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Abstract:    In this paper modelling of the translational motion of transportation rail-guided cart with rope suspended payload is 
considered. The linearly moving cart, driven by a travel mechanism, is modelled as a discrete six degrees of freedom (DOF) 
dynamic system. The hoisting mechanism for lowering and lifting the payload is considered and is included in the dynamic model 
as one DOF system. Differential equations of motion of the cart elements are derived using Lagrangian dynamics and are solved 
for a set of real-life constant parameters of the cart. A two-sided interaction was observed between the swinging payload and the 
travel mechanism. Results for kinematical and force parameters of the system are obtained. A verification of the proposed model 
was conducted. 
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INTRODUCTION 

 
An important element of mass line production of 

reinforced concrete and steel part is transportation of 
half-finished product between different production 
facilities. There are known that many different 
structural variations of machines used for conducting 
this operation (Valev, 1988). One widely used solu-
tion, especially suitable in case of heavy elements, is а 
special-purpose transportation rail-guided cart with 
rectilinear motion and rope suspended payload. A 
general view of such transportation cart is shown in 
Fig.1. The operating principles of the transportation 
cart are as follows: load-handling device 1, which 
carries the payload 2, is suspended from the trans-
portation cart 4 by polyspast system 3. The cart moves 
on rails between two adjacent production facilities 
(PF) and is driven by a travel mechanism 6. The 
payload is transported vertically by drum type hoist-
ing mechanism 5. 

The experimental and theoretical research, as 

well as simple visual observations, showed that the 
rectilinear translational motion of the cart is accom-
panied by vibrational processes, such as payload 
swinging, cyclic increasing and decreasing of linear 
velocity of the cart, vibrations in the travel mecha-
nism elements, etc. These processes result from in-
teraction between the cart travel mechanism and 
swinging payload. There is deep concern for creating 
a mathematical model that can be used for investiga-
tion of such problems like: transient processes in 
driveline kinematics, kinematical and force parame-
ters of the travel mechanism, maximal dynamical 
loading of the elements, etc. Particular interest could 
be paid to the investigation of the influence of the 
swinging payload on the kinematical and force load-
ing of travel mechanism and conversely—influence 
of the travel mechanism parameters on the payload 
swinging. This two-sided interaction between travel 
mechanism and swinging payload affects positional 
accuracy of the payload, safety in operation, strength 
and fatigue of the machine elements, etc.  
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LITERATURE REVIEW AND OBJECTIVE OF 
THE STUDY 

 
To our best knowledge, the described problem has 

not received sufficient attention in the accessible lit-
erature. Very few studies consider mathematical mod-
elling of rectilinear motion of the cart and envisage the 
parameters of travel mechanism kinematics and its 
interaction with payload. Most published studies (Ab-
del-Rahman et al., 2003; Corriga et al., 1998; Eksarov 
and Grigorov, 1981; Al-mousa and Kachroo, 2003; 
Omar, 2003; Pauluk, 2001) present models suitable for 
control of movement of different kinds of cranes and 
crane carts and resultant payload swinging, but without 
considering detailed modeling of the travel mechanism 
kinematics. Some works (Petkov et al., 1980; Scheffler 
et al., 1977) consider simplified models of the travel 
mechanism and assumption of small angle of payload 
swinging, which models are suitable only for qualita-
tive estimation of the two-sided interaction between 
payload swinging and the travel mechanism. Other 
works (Jerman, 2006; Ju et al., 2006) are devoted to 
investigation of the influence of the swinging payload 
on the cranes steel structure behavior. 

The method of detailed modelling of the drive-
line is known (Pettersson, 1997; Rahnejat, 1998) and 
is used in the present work.  

For solving the problems listed above, the main 
objective of this paper is: to propose a mathematical 
model of rectilinear translational motion of the 
rail-guided cart with suspended payload, by which to 
investigate the two-sided interaction between the 
swinging payload and kinematical and force loading 

parameters of the travel mechanism. 
 
 

KINEMATICS OF THE TRAVEL MECHANISM 
 
The kinematics of the travel mechanism of the 

cart under consideration and some of its parameters 
are shown in Fig.2.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The electric motor 1 exerts a driving moment, 
which is transferred to the driving wheels 5 by a 
centrally mounted two stage gearbox 4 and a 
slow-speed shaft 6, consisting of two sections with 
length L2. The electric motor is connected with 
gearbox by an elastic coupling 3. Stopping of the cart 
is realized by jaw brake 2. 
 
