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Abstract:    This paper presents an effective and efficient combination of feature extraction and multi-class classifier for motion 
classification by analyzing the surface electromyografic (sEMG) signals. In contrast to the existing methods, considering the 
non-stationary and nonlinear characteristics of EMG signals, to get the more separable feature set, we introduce the empirical 
mode decomposition (EMD) to decompose the original EMG signals into several intrinsic mode functions (IMFs) and then 
compute the coefficients of autoregressive models of each IMF to form the feature set. Based on the least squares support vector 
machines (LS-SVMs), the multi-class classifier is designed and constructed to classify various motions. The results of contrastive 
experiments showed that the accuracy of motion recognition is improved with the described classification scheme. Furthermore, 
compared with other classifiers using different features, the excellent performance indicated the potential of the SVM techniques 
embedding the EMD-AR kernel in motion classification. 
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INTRODUCTION 
 

Recently, bio-signals have been paid much at-
tention due to their potential in providing convenient 
control channels between the disabled and rehabili-
tation engineering (Han et al., 2000; Soares et al., 
2003; Sebelius et al., 2005; Reddy and Gupta, 2007; 
Su et al., 2007). By analyzing the EMG signals col-
lected from remnant muscles, as control inputs for 
the artificial limb, the intelligent artificial limbs can 
implement the corresponding functions. Recognizing 
bio-signals correctly is the preliminary stage of con-
trolling these prosthesis devices.  

As far as motion classification is concerned, like 

all other classification problems, there exist two 
fundamental issues. One is how to extract the most 
representative feature set. In many cases, an effective 
set of features used in one classification task may not 
work as well when used in other classifications. This 
problem is subject-dependent. The other is how to 
design and construct the powerful capability classifier. 
Relatively, the feature extraction methods are re-
sponsible mainly for the classification accuracy rather 
than the classifiers. 

In previous work, various approaches of extract-
ing features of bio-signals were employed for dis-
cerning predefined human motions. In (Hudgins et al., 
1993; Englehart et al., 1999; Englehart and Hudgins, 
2003), Hudgins et al. adopted the classical time- 
domain indexes, including the Mean Absolute Value 
(MAV), the Mean Absolute Value Slope (MAVS), the 
Zero Crossings (ZC), the Slope Sign Changes (SSC) 
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and the Waveform Length (WL), etc. to form the 
feature set. In the above-mentioned work, researchers 
extracted the feature set through non-parametric 
methods. In the field of physiological signal proc-
essing, there are many parameter/modeling methods 
to exploit the feature set. Among these methods, the 
autoregressive model is a kind of convenient and 
widely used algorithm. References (Kang et al., 1995; 
Soares et al., 2003; Hu and Nenov, 2004) discussed 
some techniques based on the AR model and proposed 
the optimal selection of the order of AR model. 

Those algorithms based on time domain for ex-
tracting feature set are very convenient, because they 
do not require any prior knowledge. Furthermore, the 
time expense for computing is very low and suitable 
for real-time recognition and classification. Never-
theless, the absence of the frequency resolution ob-
scured the subtle presentation of the complicated 
EMG signals. Similarly, those feature extraction al-
gorithm based fully on the frequency domain, such as 
the Fourier Transform (FT), cannot accurately repre-
sent the intrinsic nature of the biological signals due 
to the absence of time resolution. In recent years, 
some joint time-frequency algorithms have been de-
veloped to extract feature set, such as the Short-Time 
Fourier Transform (STFT), Wavelet Transform (WT), 
Wavelet Packet Transform (WPT) (Englehart et al., 
1999; 2001; Zecca et al., 2002), etc. In comparison 
with the feature exaction methods fully based on 
time-domain or frequency-domain, these methods 
have the localization time and frequency resolution 
and can extract the detailed information of the bio-
logical signals. 

