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Abstract:    The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing 
Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after 
solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms 
produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the 
effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place 
when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, 
the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of 
coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as 
that for the case of plane parallel flows. 
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INTRODUCTION 
 

Turbulent particulate flows occur in many in-
dustrial applications, such as in pneumatic transport 
of particulates, cyclone separators and chemical re-
actors. The particles suspended in fluid play a role in 
the turbulence modulation, which has been known for 
several years. The observation that adding dust to air 
flowing in turbulent motion through a pipe can ap-
preciably reduce the resistance coefficient was re-
ported by Sproull (1961). The observation can be 
expressed as saying that the pressure difference re-
quired to maintain a given volume rate of flow is 
reduced by the addition of dust. Torobin and Gauvin 
(1961) reported that the wall drag in pipes as well as 

rates of heat transfer and chemical reaction are 
changed by particles through modifying the fluid 
turbulence. Since then, the issue of whether fluid 
turbulence is enhanced or reduced by the particles has 
been an important subject in the research of turbulent 
particulate flows.  

The issue of turbulence modulation is related to 
the question of the stability and evolution of 
two-phase laminar flows. Saffman (1962) presented 
the first analytical formulation on this subject. He 
derived a modified Orr-Sommerfeld equation, under 
the assumptions of dilute monodisperse suspension of 
particles and uniform initial particle concentration. 
The momentum coupling is handled by a force term 
proportional to the local interphase velocity slip and 
particle concentration. The presence of particles in-
troduces two additional parameters to the stability 
problem, namely, the bulk mass loading and the par-
ticle Stokes number. Saffman concluded that the ad-
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dition of fine particles tends to destabilize the flow, 
while the addition of coarse particles stabilizes the 
flow. Michael (1965) investigated the Kelvin Helm-
holtz instability of an inviscid dusty gas by applying a 
step mean flow velocity profile and showed that the 
presence of the particles always stabilizes the flow.  

With the development of modern computers, 
direct numerical simulations provide an alternative 
tool for studying turbulence modulation by particles. 
The development in the numerical investigation of 
transition to turbulence in wall bounded and free 
shear flows during the past decade was reviewed by 
Rempfer (2003). Squires and Eaton (1990) reported 
that the particles enhanced the turbulence kinetic 
energy at high wave numbers while decreasing the 
turbulent kinetic energy at low wave numbers in the 
forced isotopic, stationary turbulent flow. Isakov and 
Rudnyak (1995) investigated the neutral stability 
curves of a dusty channel flow, showing similar re-
sults given by Saffman (1962). Dimas and Kiger 
(1998) studied numerically the linear, inviscid, spatial 
instability of a mixing layer uniformly laden with a 
dilute concentration of heavy particles. The behavior 
of the linear instability depends on two dimensionless 
parameters: the inverse Stokes number and mass 
loading. The fully coupled character of the instability 
reveals three important aspects of the particle effect 
on the flow structure. Tong and Wang (1999) solved 
the modified Orr-Sommerfeld equation of dust-laden 
mixing layer, with the results following the asymp-
totic relations proposed by Saffman (1962). Wan et 
al.(2005) analyzed the instability in the Tay-
lor-Couette flow of fiber suspensions with respect to 
the non-axisymmetric disturbances. The generalized 
eigenvalue equation governing the hydrodynamic 
stability of the system was solved using a direct nu-
merical procedure. The results showed that the fiber 
additives can suppress the instability of the flow.  

The boundary layer represents a typical shear 
flow and thus provides a building block for many 
practical inhomogeneous flows. For the flows near 
wall, the turbulence is generated primarily by velocity 
gradient. The neutral stability curve for the 2D laminar 
boundary layer on a flat plate under zero pressure 
gradient was calculated by Kurtz and Crandall (1962), 
Jordinson (1970), Grosch and Orszag (1977), Zebib 
(1984), and these results, obtained by slightly different 
methods, sufficiently justify the view that the neutral 