 
MODELLING OF THE CART’S LINEAR MOTION  
 
Dynamical model of the cart 

The real cart is a complex mechanical system, 
consisting of several subsystems: travel mechanism, 
hoisting mechanism, different auxiliary mechanisms, 
etc. All subsystems mutually affect each other. The 
proposed discrete dynamic model of the cart (Fig.3) 
includes only systems and parts, which affect the 
translational motion of the cart and has six degrees of 
freedom (DOF). The bodies are connected by springs 
and dampers and perform rotational and translational 
motions under the applied forces and moments. The 
motion of the bodies is described by the generalized 
coordinates, shown in Fig.3. The vector of the gen-
eralized coordinates of the system has the following 
form: 
 

{q}={q1 q2 q3 q4 q5 q6}T.                     

Fig.1  General view of the transportation rail-guided 
cart with rope suspended payload 
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1: load-handling device; 2: payload; 3: polyspast system; 4;
transportation cart; 5: drum type hoisting mechanism; 6: travel
mechanism 

Fig.2  Kinematics of the travel mechanism 
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1: electric motor; 2: jaw brake; 3: elastic coupling; 4; centrally
mounted two stage gearbox; 5: driving wheels; 6: slow-speed
shaft; L1, L2: lengths of the shafts of the travel mechanism; I, II:
gear stages of the two stage gearbox; i1, i2: gear ratios of the
gearbox I and II stages respectively 
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Generalized coordinates q1, q2 and q3 are asso-
ciated with motion of the driveline components 
(Fig.2); q4 represents the linear motion of the cart; q5 
represents the rotation of the hoisting drum and q6 
represents payload swinging. 

The following notations are used: 
(1)  Mass and inertia parameters of the system: J1: 

sum of the reduced mass moments of inertia of the 
electric motor rotor and the coupling driving disk; J2: 
sum of reduced mass moments of inertia of the cou-
pling driven disk, driven and driving gearwheels of 
the first gear stage; J3: sum of reduced mass moments 
of inertia of the driving and driven gearwheels of the 
second gear stage. All mass moments of inertia are 
reduced to the driving slow-speed shaft 6 (Fig.2), 
mass moments of inertia of the gearbox shafts are 
added to corresponding discrete rotational masses; m1: 
sum of mass of the cart and reduced to mass moments 
of inertia of the driving wheels; m2: sum of mass of 
the payload and operating element; J4: sum of reduced 
to the driving drum mass moments of inertia of the 
hoisting mechanism elements;  

(2)  Geometrical parameters of the system: L: 
initial length of the suspending rope, measured from  
the common mass center of the payload and operating 
element; R: radius of the hoisting mechanism drum;   
r: radius of the driving wheel of the cart; 

(3)  Elastic and damping parameters of the sys-
tem: c1,b1: equivalent coefficients of angular stiffness 
and damping of elastic coupling and electric rotor 
motor; c2,b2: coefficients of angular stiffness and 
damping of shaft with length L1 (Fig.2); c3,b3: 
equivalent coefficients of angular stiffness and 
damping of slow-speed shaft (Fig.2); parameters 

c1,b1,c2,b2 are reduced to the slow speed shaft; b6: 
coefficient of angular damping of the swinging pay-
load; 

(4)  Force parameters: 1 1( ) :M q  reduced to the 
slow-speed shaft torque of the travel mechanism 
electric motor; 2 5( ) :M q torque of the hoisting 
mechanism electric motor, reduced to drum of the 
hoisting mechanism; W: resistance of the cart 
movement. 

Damping of the payload oscillations has a com-
plex nature and various origins (Ely, 1997). In the 
present work we consider that damping of the oscil-
lations is proportional to its speed by damping coef-
ficient b6. By reason of the insignificant influence of 
most of the parameters of the hoisting mechanism on 
the rectilinear motion of the cart and payload swing-
ing, it is represented by a single DOF mechanism. Its 
purpose in the model is to consider variation of rope 
length (and accompanying change of the amplitude 
and the frequency of payload oscillations) when the 
linear motion of the cart is combined with payload 
lifting or lowering. 

There are several assumptions accepted in the 
proposed dynamical model: payload and rope behave 
as a mathematical pendulum; the rope is mass-less 
and non extensible; there is no slipping between the 
driving wheels and rails (holonomic constraint); 
stiffness of the steel frame of the cart is much bigger 
than stiffness of the elastic joints; the relative oscil-
lations of the bodies are small; the damping forces are 
proportional to the velocity; gearwheels are consid-
ered as absolutely stiff, the shafts are elastic; air re-
sistance is neglected by reason of the low speeds of 
motion of the cart. 
 