Classifiers can generally be divided into linear 
classifiers and nonlinear classifiers. It is not neces-
sarily the case that the nonlinear classifiers are more 
powerful and suitable than linear classifiers for spe-
cific classification problems. It depends on the prac-
tical application and the feature extraction method. In 
the field of bio-signal processing, the researches have 
successfully employed some classifiers for EMG 
signal recognition and classification, such as the 
Hidden Markov Model, Artificial Neural Network, 
Fuzzy Logic and Neuro-Fuzzy, etc. (Kwon et al., 
1998; Christodoulou and Pattichis, 1999; Karlik, 
1999; Micera et al., 1999; Ajiboye and Weir, 2005). 

It is worth pointing out that in (Englehart et al., 
1999; 2001; Subasi et al., 2005), the authors demon-

strated the performance of different combinations of 
feature extraction algorithms and classifier structures. 
In this paper, what we are concerned with is the mo-
tion classification of the upper arms by studying the 
corresponding surface EMG signals, and we ex-
ploited such a combination consisting of EMD-AR- 
based feature extraction and LS-SVM classifier in 
EMG motion classification. Experiments verified its 
efficiency and superior effect over other combina-
tions. 

The rest of this paper is organized as follows. 
Section 2 addresses the acquisition of EMG signals, 
the preprocessing to EMG signals, the extraction of 
feature vectors, the construction of the multi-class 
LS-SVMs and the relevant background knowledge. In 
Section 3, we compare in detail the combinations of 
other classifiers and feature vectors with the EMD- 
AR based LS-SVMs and demonstrate the perform-
ance of different combinations. Finally, the conclu-
sions are drawn in Section 4. 
 
 
METHODS 
 
Data acquisition and preprocessing 

In this work, we focus on the motion recognition 
and classification by analyzing the EMG signals. The 
four functions to be classified and controlled are: (1) 
fist clench (FC), (2) fist stretch (FS), (3) wrist flexion 
(WF), and (4) wrist extension (WE). The poses of 
these four motions are shown in Fig.1. 

The sEMG signals were acquired by two pairs of 
bipolar electrodes placed on the flexors and extensors 
in the forearm. The experiments were implemented in 
the EMG room at Huashan Hospital in Shanghai, 
China.  

To measure EMG signals, clean and sensitive 
electrodes and shielded cables were used to reduce the  

 
 
 
 
 
 
 
 
 
 
 

 

Fig.1  The poses of four motions, from left to right: fist
clench (FC), fist stretch (FS), wrist flexion (WF), wrist
extension (WE) 
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interference of noise in the environment. The detected 
differential EMG signals were fed to a band-passed 
filter with cutoffs at 10 Hz and 1 kHz, and a pream-
plifier with total gain of 2000. The amplified EMG 
signals were converted by A/D converter with 2 kHz 
sampling frequency and 12-bit resolution. As the 
useful information mainly distributes in the 20~500 
Hz range, the sampling frequency can satisfy the 
Shannon Sampling theorem. 

The hardware configuration was comprised of 
the Pentium-Mobile 1.5 GHz CPU, 768 M DDR 400 
Memory, etc. 

The subjects were 30 healthy college-student 
volunteers averaging 25.8 years old (ranging from 23 
to 27 years old, 25 males and 5 females). They were 
all informed of the intention of the experience before 
the experiment implementation. Ethical approval for 
this research had been granted by the Ethical Com-
mittee of the Huashan Hospital. In the process of data 
acquisition, each subject generated four different 
classes of the above-mentioned motion and was asked 
to be consistent in reproducing the predefined mo-
tions 80 times. The EMG signals collected during 
isometric extension and flexion were all at 20 to 40 
percent of the Maximal Voluntary Contraction, far 
from the extremity. To avoid the influence of fatigue 
on the Mean Frequency (Ravier et al., 2005), after 
executing every 5 times the required movements, the 
subjects were allowed to have a rest for 2 min. The 
four patterns of EMG signals which lasted for at least 
600 ms were recorded elaborately from every sub-
ject’s forearm muscle groups. The number of the 
subjects was 30, so 120 datasets were obtained, 30 
datasets for each motion, and 80 patterns in each 
dataset. 