curve eigenvalues of the Orr-Sommerfeld equation for 
this flow are well established. Barry and Ross (1970) 
found that the theoretical and experimental results are 
in close agreement when the Reynolds numbers are 
larger than 1000, but are different when the Reynolds 
number is lower. The possible reasons may result from 
the experiment errors and the approximation of par-
allel mean flow. Their results showed that the bound-
ary layer flow is slightly less stable when extra non-
parallel terms are included. In growing boundary layer, 
Gaster (1974)’s result showed that the approximation 
of parallel mean flow leads to a valid solution at very 
large Reynolds numbers. Fasel and Konzelmann 
(1990) investigated nonparallel effects in the growing 
boundary layer by direct numerical simulation of the 
complete Navier-Stokes equations for incompressible 
flows, with their results clearly indicating that the 
nonparallel effects are the strongest in the area closer 
to the wall inside the boundary layer and decrease with 
increasing distance from the wall. Bertolotti et 
al.(1992) studied the linear and nonlinear instability 
with parabolic stability equation (PSE) and Na-
vier-Stokes equation in growing boundary layer, and 
the effect of nonparallelism is confirmed to be weak 
and not responsible for the discrepancies between 
measurements and theoretical results for parallel flow. 
Bhaganagar et al.(2002) developed a highly accurate 
algorithm to study the process of spatial transition to 
turbulence in a boundary layer. The algorithmic pro-
gram is based on a formulation in terms of vertical 
velocity and vertical vorticity in conjunction with 
parabolization of the Navier-Stokes equations; the 
validation of results for the approach is made both for 
linear and weakly nonlinear cases. For the single 
phase flow, Govindarajan and Narasimha (1999) 
formulated a lowest order parabolic theory for inves-
tigating the stability of spatially developing boundary 
layer, and derived a minimal composite equation 
which is shown to give results close to the full non-
parallel theory, and is the highest-order stability the-
ory that is justifiable with the lowest-order mean ve-
locity profiles for the boundary layer. Govindarajan 
and Narasimha (2005) also showed that, to the order in 
the reciprocal of the local flow Reynolds number, the 
amplitude ratio of perturbation growth does not de-
pend on the difference in shape between the eigen-
functions of the full non-parallel and the lowest order 
minimal composite theory.  
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These approaches based on the assumption of 
locally parallel or weakly nonparallel basic flow could 
fail if a wave length of any perturbation is larger than a 
characteristic length of the spatial inhomogeneity of 
the base flow. Consequently a more general eigenvalue 
problem was developed by some authors as Lin and 
Malik (1997), Theofilis (2003). Ehrenstein and Gail-
laire (2005) researched 2D temporal modes in spatially 
evolving boundary layer flows; the spatial structure of 
each individual temporally stable mode is shown to be 
reminiscent of the spatial exponential growth of per-
turbations along the flat plate, as predicted by local 
analyses; the spatially localized wave packet is in 
qualitative agreement with the convectively unstable 
disturbance. Alizard and Robinet (2006) discovered 
that a convective stability of a flat plate boundary layer 
could be captured by a 2D stability analysis. Results 
gave quite good similarities between the two ap-
proaches compared with linear stability analysis. 

Up to now there are relatively few studies of 
two-way coupled, particle-laden Blasius flow. As-
molov and Manuilovich (1998) investigated the sta-
bility of a dusty-gas laminar boundary layer on a flat 
plate, using two approaches: orthonormalization 
method and perturbation method. The results showed 
that the dust suppresses the instability waves for a 
wide range of particle size. The most efficient sup-
pression takes place when the relaxation length of the 
particle velocity is close to the wavelength of 
Tollmien-Schlicting (TS) wave.  

However, Asmolov and Manuilovich (1998) 
only studied the stability of particle-laden Blasius 
flow within the framework of the quasi-parallel and 
quasi-homogeneous approach and the two limiting 
cases of coarse and fine particles. In this study, 
therefore, we will address the stability equation for 
particle-laden Blasius flow using Saffman’s formula-
tion. Numerical simulations were done to study the 
linear instability of viscous, 2D, nonparallel, particle- 
laden Blasius boundary layer flow. A finite difference 
method is used to determine the temporal growth rate 
of the imposed disturbance. 
 
 
MATHEMATICAL DESCRIPTION 
 
Governing equation  

The effects of particle concentrations on the 

continuous phase viscosity can be neglected because 
the bulk concentration of the particle is assumed to be 
very low. The particles are uniform in size with di-
ameter much smaller than any characteristic length 
scales in the flow, and the velocity and number den-
sity of particles can be described by flow and con-
centration fields. The particle density is much larger 
than that of the gas so that the bulk mass loading of 
the particulate phase is in the order of unity. The 
particle Reynolds number is in the Stokes flow region 
so that the formula of linear Stokes drag is used. The 
governing equations for gas and particles (subscript p) 
in the Blasius boundary layer are: 
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where u, v and up, vp are the gas and particle velocities, 
respectively, p is the gas pressure, N is the number 
density of particle, mN is the mass of particle per unit 
volume, ρ and µ are the density and viscosity of the 
clean gas, K=3πdµ with d being the diameter of par-
ticles according to the Stokes drag formula.  

