Sandblaster DSP.
IEEE International Conference on Multimedia and Expo.
Amsterdam, Netherlands.

Wenger, S., Horowitz, M., 2002a. FMO: Flexible Macroblock
Ordering, JVT-C089. Joint Video Team (JVT) 3rd
Meeting. Virginia, USA.

Wenger, S., Horowitz, M., 2002b. FMO 101, JVT-D063. Joint
Video Team (JVT) 4th Meeting. Klagenfurt, Austria.

Wiegand, T., Sullivan, G.J., Bjntegaard, G., Luthra, A., 2003.
Overview of the H.264/AVC video coding standard.
IEEE Transactions on Circuits and Systems for Video
Technology, 13(7):560-576. [doi:10.1109/TCSVT.2003.
815165]

Table 3 Average clock cycles needed per MB
Module I-slice MB P-slice MB B-slice MB

Deblocking&storing 78 78 78
Prediction 156 354 546