Mathematical model of the cart 

The differential equations of motion of the me-
chanical system are derived using Lagrange’s equa-
tions of the second kind: 
 

d ,   1,...,6.
d i

i i i i

T T U Φ Q i
t q q q q
 ∂ ∂ ∂ ∂

− + + = = ∂ ∂ ∂ ∂ 
      (1) 

 
{ }q  and { }q  are denoted as the vectors of 

generalized accelerations and velocities respectively: 
 

T
1 2 3 4 5 6{ } {      } ,q q q q q q=q                  (2) 

Fig.3  Dynamic model of the linearly moving cart
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                   T
1 2 3 4 5 6{ } {      } .q q q q q q=q                   (3) 

 
The total kinetic energy of the system T in terms 

of generalized coordinates and velocities is 
 

2 2 2 2 2
1 1 2 2 3 3 4 5 1 4

2
2 6 5 6 5 6 4

2
2 6 5 6 5 6

1 1 1 1 1
2 2 2 2 2
1... [ ( )cos sin ]
2
1... [ ( )sin cos ] .
2

T J q J q J q J q m q

m q L Rq q q R q q

m q L Rq q q R q

= + + + + +

+ − − + +

+ − −

    (4) 

 
The total potential energy of the system U is 

 
2 2

1 1 2 2 2 3

2
3 3 4 2 5 6

1 1( ) ( ) ...
2 2
1 ( / ) ( )cos .
2

U c q q c q q

c q q r m g L Rq q

= − + − +

+ − − −
       (5) 

 
The total dissipation energy of the system Φ is 

 

2 2
1 1 2 2 2 3

2
3 3 4 6 6

1 1( ) ( )
2 2

1      ... ( / ) .
2

b q q b q q

b q q r b q

Φ = − + − +

+ − +
            (6) 

 
The generalized forces Qi corresponding to the 

generalized coordinates Eq.(1) are derived by means 
of virtual work method.  

The obtained six second order nonlinear differ-
ential equations are complex and for convenience are 
represented in matrix form 
 

[ ]{ } [ ]{ } [ ]{ } { } { }.+ + + =A q B q C q N Q          (7) 
 

The following notations apply in Eq.(7): 
[A]6×6: mass-inertia matrix of the system with 

variable coefficients, which have the following form: 
 

1 3 3 3 3
6 6

3 3 2 3 3

[ ] [ ]
[ ] ,

[ ] [ ]
× ×

×
× ×

 
=  
 

A
А

A
0

0
                 (8) 

 
where [A1]3×3=diag(J1, J2, J3); [A2]3×3=aij, i=1,…,3, 
j=1,...,3; a11=m1+m2; a21=a12=−m2Rsinq6; a22=J4+ 
m2R2; a31=a13=m2(L–Rq5)cosq6; a32=a23=0; a33= 
m2(L–Rq5)2. 
 

[0]3×3: zero matrix; [C]6×6: matrix of elasticity, 
which has the following notation: 
 

 [C]6×6=cij6×6,   i=1,…,6; j=1,…,6,                (9) 
 
where c11=c1; c21=c12=−c1; c22=c1+c2; c32=c23=−c2; 
c33=c2+c3; c43=c34=−c3/r; c44=c3/r2.  

[B]6×6: matrix of damping, which has the fol-
lowing notation: 
 

 [B]6×6=bij6×6, i=1,...,6; j=1,...,6,              (10) 
 
where: b11=b1; b21=b12=−b1; b22=b1+b2; b32=b23=−b2; 
b33=b2+b3; b43=b34=−b3/r; b44=c3/r2; b66=b6. 

{N}6×1: vector consisting of Coriolis and cen-
trifugal terms 
 

{N}6×1={ni}6×1,    i=1,...,6,                   (11) 
where 

2
4 2 6 5 6 2 6 5 6

2
5 2 6 5

6 2 6 5 5

( )sin 2 cos ,

( ),
2 ( ).

n m q L Rq q m Rq q q

n m q R L Rq
n m q q R L Rq

= − −

= −

= − −

 

 
All elements in Eqs.(8)~(11) with indexes dif-

ferent from those pointed above are equal to zero. 
The vector of generalized forces {Q} has the 

following form:  
(1)  For starting period of the cart, combined 

with lifting or lowering of the payload: 
 

{Q}={Q1 Q2 Q3 Q4 Q5 Q6}T,                      (12) 
 
where 1 1 1( );Q M q=  Q2=Q3=0; Q4=−W; 5 2 5( )Q M q=  

2 6cos ;m gR q−  Q6=m2g(L–Rq5)sinq6. 
(2) For stopping period of the cart, combined 

with lifting or lowering of the payload, vector {Q} 
has the same form, except that Q1=−M1st, where M1st 
is denoted reduced to low-speed shaft stopping mo-
ment of the brake. 

