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Abstract:    A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. 
Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri-
terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) 
approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of 
maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the 
simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a 
quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the 
high efficiency of the method. 
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INTRODUCTION 
 

In industrial process, instrument readings do not 
meet the laws of conversation and one has to perform 
data reconciliation to obtain variable estimates. Un-
fortunately, measured process variables often sys-
tematically deviate from their true values. Miscali-
brated and malfunctioning instruments are two rea-
sons for biased measurements which are called gross 
errors. If the measurements are adjusted to meet the 
laws of conversation in the presence of gross errors, 
all the adjustments are greatly affected by such biases 
and would not generally be reliable indicators of the 
state of the process. So gross errors must be detected 
and either rectified or discarded before data 
reconciliation. 

Detection of gross errors in steady state process 
industry has received considerable attention. Most 
technologies for gross error detection rely on statis-
tical hypothesis testing, such as the global test (GT) 
(Reilly and Carpani, 1963), the measurement test 
(MT) (Mah and Tamhane, 1982), the nodal test (NT) 
(Reilly and Carpani, 1963; Mah et al., 1976), the 
modified iterative measurement test (MIMT) (Heenan 
and Serth, 1986), the principal component test (PCT) 
(Tong and Crowe, 1995), and the general likelihood 
ratio method (GLR) (Narasimhan and Mah, 1987). 
These tests have been applied to both measurement 
and constraint residuals. They are suitable for the 
detection of one gross error. When multiple gross 
errors exist, strategies are required to identify them, 
such as serial elimination, etc. 

Yamamura et al.(1988) used a model based on 
Akaike information criterion (AIC) to identify biased 
measurements. Due to the combinational nature of the 
problem attempted, a branch-and-bound method was 
suggested to solve this problem. The combinational 
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algorithm for data reconciliation can be automated by 
mixed integer linear programming (MILP) techniques 
(Soderstrom et al., 2001). And the quadratic term of 
the objective function in the method designed by 
Yamamura can be reformulated as a linear term in 
MILP model. But MILP model is not a maximum 
likelihood estimator for measured variables according 
to AIC. 

To simplify MILP model and achieve the merit 
of maximum likelihood estimation, two independent 
models are used in this paper for detection of gross 
errors and data reconciliation, consistent with AIC in 
nature. The novel MILP (NMILP) reduces computa-
tional cost and has the merit of AIC. Simulation study 
of an industrial case shows the good performance of 
the presented method. 
 
 
PRINCIPLES OF MIXED INTEGER PROGRAM-
MING FOR DATA RECONCILIATION 
 
Akaike information criterion (AIC) 

Data reconciliation and gross error detection can 
be addressed as a model discrimination and parameter 
estimation problem, where multiple models corre-
spond to the partitioning of random and gross errors. 
If more than one of these models can be fitted to the 
data under consideration, it becomes necessary to 
identify which model to be used. So, one is interested 
in obtaining the most likely model and its parameters. 
Since maximum likelihood estimators are asymp-
totically efficient under certain condition, the likeli-
hood function is a very sensitive criterion of deviation 
model parameters from their true values. AIC is an 
estimate of the Kullback-Leibler mean information 
for distance between the true model and the model 
under consideration (Yamamura et al., 1988; Arora 
and Biegler, 2001). It is given by 

 
AIC=−2log(maximum likelihood)+2(No. of indepen- 

dently adjusted parameters within the model),  (1) 
 

and can be rewritten as 
 

1

( ) 2 log{ [ ( , )]} 2dim( ),
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AIC E S l i p pε
=
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where E(⋅) is the expectation, ε the measurement error 
obtained after reconciliation, i the observation, l(⋅) the 

likelihood function, and p the number of independ-
ently adjusted model parameters. For data reconcilia-
tion, we consider the total number of parameters to be 
given by 
 

0 outdim( ) dim( ) ,p p n= +                   (3) 
 
where p0 is the number of model parameters and nout 
the number of outliers. Here variables with outlying 
measurements are treated as parameters because their 
reconciled values are adjusted only from measure-
ments without gross errors. In this paper, we consider 
the likelihood function to be a least squares function 
formed after removing gross errors. We shall observe 
later that a novel method is designed for efficient 
detection of gross errors and data reconciliation con-
sistent with the idea of AIC. 
 
