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Abstract:  In this paper, we shall prove that the Marcinkiewicz integral operator uo, when its kernel Q satisfies the L'-Dini
condition, is bounded on the Triebel-Lizorkin spaces. It is well known that the Triebel-Lizorkin spaces are generalizations of many
familiar spaces such as the Lebesgue spaces and the Sobolev spaces. Therefore, our result extends many known theorems on the
Marcinkiewicz integral operator. Our method is to regard the Marcinkiewicz integral operator as a vector valued singular integral.

We also use another characterization of the Triebel-Lizorkin space which makes our approach more clear.

Key words: Marcinkiewicz integral, Triebel-Lizorkin spaces, Fourier transforms

doi:10.1631/jzus.2007.A2037

INTRODUCTION

The Marcinkiewicz integral operator is defined
by

o =([Ef Ca) )

where

E()=|

yl<t | y

L0 (= yydy, QeLs™,

|n71

The boundedness of up on L spaces has been
widely investigated. Assuming QeLip(S""), Stein
(1958) proved the boundedness of o on L, 1<p<2.
Using the BCP method, Benedek et al.(1962) ex-
tended this result to 1<p<+o when Q2eC'(S"™"). Re-
cently this result was further extended to the case that
QeH'(S"") (Ding et al., 2000; Xu et al., 2003). In
this paper, we shall prove the boundedness of u on
the Triebel-Lizorkin spaces F,"? with 0<a<1 and 1<p,
g<oo under the condition that (2 is of L'-Dini type.
Note that x(, is nonlinear. For linear operators such as
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the singular integrals, the boundedness on the Trie-
bel-Lizorkin spaces has been thoroughly investigated
and the results can be found in (Chen et al., 2002;
2003; 2005; Chen and Zhang, 2004).

Let us first recall the definition of the Trie-
bel-Lizorkin space F,"?. Let @ € C(R") such that

supp(@) c {£:1/2< &2 and @D(&)>1
3/5<|£<5/3. Setting S‘A’k (&) =d(2"¢), keZ, wesayf

is in the non-homogenous Triebel-Lizorkin space
F,*, 0>0 and 1<p, g<co if

when

|7

1/q
T DIERTRVIN N EEE)
* ,

)i

Noting that F po‘z =[”, we can say that our theorem

extends some of the results mentioned above.
A function defined on "' is said to be L'-Dini if

J.OlwlT(t)dt<+oo, 3)

where

o, (f) = sup L Q(px") - 2(x"do(x")

ol



2038 Zhang et al. / J Zhejiang Univ Sci A 2007 8(12):2037-2040

and p is a rotation on $"' with
loll=sup{| e~ pu: e S}

It is well known that if (Xx") satisfies the L'-Dini
condition, then it always belongs to LIn'L (Calderén
et al., 1967). Thus we know that ueis bounded on L”.
To obtain the further boundedness on F,"?, we shall
adopt the method developed by Korry (2004) who
mainly dealt with the Sobolev spaces H,”" and showed
that, under a vector valued form of Hormander’s
condition, certain nonlinear operators are bounded on
H,". In Section 2 of this paper, we shall give some
extra explanations to this method so that it works for
F,™?. Then in Section 3 we turn to the Marcinkiewicz
integral operator u and show that its kernel verifies
the vector valued Hormander’s condition. Thus we
draw the conclusion that s, is bounded on F,?.

A CLASS OF BOUNDED OPERATORS ON £,

We first recall a fundamental result of BCP. Let
F be a Banach space and K(x) be a strongly
measurable, locally integrable function from R"\{0}
to F. An operator U is called a BCP operator if

(1) There is a poe(l,+o) such that for any

Jel™(RY),

[ " dx. @)

i“dxscjwv

(2) For every continuous function with compact
support supp()cR”, U(f) coincides with K*f{x)
outside supp(f)cR” and there exists a constant M>0
such that

|K(x=y)=K()||, dr <M, Vy=0. (5)
ki>2b

Under these assumptions, U can be extended to a

bounded operator from L7(R") to LP(R",F) for every
poe(1,+0) (Benedek et al., 1962).
Theorem 1 Let Ube a BCP operator and 7= U(f)||F.
If T commutes with translations, say 7,7=17, for any
yeR", then it is bounded on F,“? when 1<p, g<oo and
0<o<lI.

The proof follows essentially the method shown
in (Korry, 2004), so we shall only sketch it briefly and
point out some differences.

L. Let B be the unit ball in R", f(x,,x,,x;) bean

F-valued function on E=R"x(0,4+0)xB and

D =(p> P> p3), 1<pi<too. We say feL’_’(E,F) if

1

2\p

P2 \p,
PEF) J.]R” [jo (J.B"f(xl’x2’x3)”f dx})p3 ]p

< 00, (6)

|7

Defining Uf (x,,x,,%,) =U(f, . )(x,), since U
is a BCP operator, we can extend U to a bounded
operator from L7 (E,R) to f el”(E,F) [Lemma 2,
(Korry, 2004)].

II. Setting

1/q

., (1)

Sf(x+th)— f(x)
ta

s(Nw=| [ (JB ,th %

we claim that the L” norm of S,(f)(x) and S;(f)(x) are
equivalent whenever 1<r<min(p, ¢). The proof of the
claim is a bit complicated but still follows the way of
Lemma 1 in (Korry, 2004). So we omit it here. The
essence of this claim is making 7 a bit larger than 1 so
that we can use the conclusion of I where p; must be
strictly greater than 1.