As the acquired signal may contain areas of in-
activity, it is important to find out exactly when the 
EMG activity started. This was achieved by searching 
the beginning of the EMG activity and using a slid-
ing-window method (in this case a 100 ms rectangular 
window) to extract the correct portion. Our strategy to 
find the limits of the EMG activity is based on a 
threshold for the variance of the signal. The under- 
lying research about this strategy can be found in 
(Soares et al., 2003). 
 
Feature extraction 

The EMG signal is an electric manifestation of 

neuromuscular activation associated with a contract-
ing muscle and has the following characteristics 
(Nishikawa et al., 1999). 

First, EMG signals are non-stationary in the 
sense that their frequency spectra are time-varying. 
The EMG signal is summed from lots of motor unit 
action potentials (MUAPs), and the recruitment and 
firing of the MUAPs are stochastic. Therefore the 
intensity distribution of the surface EMG signal is 
nonlinear and time-varying. Second, the number of 
muscle fibers which make a single motor unit is per-
son-dependent. Also the thickness of skins and other 
muscle tissues may modify EMG signal waveforms. 
Thus, many diverse factors exist in forming EMG 
signals, which makes it difficult to analyze. Third, 
EMG signals have weak amplitude of 0.1~1 mV, 
which means they can be easily contaminated by 
noise. 

Considering the non-stationary and nonlinear 
essence of EMG signals, in the sequel, we executed 
the EMD to analyze the EMG signals. EMD was 
introduced by (Huang et al., 1998b; Huang et al., 
1999) for nonlinear and non-stationary signal analysis. 
In bio-signal processing field, there are some suc-
cessful applications (Huang et al., 1998a; Neto et al., 
2002). 

1. Principium of EMD 
The general idea of this method is the sifting 

process to decompose any given signal into its in-
trinsic oscillations. With the EMD approach, the basis 
functions themselves are nonlinear functions which 
can be derived directly from the data, or in other 
words, an adaptive basis called Intrinsic Mode Func-
tion (IMF) can be found. 

Assume c(t) is an IMF, then it must satisfy two 
conditions as follows: 

First, the number Nextrema of extrema and the 
number Nzero of zero point of c(t) are equal or differ by 
one at most, i.e. 

 
|Nextrema–Nzero|≤1.                        (1) 

 
Second, at any time, the mean value of the upper 

envelope eup(t) defined by the local maxima and the 
low envelope elow(t) defined by the local minima is 
zero, i.e., 

 
[eup(t)+elow(t)]/2≡0.                      (2) 
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In the case a time series is s(t), EMD has the 
following major steps: 

Initialization: r0(t)=s(t), i=1; 
Step 1: Set h0(t)=ri−1(t), j=1; 
Step 2: Extract the local minima and maxima of 

time series hj−1(t). Interpolate the local maxima by a 
cubic spline to form upper envelope eup(t) of hj−1(t). 
And construct the lower envelope elow(t) of hj−1(t) by 
fitting all the local minima with cubic spline. The 
upper and lower envelopes should cover all the data 
between them and satisfy 

 

elow(t)≤hj−1(t)≤eup(t).                       (3) 
 
Step 3: Calculate the mean value of the enve-

lopes:  
mj−1(t)=[elow(t)+eup(t)]/2.                   (4) 

 

The difference between hj−1(t) and its mean is 
 

hj(t)=hj−1−mj−1.                          (5) 
 
Step 4: If hj(t) meets the criteria of an IMF, des-

ignate this hj(t) as imfi(t). 
If hj(t) is not an IMF, then increase j, return to 

Step 2 and repeat the procedure. If the amplitude of 
hj(t) is smaller than 10−8 -times of the amplitude of ri−1, 
the sifting process will be artificially stopped. 

Step 5: Define the residue as 
 

ri(t)=ri−1(t)−imfi(t).                      (6) 
 
If ri(t) meets the stop criteria, the whole sifting 

procedure should stop. If not, increase i and return to 
Step 1. The authors set the final stop criterion to be 
that ri(t) has a predetermined number of extrema. 