Mixed integer approach for data reconciliation 

Yamamura et al.(1988) used AIC for data rec-
onciliation and parameter estimation for a linear sys-
tem. The set of measurement sensors (J) were divided 
into faulty (F) and non-faulty (J−F) sets. For the 
faulty sensors, they estimated the biases in the fol-
lowing format 
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where θj is the studentized residual, vj the biases 
scaled by instrument standard deviations and J the set 
of equations resulting from eliminations of the 
measured variables. To systematically select F, they 
devised a branch-and-bound strategy to select a set of 
biased sensors and solve Eq.(4). This constituted the 
branching operation. For bounding the objective 
functions, the power set of J is divided into two 
non-intersecting subsets constituting faulty and 
non-faulty instruments. The procedure can be easily 
translated into a mixed integer non-linear program-
ming (MINLP) with binary variables identifying 
faulty sensors. Using a linear model of the measured 
variables, we state MINLP (Arora and Biegler, 2001) 
as 
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                s.t.         Ax=0,                                     (7) 
|µi|≤Uiyi,                                   (8) 
|µi|≤Liyi,                                   (9) 

yi∈{0, 1},                               (10) 
xi≥0,                                     (11) 

 
where subscript i refers to the ith variable of the pa-
rameters, n is the number of measured variables, M

ix  
the measurement, xi the reconciled value, σi the 
standard deviation, yi a binary variable denoting the 
existence of bias, A the matrix for constraints, µi the 
magnitude of bias, Li and Ui the lower and upper 
bounds on bias respectively. If we use an MINLP 
solver such as LINGO to solve Eq.(6), we cannot 
guarantee all the intermediate mixed integer linear 
programs (MILPs) be feasible and bounded. To en-
sure boundedness of MILPs, we add bound con-
straints of the form 
 

xi<χi.                                  (12) 
 

Soderstrom et al.(2001) devised an MILP ap-
proach to minimize an objective function similar to 
AIC. The advantage of MILP is that it eliminates the 
non-linear programming subproblem associated with 
MINLP algorithm. The quadratic term in the objec-
tive Eq.(6) is replaced by the l1 norm and penalty is 
added. 
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s.t.     Ax=0,                                   (14) 
µi≤Uiyi,                                  (15) 
−µi≤Liyi,                                 (16) 

µi−ziUi−ziLi+Liyi≤0,                       (17) 
−µi−ziUi−ziLi+Liyi≤Li+Ui,                  (18) 

zi≤yi,                                     (19) 
yi, zi∈{0, 1},                             (20) 

0≤xi≤χi,                                  (21) 
 
where ωi is the ‘weight’ function that penalizes iden-
tification of too many biases, zi a binary variable for 
the sign of bias value µi. The non-differentiability 
caused by the l1 norm is removed by rewriting the 
argument of the absolute value as the difference of 
two positive numbers: 
 

M ( )i i i i ix x r qµ− + = − ,                 (22) 
qi, ri≥0.                                (23) 

To eliminate the absolute value operator, the first 
term of Expression (13) can be written as 
 

M ( )i i i i ix x r qµ− + = + .                  (24) 
 
The objective Expression (13) contains a more 

robust objective function but does not directly mini-
mize AIC. Also, the choice of the weight functions 
may be arbitrary, and unsuitable choice of the mag-
nitude ωi may degenerate MILP performance. So how 
to design ωi needs to be further researched. But AIC is 
a more complete measure of model fitting as it also 
includes the maximum likelihood on good data. 