We consider a steady laminar flow for flat plate 
boundary layer. For sufficiently small particles, the 
sedimentation velocity of particle is small compared 
with the characteristic velocity of the flow and can be 
neglected. Then in a steady state, the inertia terms in 
the equations of motion vanish identically and the 
particles move along the streamlines with the velocity 



Xie et al. / J Zhejiang Univ Sci A   2007 8(2):275-284 278 

of the gas, i.e. up=u=U, vp=v=V. The number density 
N of particles has the constant value N0 everywhere. 
The equations are then reduced to the Prandtl form: 

 

0,U V
x y

∂ ∂
+ =
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                            (7) 

0,/P y =∂ ∂                               (8) 
2
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Following the method of Schlichting (1954), the 

Prandtl equations are reduced to the Blasius equation: 
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where the prime denotes the derivative with η, and the 
boundary conditions are: 
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Using the non-dimensional variable η= 

0 /y U xυ  and stream function 0= ( ),xU FΨ υ η  the 
numerical integration of Eq.(10) with boundary con-
ditions Eq.(11) leads to the following results: 
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where δ1 is the displacement thickness of the bound-
ary layer. 

In order to analyze the linear instability of the 
flow, a 2D perturbation should be introduced to the 
flow. Therefore, the velocity, pressure and particle 
number density are represented by the base-state 
profile plus a small perturbation: 

 
,u U u′= + ,v V v′= + ,p P p′= +         (12a)  

p p ,u U u′= +  p p ,v V v′= + 0 ,N N N ′= +    (12b) 
 

where U, V are the base-state streamwise and trans-
verse velocities, respectively, P is the base-state 
pressure. Substituting Eq.(12) into Eqs.(1)~(6) with 
nonlinear terms of the perturbation neglected, we 
have the following linear stability equations: 
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where s=KN0/ρ has the dimension of frequency, and 
τ=m/K is the relaxation time of the particles, which is 
defined as:  
 

2
p /(18 ),dτ ρ υρ=                        (19) 

 

where ρp is the particle density, then the particle 
concentration f is: 
 

0 / .f mN sρ τ= =                       (20) 
 

Consider a Fourier component of wave-number 
α which propagates with complex velocity c along the 
x-axis. Then, the basic flow has velocities U=U(y), 
V=V(y), and the small disturbance terms have the 
form of eiα(x−ct) or ei(αx−βt), that is, 
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Substituting Eq.(21) into Eqs.(13)~(18), we have 
(For brevity, the prime is dropped henceforth): 
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where D≡d/dy, and the term −∂2U/(∂x∂y) has been 
replaced by ∂2V/∂y2 based on the continuity equation. 
Eq.(24) is satisfied by a stream function ψ, which has 
the periodic form: 
 

i( )( )e ,x ty α βψ φ −=                      (28) 
then, we have   
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/ .v xψ= −∂ ∂                         (30) 

 
For numerical analysis, the resulting equation is 

changed to a non-dimensional form similar to the 
Orr-Sommerfeld equation, using the characteristic 
parameters U0, δ and υ. The equation to be integrated 
is then 

 
2 2 2 2 2 2

2 2 2 2 2
p p

i ( )( ) ( ) i
1    ( ) [( ) ( ) ],

U c D VD D D VD D U
fD Du i v D

Re St

α α φ α φ φ αφ

α φ α α φ

− − + − − −

= − + − − −

         (31) 

p p p p pi ( ) ( ) / ,U c u v DU u DV VDu D u Stα φ− + − + = −  

                  (32) 

p p p pi ( ) ( i ) / ,U c v v DV VDv v Stα αφ− + + = − −    (33) 

0 p 0 pi i i i .cN N u N Dv UN UN VDNα α α α− =− − − − −  

                         (34) 

In order to reduce Eqs.(31)~(34) to the Saff-
man’s form, the assumption V=0 is required, with the 
consequent relation ∂U/∂x=0, implying parallel mean 
flow in the boundary layer. 
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For the Blasius boundary layer, the boundary 

conditions express the requirement that the perturba-
tion velocities vanish at y=0 and y=∞, that is, for the 
wall, 
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and for large values of y, we take the form:  
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The solution fitting the outer boundary condi-
tions is  
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where A and B are arbitrary constants, and 
 