The essence of EMD is to identify the intrinsic 
oscillatory modes by their characteristic time scales in 
the data. Unlike the methods based on Fourier trans-
form, EMD can be used to analyze data which are 
neither linear nor stationary. In comparison with the 
classical time-frequency analysis algorithm, WPT, 
which decomposes various signals using the specified 
and fixed base functions, i.e., the used base functions 
are object-independent, the EMD decomposition can 
obtain the essential and intrinsic features adaptively 
according to the signal amplitude and frequency in-
formation, so this algorithm is more flexible and 
adaptive. 

On the other hand, EMD still has some incon-
veniences and drawbacks. While executing the EMD, 
the critical part is the envelope fitting. However, so 
far no strict theoretical evidence of fitting the enve-
lope of EMD has been found but experience is still 
employed to fit the envelope. With a number of ex-
periments, Huang et al.(1998b) recognized that using 
cubic spline fitting could obtain better result while 
others are non-ideal. However, there still exist two 
problems in cubic spline fitting: (1) The heavy com-
putation load of sifting makes performing EMD very 
time-consuming; (2) The cubic spline fitting easily 
results in overshoot or undershoot, i.e., the fitted en-
velope is usually unable to satisfy Eq.(3), even leads 
to generation of a big error, thus the original essential 
structure of IMF is easy to be destroyed in EMD de-
composition process.  

To overcome these drawbacks, some researchers 
have put forward the improved EMD decomposition 
algorithm (Zhong et al., 2004; Qin and Zhong, 2006). 

2. Extracting the features from IMFs 
Compared with the classifier, the classification 

performance is more profoundly affected by the 
choice of feature set (Englehart et al., 1999). As the 
above sentence stated, EMD has a strong ability to 
extract the intrinsic characteristics from the nonlinear 
and non-stationary raw signals. To obtain the dis-
criminative features, we used the combination of 
EMD and AR model as the feature extractor, which 
can be called as “the EMD-AR kernel to the SVM 
classifier”. 

What we are concerned with is getting some 
discriminative AR coefficients fed to the classifier 
instead of depicting the detailed frequency spectrum, 
so after having undermined the non-stationary char-
acteristic of the EMG signal by the EMD transform, 
maybe the relatively low-order AR model is eligible 
for EMG classification. The four-order AR model has 
been considered adequate for modeling EMG signals 
in many previous applications, e.g. (Soares et al., 
2003; Hu and Nenov, 2004; Kim et al., 2005). In this 
work, we adopt the four-order AR model to analyze 
EMG signals. 

When AR model is mentioned, the high inter-
dependence between the AR coefficients is a draw-
back. But this phenomenon exists mainly in the rela-
tively high-order AR model. In our work, the four- 
order AR model is documented advisable for EMG 
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classification, so this drawback can be ignored. 
After having obtained the IMFs of each motion 

signal, we constructed the four-order AR model to 
extract AR coefficients from the first six IMFs as the 
feature vector. Fig.2 shows the waveforms of the first 
six IMFs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Classification implementation 

Support vector machines (SVMs) (Vapnik, 1998) 
are powerful new tools for data classification and 
function estimation. SVM maps input data into a high 
dimensional feature space where it may become 
linearly separable. Recently SVM has been applied 
successfully to wide fields such as bio-information 
and pattern recognition. One reason that SVM often 
performs better than earlier methods is that SVM is 
designed to minimize structural risk whereas previous 
techniques are usually based on minimization of em-
pirical risk, i.e., the minimization of the number of 
misclassified points on the training set. So SVM is 
usually less vulnerable to those over-fitting problems. 

The training problem in standard SVM is re-
ducible to solving a convex quadratic programming 
(QP) problem. The main drawback of standard SVM 
is its high computational complexity, therefore re-
cently a new technique, the Least Squares SVM (LS- 
SVM) (Suykens and Vandewalle, 1999a; Suykens et 
al., 2002), was introduced. This is algorithmically 
more effective, because the solution can be obtained 
by solving a linear equation set instead of a compu-
tation-intensive QP problem. In our experiments, by 
extending the binary LS-SVM classifier, the SVM 

technique was successfully applied in multi-class 
motion classification. 

