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Abstract:    Quantitative trait loci (QTL) and their additive, dominance and epistatic effects play a critical role in complex trait 
variation. It is often infeasible to detect multiple interacting QTL due to main effects often being confounded by interaction effects. 
Positioning interacting QTL within a small region is even more difficult. We present a variance component approach nested in an 
empirical Bayesian method, which simultaneously takes into account additive, dominance and epistatic effects due to multiple 
interacting QTL. The covariance structure used in the variance component approach is based on combined linkage disequilibrium 
and linkage (LDL) information. In a simulation study where there are complex epistatic interactions between QTL, it is possible to 
simultaneously fine map interacting QTL using the proposed approach. The present method combined with LDL information can 
efficiently detect QTL and their dominance and epistatic effects, making it possible to simultaneously fine map main and epistatic 
QTL. 
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INTRODUCTION 
 

In general, there are multiple quantitative trait 
loci (QTL), and their intra- (dominance) and in-
ter-locus interaction (epistasis) underlying pheno-
types of a complex trait. If such gene interactions are 
ignored in a QTL analysis, estimated QTL positions 
and effects will not be accurate and precise. For con-
sidering complicate epistatic interactions in QTL 
analysis, variance component approaches based on 
linkage information have been widely used in natural 
and outbred populations (Mitchell et al., 1997; 
Blangero et al., 2000; 2001; Purcell and Sham, 2004). 
However, the use of linkage information alone may 
limit the power to detect dominance and epistasis, and 
mapping resolution based on linkage information is 
not high.  

Linkage disequilibrium (LD) in addition to 
linkage information (Meuwissen and Goddard, 2001) 
can give useful extra information about additive, 
dominance and epistatic effects for small genomic 
regions. Moreover, a variance component approach 
nested in an empirical Bayesian method makes it 
possible to simultaneously map multiple QTL as 
shown in Lee and van der Werf (2006). Therefore, 
simultaneous fine mapping of multiple epistatic QTL 
within a small region would be possible.  

The aim of this study is to investigate how much 
the mapping resolution improves when considering 
QTL interactions in fine mapping of a complex trait. 
The posterior QTL density is estimated using an 
empirical Bayesian approach based on combined 
linkage disequilibrium and linkage (LDL) informa-
tion (Lee and van der Werf, 2006) with three dif-
ferent statistical models (additive model, additive 
and dominance model, and additive, dominance and 
epistasis model). 
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MATERIALS AND METHODS 
 
Mixed linear model 

A vector of observed phenotypes for the indi-
viduals in a pedigree is a linear function of fixed ef-
fects, polygenic effects, additive and dominance ef-
fects due to n QTL, epistatic interaction among the 
QTL, and residuals errors. The model can be written 
as (Cockerham, 1954): 
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where y is a vector of phenotypic observations on the 
trait, β is a vector of fixed effects, u is a vector of 
random polygenic effects for each animal, ai and di 
are vectors of additive and non-additive random ef-
fects due to the ith putative QTL, aiaj, aidj, diaj and 
didj are vectors of epistatic interactions between the 
ith and jth putative QTL, and e is a vector of random 
residual errors. The random effects in the model (u, ai, 
di, aiaj, aidj, diaj, didj and e) are normally distributed 
with mean zero and variance 2 ,σ uA  2 ,
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2 ,
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i ji jσ d aD G  2 ,

i ji jσ d dD D  and 
2 ,σ eI  where 2σ  represents the variance of the com-

ponent, A is a relationship matrix based on pedigree 
information, Gi and Di are additive genetic and 
dominance relationship matrice at the ith putative 
QTL position, GiGj, GiDj, DiGj, and DiDj are the 
Hadamard product of the additive genetic and domi-
nance relationship matrices at the ith and jth putative 
QTL positions, and I is an identity matrix. X and Z are 
incidence matrices for the fixed and random effects in 
the model. The associated variance covariance matrix 
(V) of all observations from the modeled is: 
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where Z′ is the transpose of Z. 