 
 

DETECTION OF GROSS ERRORS AND DATA 
RECONCILIATION 
 

Both MINLP and MILP are suitable for prob-
lems with only a few variables to be reconciled. For 
large-scale industrial data reconciliation problems, 
the combinatorial overhead is too great to justify their 
use, especially online. Also if there are constraints in 
data reconciliation problems, the computational 
overhead on MINLP can be large (Arora and Biegler, 
2001). To simplify MINLP and MILP, we decompose 
the problem into two subproblems for detection of 
gross errors and data reconciliation. 

 
NMILP for gross error detection 

To detect gross errors is to locate them. To avoid 
huge computation in solving the MINLP problem, an 
NMILP model is designed to detect gross errors only. 
This method is based on the assumption that the 
smallest number of gross errors located in a system by 
an algorithm is the number with the highest prob-
ability equal to the true number presented in a system. 
And that is consistent with the idea of maximum 
likelihood estimation. The NMILP model can be 
written as  

1
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n
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s.t.     Ax=0,                                (26) 
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|µi|≤Uiyi,                                (28) 
|µi|≤Liyi,                                 (29) 
yi∈{0, 1},                             (30) 

xi≥0.                                   (31) 
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To reduce the computational cost, the constraint 
Eq.(27) is designed to represent the constraint of µi, 
which replaces the constraint Eq.(22). But, the values 
of xi and µi are not estimated by maximum likelihood 
estimators in the proposed algorithm. So the algo-
rithm can only be used to denote the existence of bias 
in the ith variable. Compared with Soderstrom’s 
MILP, the NMILP model reduces immediate vari-
ables such as qi and ri, and avoids choosing the weight 
function ωi. 

In nature, the NMILP model can be deduced 
from MILP. Since ri and qi in Eq.(24) do not have any 
constraints besides Eqs.(22) and (23), they should be 
equal to zero to achieve the minimum value of the 
objective Expression (13). So the MILP model can be 
reformed easily as an NMILP model. 

 
Data reconciliation and gross error estimation 

This subsection considers the problem of data 
reconciliation. Since the positions of variables with 
gross errors have been determined, the objection 
Eq.(6) and its constraints can be formulated as fol-
lows 

 
2 2M M
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s.t.     Ax=0,                              (33) 
xi≥0.                               (34) 

 
Here, µi can be considered as unmeasured variables to 
be eliminated. Then the objective Eq.(32) and its 
constraints can be written as follows 
 

2Mmin ( ) / ,i i i
i J

x x σ
∈
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s.t.     Ax+Bu=0,                          (36) 
xi≥0.                                (37) 

 
where u is the vector of biases µi, A and B are constant 
matrices. This is a problem of least squares estimation 
or quadratic programming. In Eq.(36), u can be 
eliminated by using matrix projection (Crowe et al., 
1983). 
 
 
CASE STUDY 
 

Simulation procedure of a classic case is applied 
to study the performance of the proposed method. In 

this paper, MILP and NMILP techniques are evalu-
ated using a Monte Carlo simulation. Each result is 
based on 1 000 simulation trials where the random 
errors and the criterion used to judge the performance 
are the average number of type I errors (AVTI) (Na-
rasimhan and Mah, 1987), the overall power (OP) 
(Narasimhan and Mah, 1987) and expected fraction of 
perfect identification (OPF) (Rollins and Davis, 
1992). They are defined as follows: 

 

No. of unbiased variables wrongly identified= ,
No. of simulation trials

AVTI

(38) 
No. of unbiased variables correctly identified= ,

No. of biased variables simulated
OP

 
(39) 

No. of trials with perfect identification= .
No. of simulation trials

OPF    (40) 

 
A schematic diagram of recycle process network 

is shown in Fig.1 (Narasimhan and Mah, 1987). And 
the true flow rates are shown in Table 1. Each meas-
urement value for simulation trial is taken as the sum 
of the true value and a random value between 
−0.025xl and 0.025xl, where xl is the true value. Li and 
Ui are chosen as 0.6 and 4 respectively. Twenty per-
cent of the true value is added to the biased stream to 
evaluate the proposed method and compare with 
MILP method. All simulations in this work are per-
formed using an application developed by Visual C++ 
6.0. The MILPs and NMILPs are solved using calls to 
a library of subroutines packages with LINGO op-
timization software. 