1. Principium of LS-SVM classifier 
Given a training set {(xi, yi)} with input data 

xi∈ún and corresponding binary class label yi∈{−1, 
+1}, the SVM classifier satisfies  

 
T[ ( ) ] 1,  1,..., ,i iy x b i Nϕ + ≥ =w              (7)  

 
where w and b are the weight vector and bias of the 
decision hyper-plane, respectively. The nonlinear 
function ϕ(·): ún→úm maps the input space to a high 
dimensional feature space. 

The optimization problem is given as follows: 
 

T

1
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2

N

i
i

J Cξ ξ
=

= + ∑w w w                (8) 
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i
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≥

w
      (9) 

 
The variables ξi are slack variables allowing for 

misclassification in the set of inequality. The positive 
real constant C should be considered as a tuning pa-
rameter in the algorithm. 

The standard SVM classifier formulation was 
modified in (Suykens and Vandewalle, 1999a) into 
the following LS-SVM form: 

 

T 2

, , 1

1min ( , ) ,
2 2

N

ib e i

J e eγ
=

= + ∑w
w w w             (10) 

Ts.t.  [ ( ) ] 1 ,   1,..., ,i i iy x b e i Nϕ + = − =w       (11)             
 

where e is the classification error. 
To keep the number of misclassified points as 

small as possible, and at the same time, make the 
margin of the hyper-plane as big as possible, the 
positive constant γ is introduced as a trade-off be-
tween the two competing terms. 

The solution is obtained after constructing the 
Langrangian function: 

 

{ }T

1
( , , ; ) ( , , ) [ ( ) ] 1 ,

N

i i i i
i

L b e J b e y x b eα α ϕ
=

= − + − +∑w w w

           (12) 
 

where αi∈ú are the Lagrange multipliers that can be 
positive or negative in the LS-SVM form. 
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Fig.2  The first six IMFs of the fist clench. (a), (b), ..., (f)
refer to  the 1st, the 2nd, ..., and the 6th IMF, respectively
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According to the above conditions, by solving 
the corresponding Karush-Kuhn-Tucker (KKT) sys-
tem (Theodoridis and Koutroumbas, 2003), one can 
get the following equation: 

 

T

1

00  
,

b

γ −

    
=    

   +   

Y
αY Ω I 1

                   (13) 

where 
αT=[α1,…,αN],  YT=[y1,…,yN],  T [1,...,1],=1    (14) 

and 
 T[ ( )] ( ) ( , ).ij i j i j i j i jΩ y y x x y y K x xϕ ϕ= =     (15) 

 
For the kernel function K, one typically has the 

following choices: linear kernel, polynomial kernel, 
RBF kernel, MLP kernel, etc. In the following ex-
periments, we execute the EMD to the original EMG 
signals and extract AR coefficients of each IMF. Here, 
we can denote the process of the EMD and AR mod-
eling as EMD-AR kernel. 

LS-SVM is a binary classifier, but we can extend 
it to solve multi-class classification problems. In a 
multi-class classification, by combining some basic 
binary classifiers, such as the one-to-one binary 
SVMs, the one-to-rest binary SVMs and the hierar-
chies of binary SVMs (Suykens and Vandewalle, 
1999b; Schwenker, 2000), it is typically solved. 

Although the flat binary SVMs of each level 
have high accuracy, the total accuracy of hierarchical 
SVM may be degenerated seriously because of the 
multiplication between each SVM on the same level. 
To some input data, the multi-class classifier based on 
one-to-one SVM and majority voting decision strat-
egy may assign the same input data to more than one 
class label. Given the convenience of the one-to-rest 
LS-SVM, we constructed the multi-class classifier 
based on one-to-rest binary LS-SVM. To the k-class 
classification task, the number of constructed 
one-to-rest binary LS-SVM classifiers is k. To the ith 
one-to-rest binary classifier, it is trained with the ith 
class samples as positive ones and the rest as negative 
ones. To each input sample from the test set, we as-
sign it the class label with maximum output. This 
decision mechanism can be called Max-Win strategy. 
In the following experiments, the advantage of using 
this kind of binary SVM to construct the multi-class 
will be discussed in detail. 