 2 2 0,ReVξ ξ γ∞− − =                     (40) 
where 
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Since ReV∞=m/2, then |ξ|~|γ|, and for y>0, 
|e−ξy|~|e−γy|<<|e−αy|. The required outer boundary 
condition may therefore be expressed in the form of 
φ~e−αy for large y. The presence of V does not affect 
the form of the boundary conditions, and the calcula-
tions were carried out on this assumption. Thus the 
boundary condition for large values of y is: 

 

p p 0,D u vφ φ= = = =  at y=∞.             (42) 
 

We take y/ξ=20 in the present work. 
 
Numerical procedure 

The differential Eqs.(31)~(34) are replaced by a 
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set of difference equations which are referred to as the 
algebraic model. Define h as the step length used in 
the numerical integration, then D2φ and D4φ can be 
expressed by Eq.(43) and Eq.(44) with the truncation 
errors being O(h4) and O(h6), respectively: 

 

1 12
2

2
( ) ,j j j

jD
h

φ φ φ
φ + −− +

=                (43) 

2 1 1 24
4

4 6 4
( ) .j j j j j
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φ φ φ φ φ
φ + + − −− + − +

=    (44) 

 
The algebraic model can be expressed in the 

matrix form. An iterative technique is used to find the 
eigenvalues of the matrix. The computer program is 
written in MATLAB to perform the iteration. 
 
 
RESULTS AND DISCUSIONS 
 

It is well known that the solution of the modified 
equations with certain boundary conditions possesses 
an eigenvalues program. In the time amplified case 
considered here it is assumed that α, St, f and Re are 
real and given, and the problem is that of finding a 
complex eigenvalue c with a corresponding eigen-
value φ. The result of such a calculation for a pre-
scribed laminar flow can be represented graphically 
in an α-Re diagram because every point of this plane 
corresponds to a pair of values of Re(cr) and Im(ci). In 
particular, the locus ci=0 separates the stable region 
from that of unstable disturbances. This locus is 
called the curve of neutral stability. The point on this 
curve at which the Reynolds number has its smallest 
value is of greatest interest since it indicates that value 
of the Reynolds number below which all individual 
oscillations decay, whereas above that value at least 
some are amplified. This smallest Reynolds number is 
the critical Reynolds number (Recrit) or limit of sta-
bility with respect to the type of laminar flow under 
consideration. 
 
Verification of the numerical method 

In order to verify the code of the computation 
program used in the present study, the ordinary 
Orr-Sommerfeld equation for the Blasius boundary 
layer is solved.  

Table 1 shows the comparisons of eigenvalues  
 

using various methods for the case of Re=580, 
α=0.179. The eigenvalues are given for the single 
unstable mode (ci>0). The comparison of the eigen-
values in Table 1 indicates that the method adopted 
here is accurate. 
 
 
 
 
 
 
 
 
 
 
Effect of nonparallel flow 

Fig.1 shows the neutral stability curves of par-
allel and nonparallel particle-laden flow. It can be 
seen that the presence of the V terms does not affect 
the role of the particles in gas. That is, the addition of 
fine particles (Stokes number is much smaller than 1) 
reduces the critical Reynolds number while the addi-
tion of coarse particles (Stokes number is much larger 
than 1) enhances it. Qualitatively the effect of parti-
cles is the same as that for the case of parallel flow. 
For fine particles, the larger the concentration is, the 
lower the critical Reynolds number is. For coarse 
particles, the result is the reverse.  

The effect of particle concentration given in 
Fig.2 shows that the inclusion of the V terms produces 
a reduction in the values of the critical Reynolds 
number.  

Fig.3 shows the effect of Stokes numbers for 
parallel and nonparallel flows. The value of critical 
Reynolds number of nonparallel flow is larger than 
that of the parallel flow at the same concentration and 
Stokes numbers. It also can be seen that there is a 
critical value for the effect of Stokes number, and that 
the critical Stokes number is about unity, and that the 
most efficient instability suppression takes place 
when Stokes number is of order 10. Fig.4 shows the 
comparison of neutral stability curves in Re-α plane 
between parallel and nonparallel flows. The new 
neutral stability curve therefore lies outside the curve 
obtained by Jordinson (1970) and Asmolov and 
Manuilovich (1998), and the critical Reynolds num-
bers is lower than that given by them. 
 