Table 2 and Table 3 show that the NMILP 
method performs as well as MILP. Under some con-
ditions, such as rows 5~7 in Table 2 and rows 1, 2, 
4~10, 12, 13, 20, and 21 in Table 3, NMILP performs 
better than MILP. The bad performance in Table 3, 
such as rows 18 and 19, can be explained by the the-
ory of equivalent set (Bagajewicz and Jiang, 1998). 

NMILP and MILP avoid gross errors spreading 
to correct measured values, because they need not use 
values estimated by the least squares method to detect 
gross errors. Compared with Table 4 in (Sanchez et al., 
1999), we can find that both NMILP and MILP have 
better performance than the simultaneous estimation 
of gross errors (SEGE), the unbiased estimation 
technique (UBET), and the generalized likelihood 
ratio (GLR). 
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l xl l xl 

1 5 5 10 
2 15 6 5 
3 15 7 5 
4 5   

l: Measurement variables number; xl: true flow rate 

Table 1  True values for the measured flow rates

Fig.1  Recycle process network 

A B C D
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1 2 3 5 7
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Table 2  Performance of NMILP and MILP when one bias is introduced 

NMILP MILP No. Biased 
stream AVTI OP OPF AVTI OP OPF 

1 1 0.000  1.000  1.000  0.000  1.000  1.000  
2 2 0.000  1.000  1.000  0.000  1.000  1.000  
3 3 0.000  1.000  1.000  0.000  1.000  1.000  
4 4 0.025  0.958  0.958  0.002  0.993  0.993  
5 5 0.000  1.000  1.000  0.002  1.000  0.998  
6 6 0.000  1.000  1.000  0.002  1.000  0.998  
7 7 0.000  1.000  1.000  0.004  1.000  0.996  

 

Table 3  Performance of NMILP and MILP when two biases are introduced 
NMILP MILP No. Biased 

stream AVTI OP OPF AVTI OP OPF 
1 1-2 0.000  1.000  1.000  0.001  1.000  0.999  
2 1-3 0.000  1.000  1.000  0.003  1.000  0.997  
3 1-4 0.024  0.972  0.943  0.003  0.995  0.990  
4 1-5 0.000  1.000  1.000  0.007  1.000  0.993  
5 2-5 0.000  1.000  1.000  0.000  1.000  1.000  
6 2-6 0.000  1.000  1.000  0.002  1.000  1.000  
7 2-7 0.000  1.000  1.000  0.001  1.000  0.999  
8 3-5 0.000  1.000  1.000  0.000  1.000  1.000  
9 3-6 0.000  1.000  1.000  0.000  1.000  1.000  

10 3-7 0.000  1.000  1.000  0.003  1.000  0.997  
11 4-7 0.002  0.974  0.948  0.001  0.998  0.995  
12 5-7 0.000  1.000  1.000  0.008  1.000  0.992  
13 1-6 0.035  0.983  0.963  0.216  0.893  0.748  
14 1-7 1.000  0.000  0.000  1.004  0.000  0.000  
15 2-3 0.000  1.000  1.000  0.000  1.000  1.000  
16 2-4 0.056  0.924  0.848  0.000  0.926  0.852  
17 3-4 0.068  0.921  0.841  0.002  0.922  0.843  
18 4-5 0.415  0.775  0.550  0.066  0.966  0.931  
19 4-6 0.197  0.874  0.248  0.070  0.938  0.876  
20 5-6 0.737  0.616  0.230  0.952  0.528  0.045  
21 6-7 0.035 0.983  0.965  0.218  0.884  0.762  
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CONCLUSION 
 

A novel mixed integer linear programming 
model is presented to detect gross errors in industrial 
process, which is simpler than MILP approach. 
Simulation showed that NMILP performs better than 
MILP. Investigations indicated that NMILP method is 
robust with respect to gross errors and can be easily 
extended to nonlinear or dynamic systems using in-
teger nonlinear programming method. 
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