Although the gain in efficiency is rather sig-

nificant, for really large problems the computational 
burden of LS-SVM is still too high. Moreover, an 
attractive feature of SVM, its sparseness, is lost. As to 
online and fast adaptive signal processing and 
large-scale problems, the computational burden must 
be further reduced. The improved version of the LS- 
SVM was proposed by Valyon and Horváth (2003).  

2. Classification scheme and contrast experi-
ments 

As Fig.3 shows, we first executed the EMD and 
AR modeling of the preprocessed EMG signals, then 
fed the extracted feature set to the multi-class 
LS-SVM classifier. Finally, we adopted the max- 
operator to decide the out class label. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The FS classifier can be constructed by using the 
one-to-rest binary LS-SVM, which labelled the 
training data of fist stretch as +1 and the other training 
data as –1 in this case. The FC, WF and WE classifi-
ers are constructed under the similar principle (see 
Table 1). 

 
 
 
 
 
 
 
 
 
The EMG classification was divided into two 

stages: training and execution/test. At the training 
stage, a group of 20 patterns was chosen randomly for 
each of the four classes of movement (i.e., to each 
single one-to-rest LS-SVM binary classifier, total of 

Table 1  The expected out label of the four binary 
LS-SVM classifiers 
LS-SVM 
classifier

Fist  
clench

Fist 
stretch 

Wrist  
flexion 

Wrist  
extension

FC +1 −1 −1 −1 
FS −1 +1 −1 −1 
WF −1 −1 +1 −1 
WE −1 −1 −1 +1 

Preprocessed EMG signals 

EMD-AR (extracting features) 

FS classifier FC classifier WF classifier WE classifier

Max 

Recognition result 

Fig.3  The classification strategy for multi-class classi-
fication 
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80 patterns for training) as the support vectors and the 
coefficient and bias scalar of the optimal hyper-plane 
were calculated. The rest of the datasets were used as 
the test dataset at the test stage. 

As a contrast, we also used a neural network 
based on the Multi-Layer Perceptron (MLP) archi-
tecture as the classifier with the same feature vectors. 
The neural network classifier to be used was a 
three-layer MLP with 30 hidden nodes and 4 output 
nodes. 

For further comparative study, the adaptive 
neuro-fuzzy inference system (ANFIS), which can be 
found in the Matlab Fuzzy Logic Toolbox, was ex-
ploited to design the fuzzy classifier. With the ANFIS 
aiming at the binary classification, we adopted the 
same strategy to extend it for multi-class classifica-
tion as used in extending the binary LS-SVM classi-
fier to multi-class LS-SVM classifier.  

To exhibit the performance of EMD decompo-
sition used in motion classification, we gave up the 
EMD decomposition and extracted the AR coeffi-
cients directly from the original EMG signals and 
then gave a contrast of the class separability between 
the two feature sets.  

Given the existence of strong nonlinearity and 
non-stationarity, we divided the EMG signal into 
several equal segments to preserve the pattern struc-
ture. We could assume that each segment signal is 
stationary and the AR coefficients of each segment 
were taken as the features. In fact, the shorter the 
length of each segment is, the more reasonable is the 
assumption.  

Additionally, we also figured out the quantifica-
tion analysis on the separability of the two feature sets 
formed by EMD-AR and WPT respectively. 
 
 
RESULTS AND DISCUSSION 

 
Datasets from 30 subjects were used in the ex-

periments. To verify the generalization ability of the 
LS-SVMs with small test dataset, the training dataset 
vs test dataset are 20 vs 20, 20 vs 40 and 20 vs 60, 
respectively.  

In Table 2, the averaged classification perform-
ance of the LS-SVM classifiers between the 30 sub-
jects is listed and it is clearly shown that the 
multi-class LS-SVM classifier based on the one-to- 
rest binary LS-SVM has good generalization with 
small training dataset. 