The system of differential Eq.(7) is suitable for 
investigation of the mechanical system parameters in 
case of large payload swinging. If the angle of pay-
load swinging is small, system Eq.(7) can be simpli-
fied. In this case we can suppose that sinqi≈qi, cosqi≈1 
and vector {N}, consisting of higher order terms, can 
be dropped. 
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NUMERICAL EXAMPLE AND DISCUSSIONS 
 

The proposed system of differential equations is 
nonlinear and suitable as its solving is a numerical 
method. Solution is realized by fourth-order Runge- 
Kutta fixed-step method and all initial conditions are 
set to zero. There is considered a case of starting of 
the cart with lifting of the payload. Calculations are 
performed for a set of constant parameters of the 
real-life cart and linear laws of motion of the travel 
and hoisting mechanism are considered. 

As results of realized solutions, there are ob-
tained changes in time of the force and kinematical 
parameters of the mechanical system and they are 
shown in Figs.4~6.  

It is obvious that the force loading in the elastic 
coupling at the starting period of the cart is considera-
bly larger than its static value—about 2.5 times (Fig.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This fact is a result of the elasticity of the travel 
mechanism parts, which introduces high frequency 
vibrations, and payload swinging, which introduces 
additional low-frequency force component in the 
travel mechanism. This fact must be considered in 
design, life duration and reliability calculations. The 
swinging payload (Fig.5) has noticeable influence on 
the linear velocity of the cart, which increases and 
decreases cyclically dependent on the frequency of 
the payload swinging. The amplitude and frequency 
of the payload swinging (Fig.6) depend on the current 
rope length and law of motion of the rotor of the 
electric motor and they have damped character. 
 
 
VERIFICATION OF THE PROPOSED MATHE-
MATICAL MODEL 
 

The verification of the derived mathematical 
model is realized by a comparison of obtained results 
for parameters with those obtained by solving the 
well-known classical linearised 2 DOF model (Fig.7). 
Differential equations of motion of the bodies of 2 
DOF model are (Eksarov and Grigorov, 1981): 
 

1 2 2( ) ,
,

m m x m L F W
x L g

ϕ
ϕ ϕ
+ + = −

+ = −
                     (13) 

 
where F denotes the driving force.  

Direct comparison of the results is incorrect be-
cause of the different structures of the models—in the 
2 DOF model, kinematics of the travel mechanism are 
not considered and the rope has constant length. As 
both models have constant parameters and obey the 
laws of motion of the electric motor rotor, the 
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Fig.8  Results from verification of the proposed
model—linear velocity of the cart 
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Fig.9  Results from verification of the proposed
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behavior of both models is similar. This is achieved 
by setting in the proposed model negligible values of 
the mass moments of inertia of rotational components 
of the travel and hoisting mechanisms. The results of 
comparison of the models are shown in Figs.8 and 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Apparently, results of the 6 DOF model with 
small values of mass moments of inertia of the travel 
mechanism components agreed well with the results 
obtained from the classical model. Increasing of the 
mass moments of inertia of the travel mechanism 
components has noticeable influence on the parame-
ters of motion of the cart and swinging payload. 
 
 
CONCLUSION 
 

The study proposed and verified the mathe-
matical model of rectilinear translational motion of 
the rail-guided cart with suspended payload by which 
we can investigate the two-sided interaction between 
the swinging payload and the travel mechanism. 

Theoretical and numerical investigations yielded 
the following conclusions: 

(1) The proposed 6 DOF model of the transla-
tional motion of the cart is suitable for investigation 
of the two-sided interaction of the swinging payload 
 

and kinematical, force and other parameters of the 
travel mechanism;  

(2) The proposed mathematical model can be 
used for analysis, synthesis and optimization of ma-
chines with similar kinematics and structure. 

(3) Parameters of the travel mechanism no-
ticeably affect the motion of the cart and swinging 
payload, which also introduces additional low-fre- 
quency force component in the travel mechanism and 
affects the cart motion. 
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