Table 1  Eigenvalues of the Orr-Sommerfeld equation 
for Blasius flow, Re=580, α=0.179 
Methods  Eigenvalues 
Present 0.36455+0.0077793i 
Kurtz and Crandall (1962) 0.364+0.0077i 
Jordinson (1970) 0.3641+0.0079i 
Grosch and Orszag (1977) 0.364557+0.007773i 
Zebib (1984) 0.364143+0.007959i 
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Fig.1  The neutral stability curves of Blasius flow. (a) Nonparallel flow and St=0.1; (b) Nonparallel flow and
St=10; (c) Parallel flow and St=0.1; (d) Parallel flow and St=10 
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Distribution of stress resulting from perturbation  

The Reynolds stress, as a main interest quantity, 
is uvρ−  which interacts with the mean velocity gra-
dient dU/dy to increase or decrease the energy of the 
perturbation. The perturbation grows in amplitude if 

uvρ−  and dU/dy are of the same sign over a domi-
nant part of the flow. The Reynolds stress can be 
calculated by: 

 

uvρ−
0

1 d ,
T

uv t
T

= ∫                       (45) 

 
where u, v are the instantaneous components of the 
perturbation velocity, which are parallel and perpen-
dicular to the plate, respectively, and T=2π/β is the 
period of one oscillation. 

Taking u, v as the form defined in Eqs.(29) and 
(30) and substituting them into the right hand side of 
Eq.(45) yields: 

 
* *i ( ),uvρ α φ φ φ φ′′− = −                   (46) 

 
where φ* is the conjugation of the eigenfunctions φ, 
and the primes indicate differential with respect to y. 
This function is plotted in Fig.5. The curves show 
how the Reynolds stress distribution varies with y. All 
distributions show that the energy transfer is virtually 
restricted to the total thickness of the boundary layer. 
Each distribution shows a peak close to the critical 
layer. In general, the amplitude of stress of nonpar- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
allel flow is larger than that of parallel flow at the 
same conditions, which means that the interacting 
effect of the mean velocity gradient with the energy of 
the perturbation for nonparallel flow is larger than 
that for parallel flow.  

Table 2 shows the comparison of eigenvalues of 
unstable mode for parallel and nonparallel flow. We 
can find that all the image parts of eigenvalues of 
unstable mode of nonparallel flow are larger than 
those of parallel flow, which means that the energy of 
perturbation grows more rapidly for nonparallel flow, 
that is, nonparallel flow is more unstable. 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

The PSE was derived to study the linear stability 
of particle-laden flow in growing Blasius boundary 
layer. The stability characteristics for various Stokes 
numbers and particle concentrations were analyzed 
after solving the equation numerically using pertur- 

Table 2  Eigenvalues of unstable mode of parallel and 
nonparallel flows at Re=580, α=0.179 

Eigenvalues  
Parameters 

Parallel Nonparallel 
f=0 0.3645+0.007779i 0.3662+0.008128i 

f=0.02, St=0.1 0.3626+0.007686i 0.3653+0.008078i 
f=0.02, St=10 0.3637+0.004065i 0.3654+0.004403i 
f=0.04, St=0.1 0.3636+0.007737i 0.3644+0.008018i 
f=0.04, St=10 0.3628+0.000398i 0.3646+0.000724i 
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bation method and finite difference. The results in the 
clean gas flow agree with the calculations given by 
other authors. Two general asymptotic relations 
proposed by Saffman have been confirmed numeri-
cally for the flow of growing Blasius boundary layer. 
The addition of fine particles reduces the critical 
Reynolds number while the addition of coarse parti-
cles enhances it. The stabilizing and destabilizing 
effect of particles depends monotonously on the par-
ticle concentration, but not monotonously on the 
Stokes number. In addition to the stabilizing effect of 
particles on the gas flow at large Stokes numbers, the 
higher the concentration, the larger the critical Rey-
nolds number is, and the results are the reverse for the 
case at small Stokes numbers. There exists an inter-
mediate Stokes number at which the flow is most 
stable. We have shown that this Stokes number is in 
the order of 10. The inclusion of the nonparallel terms 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
reduces the values of the critical Reynolds number 
compared with the parallel flow. But the presence of 
the nonparallel terms does not affect the role of the 
particles in gas. Qualitatively the effect of nonparallel 
mean flow is the same as that for the case of plane 
parallel flows.  
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