 
 
 
 
 
 
 
 
 

 

Fig.4 shows the output of four LS-SVM classi-
fiers against the motion type (Class) and the number 
of hand movements (Pattern) under observation for 
further understanding. As described above, four types 
of hand movements were studied and each subject 
was asked to perform 80 repetitions of each move-
ment. While test vs. training is 20 vs 20, the pattern 
axis presents those repetitions as follows: (1) 1~20: 
fist clench; (2) 21~40: fist stretch; (3) 41~60: wrist 
flexion; (4) 61~80: wrist extension. 

Fig.4 demonstrates the performance of the four 
binary LS-SVMs classifier while training dataset vs 
test dataset is 20 vs 20 and the subject is #10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Fig.4, we can find the advantage of the 

multi-class classifier based on one-to-the-rest LS- 
SVM over that based on the hierarchical LS-SVM. 
Each LS-SVM classifier has some wrong output, but 
to the input sample from different test sets, such as 
1~20 (FC), 21~40 (FS), 41~60 (WF), 61~80 (WE), 
we only adopted the maximum output of the four 
LS-SVM classifiers as the output of the multi-class 
classifier. To some extent, if there exists one LS-SVM 
with rarely poor performance, this strategy will pre-

Table 2  Performance of the multi-class LS-SVM clas-
sifier with different ratios of training vs test (averaged
among the 30 subjects) 

Correct rate Training 
vs test Fist 

clench
Fist 

stretch 
Wrist 

flexion 
Wrist 

extension
20 vs 20 0.993 0.983 0.987 0.993 
20 vs 40 0.987 0.987 0.987 0.993 
20 vs 60 0.983 0.983 0.985 0.987 
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Fig.4  Output of the four one-to-rest LS-SVM classifiers. 
Trials 1~20: FC; 21~40: FS; 41~60: WF; 61~80: WE. 
(Subject #10) 
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vent the great degeneration of the classification result, 
while in the case of hierarchical LS-SVM it degener-
ates seriously by multiplication. 

In Eq.(10), when γ was adjusted from 1.0 to 4.0, 
the performance of the LS-SVM classifier only fluc-
tuated slightly, which shows that the features ex-
tracted by the EMD-AR have good intrinsic separa-
bility. The following statement will verify it again. 

Compared to the binary SVM classifier, the NN 
classifier is very convenient for multi-class classifi-
cation. On the other hand, the disadvantages of the 
NN, such as over-fitting, under-fitting and vulner-
ability to the local minimum, etc., have impeded its 
application in some cases. Moreover, its computation 
load is larger than that of LS-SVM. While the test set 
vs training set is 20 vs 20, the performance of NN 
classifier is depicted in Fig.5. The subject is #10. 

As the experiments proved, with the same fea-
ture set, the generalization of the NN classifier is not 
good compared with the LS-SVM classifier, as shown 
in Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When training dataset vs test dataset is 20 vs 20, 
the consumed time of implementing the four-class 
EMG classification are 45 s and 98 s in Matlab en-
vironment for the four-class LS-SVM classifier and 
NN classifier, respectively. Relatively, the SVM 
classifiers are much simpler to implement and much 
faster to train. This result shows the superiority of 
LS-SVM classifier over the NN classifier. 

Similarly, with the same feature set, by using the 
ANFIS-based multi-class fuzzy classifier, we exe-
cuted the classification experiment. Through many 
tentative experiments, we found that because of the 
large input number (here it is 24) of the fuzzy classi-
fier, the inference of the fuzzy system and rule ex-
traction are tremendously time-consuming, mostly 
about two hours, even for offline classification, which 
is unacceptable. On the other hand, its classification 
performance is inferior to the LS-SVM classifier. For 
the practical use of the ANFIS in EMG classification, 
the feature reduction must precede the classification. 
Some algorithms of feature reduction can be referred 
to (Grzymala-Busse, 2003; Wang G. et al., 2006; 
Wang X.Y. et al., 2006). 

As mentioned above, we tested three different 
combinations of classifier and feature vectors: the 
multi-class LS-SVM classifier with the feature set 
extracted by EMD-AR, the NN classifier and the 
ANFIS-based fuzzy classifier with the same feature 
set. 