Now we are ready to prove Theorem 1. Recall

that £ has another equivalent norm

o [faem - s,V ar)
”+U°UB| - |dh t (8)

I’

|7

when 1<p, g<too and 0<a<l (Triebel, 1983). Note
that 7 has already been shown to be a bounded
operator on L”. By II, it remains to show

S, (1)

L <C

SN, > )

with p=(r,q,p) and 1<r<min(p, q). Given feF,™,
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and setting

S(x+th) — f(x)

g(x,t,h)= g R (10)
we have
Tf (x+th) = Tf (x) _ T(z,/)(x) = Tf (x)
2V e an
S
It follows that
IS, (TN,
N masm-wer )
=1 ( IB| s | dh | dt
<[ (1 Joecerm] o) o]
= |Og(x.t.h) . (12)

Now we are in a position to apply conclusion I and get
that the above term is no larger than a constant times

)

S, ()(x)

e v (13)

Remark 1 The g-function operator defined by

&, ()00 = ( [[14=sr %j (14)

verifies the assumption of Theorem 1 with
F=L*((0, +o), d#/f) and U(f)=¢,* f{x) whenever ¢ is a
standard L-P function. The Hardy-Littlewood maxi-
mal function can also be modified to satisfy the hy-
pothesis of our theorem [Corollary I, (Korry, 2004)].
So they are all bounded operators on F,”?, when
1<p, g<oo and 0<a<1.

APPLICATION TO MARCINKIEWICZ INTE-
GRALS

Setting @(x)=ys(x)Q(x)/lx|""", we can regard uo
as a g-function operator with this kernel. Since ¢is no
longer an L-P function, we cannot use Remark 1

2039

directly. Instead we shall prove that U: fi>¢,*f'is a

BCP operator. Thus by Theorem 1, the boundedness
of upon F,"? follows:

Theorem 2  Suppose (Xx) satisfies J 2(x"Ydo =0
and the L'-Dini condition. Then u is bounded on
F,*? for 1<p, g<++o0 and 0<a<1.

Proof By Theorem 1, we only need to prove that,
there exists some constant M such that

- -gf L] a<m a5
w2yl | Jo ¢

for any y#0. In fact one has already known the
equivalence between the L'-Dini condition and the
normal scalar valued Homander’s condition when
dealing with the singular integrals. Now write

I(x,y)= “:Ivf, (=) - )| dtj

r
P 1/2
=(J'wt3 dt]
0

., (u)M o (zj )
x|
_ {j:ﬁ Zg(x—yvz(x—y)_ B(x—y\ ow [,

t Jlx-yl t
¢ )x—yl ¢ )lx—yl
P 1/2
x) Qx
ZB(_j% dr
t)|x=yl

5 \2
dZJ

Let us consider the three terms separately. Firstly,

23, (X))
J{Lt ZB( t jlx—yl"'1

cal(x) 2w (x)ew
{J‘)t ZB(tju—yr* "B(rjw*

:]l(x,y)+]2(x,y)+13(an’)-

(16)

Q(x Q)| (> _ 12
Loy =2 () (J.Ot3|;53(x/t)|2dt)
lx=yI" x|
_|_ew 00 (g
lx=—yl™ " [
12| 1 1|
= P n—-1|" (17)
V2 L=y a1
So when |x>2)y, L(x,y) is bounded by

G0/, Thus
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[ L2 (||

|n+1

[, L)< C ()]

[x[>2[y]

© ! ’ r
=cs<n>|y|j2‘,‘js,,,]|0<x)|do<x)r—z (18)
=)y, LM =G|,

Secondly, we rewrite >(x, y) as
-Q ) 1/2
x o _ x—
LWL r%(—y]—m(x/r) dr| . (19)
lx—=y [ 7 t
Assuming [x|>[x—y|, we have
( ) I 1/2
]2(x,y)—|| n|1(J.,( }‘t dt)
xX—y
1/2
- |!2(x)|nl( L 12j Qo)
V2 x=y Ux=yF x|
while if |x|<|x—y|, the case is
1/2

| 2(0)] ( ! ! j

2 V2 x—ytUxf Jx-pf
Anyway, we obtain
5/2
Q(x 1 1
]2(')67)})S | ( )|)771| 2 2
V2 lx—ytfixP o lx-yF]
1/2
< Cym ] 202 22)

| |n+]/2

By the same argument with that of /3(x, ), we reach

| IRACSOI A Te/Fy (23)

Finally we turn to ;(x,y), and the L'-Dini condition
will be used here.

1(x,y)

[y 2w |l [x—yjzdt
lx=y ™ x—y[ 0 [7PU o

|ec-n_ e | )"

sy )

_026-)-0x) o)

N2 [x=yf

By simple calculus, when |x[>2|y|, we have

((x=p) =x[<4]y|/|x]. (25)

And consequently

I‘M},‘L (x, y)dx

<o  laen-aol,
Ix/>21y/ |x|"

=comf, (J..le

<o aelyin®
a)(s)

(03 =) - 20 do ) &

———ds < +o0.

=C,(n )j (26)

Remark 2 Recently, we have managed to extend
Theorem 2 to the case that QeH'(S"') by
incorporating a rotation method and the atomic
decomposition of H'(S" ™).
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