Furthermore, the experiment shows that, adopt-
ing the AR coefficients derived directly from the 
EMG signals as features, the NN classifier has worse 
performance than the above-mentioned combinations. 
This case shows that the performance of NN classifier 
is not so good as the SVM classifier, and that the 
feature vectors extracted directly by AR model are 
more difficult to separate than those extracted by AR 
model after performing the EMD. 

Here the cluster separation index (CSI) (Kang et 
al., 1995) is used as the criterion to measure the 
separability. Lower values of CSI imply a higher 
degree of cluster separability. 

In the experiment, while we adopted the EMD- 
AR to form the feature set, the CSI was 1.074, with 
this result being comparable and competitive with the 
feature set obtained by the WPT algorithm in 
(Englehart et al., 2001). This comparison shows that 
the combination of EMD and AR can also be used to 
extract subtle time-frequency joint information as 

Table 3  The NN classifier’s generalization ability in
the case of getting global minimum in training phase
(averaged among the 30 subjects) 

Correct rate Training  
vs test Fist 

clench 
Fist 

stretch 
Wrist 

flexion 
Wrist 

extension
20 vs 20 0.913 0.947 0.956 0.927 
20 vs 40 0.867 0.923 0.843 0.873 
20 vs 60 0.843 0.887 0.813 0.847 

Fig.5  Performance of the NN classifier while training
vs test is 20 vs 20 (Subject #10) 
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well as the WPT. But if we extracted the features 
directly by the four-order AR model, the CSI was 
terribly 2.953. The experiments and the above result 
of changing γ of LS-SVM classifier prove consis-
tently good separability of the features extracted by 
EMD-AR. 

 
 

CONCLUSION AND FUTURE WORK 
 

In this work, we develop an efficient combina-
tion of classifier and features, which prove to be ap-
plicable for recognition of the EMG signals by the 
contrast experiments. As the experiments showed, the 
combination represented as the LS-SVMs based on 
the EMD-AR can achieve better performance than 
other combinations over the four motion patterns. The 
methods proposed in this paper can also be extended 
to process other type of medical signals. 

The method described here can help amputees 
fitted with prosthetic device train the artificial limbs. 
The experiment proves that the features extracted by 
EMD-AR have good subject-independence, and in-
trinsic good separability in contrast with the conven-
tionally known time-domain features. And as a clas-
sifier, the LS-SVMs demonstrate better generaliza-
tion ability and more rapid execution speed over the 
other two classifiers. 

In this study, to solve the k-class classification 
problem, we design k one-to-rest SVM classifiers and 
adopt the Max-Win strategy to decide the output label. 
If the class number is rather large, the Max-Win 
strategy is roughly rigid. In further study, we will 
adopt the more flexible decision mechanism, for 
example, the information fusion algorithm or fuzzy 
theory. 

Compared to the WPT tiling the various signals 
by the fixed base function, EMD is more adaptive and 
problem-relevant and therefore can get more subtle 
and specific information. Combined with the Hilbert 
Transform, EMD can describe elaborately the sig-
nificant instantaneous time-frequency information. 
This algorithm is more popular and very promising. 

It is clear that while adopting the multi-channel 
configuration, we can obtain more abundant infor-
mation originated from sEMG. Englehart et al.(2001) 
verified that the four-channel configuration can offer 
improved recognition accuracy over that of the 

two-channel configuration. But in the multi-channel 
sampling process, there exists the coupling phe-
nomenon between different channels. In further work, 
we will take the four-channel configuration and adopt 
the Independent Component Analysis (ICA) algo-
rithm (Hyvärinen, 1999) to improve the EMG classi-
fication accuracy. 

The whole classification program was written in 
Matlab and the training and testing phases of the 
mentioned classifiers were all executed in Matlab. For 
the online recognition, we can rewrite this algorithm 
in C or compile language. Now we are utilizing the 
specific DSP chip to develop the real-time bio-signal 
recognition. 
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