The matrices G and D are constructed based on 
identical by descent (IBD) probabilities that are es-
timated using LDL information (Meuwissen and 
Goddard, 2000; 2001). For IBD estimation, a Markov 
chain Monte Carlo (MCMC) method is used, which is 
robust and efficient especially for complex pedigree, 
many markers and missing genotypes (Lee et al., 
2005). These G and D based on the IBD probabilities 
are incorporated into the QTL model selection in an 
empirical Bayesian approach (Casella, 2001; Lee and 
van der Werf, 2006).  

 
Reversible jump Markov chain Monte Carlo 
(MCMC) for multiple QTL  

The number of QTL n, the position of each QTL 
ρi (i=1,...,n) and the model parameters 2{ ,Θ σ= u  
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unknown. Therefore, they should be estimated using 
Eq.(3). The probability of estimated parameters given 
observed phenotypes is: 
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where pr(y|n, ρ, Θ) is the likelihood of the observed 
phenotypes given the estimated parameters, pr(n, ρ, Θ) 
is the joint prior probability of the estimated pa-
rameters and the denominator is summed over the 
probabilities of all possible parameter states. Since 
the computation of the denominator is not feasible 
due to a large parameter state space, an MCMC ap-
proach can be used for solving this problem (Lee and 
van der Werf, 2006). In the process, the number of 
QTL and their positions are sampled from a proposal 
distribution. In a second step, residual maximum 
likelihood (REML) is used to estimate the model 
parameters for a given QTL model. The proposed 
model, variables and model parameters are accepted 
or rejected, according to the acceptance ratio from a 
reversible jump (RJ) MCMC from which the poste-
rior QTL density is derived. Hence, a REML proce-
dure is used nested within a Bayesian RJMCMC.  

When considering epistatic interaction among 
QTL, the number of random effects increases, e.g., 
the number of random effects due to n QTL is n for 
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the additive model, 2n for the additive and dominance 
model and 2n+4n(n−1)/2 for the full model. However, 
not all epistatic components have significant effects 
in the model. It may not be necessary to include 
non-significant epistatic effects that do not improve 
the model likelihood. For a given set of QTL within a 
RJMCMC step, each epistatic component is tested 
and if the likelihood is not improved, the epistatic 
component will be removed from the model.  
 
Simulated data 

One hundred generations of a historical popula-
tion with effective size of 100 were simulated for 26 
markers and 2 QTL in a 130 cM region. For the region 
from 10 to 20 cM and 110 to 120 cM as candidate 
regions, markers were densely positioned at 1 cM 
intervals. The potential QTL were simulated at 17.5 
cM (QTL I) and 117.5 cM (QTL II). Unique alleles 
were assigned to QTL in generation 0, and one allele 
with moderate frequency (0.1~0.9) was randomly 
chosen to be the mutation in generation 100. In each 
generation, the number of male and female parents 
was 50 and their alleles were transmitted to descen-
dents on the basis of Mendelian segregation using the 
gene-dropping method (MacCluer et al., 1986; 
Meuwissen and Goddard, 2000).  

The number of alleles assumed at each marker 
locus was 4 in generation 0 and starting allele fre-
quencies were all at 0.25. The marker allele was mu-
tated at a rate of 4×10−4 per generation (Dallas, 1992; 
Weber and Wong, 1993; Ellegren, 1995), i.e. a new 
allele was introduced as a mutation. Therefore, this 
historical population would have an equilibrium dis-
tribution of alleles in all marker loci and would gen-
erate LD among closely linked regions. Note that 
pedigree and genotype information was deemed not 
available for these 100 generations. In generation 100 
and afterwards, phenotypic values for individuals 
were simulated as: 

 
y=µ+aQTL I+aQTL II+dQTL I+dQTL II+iQTL I×QTL II+e, 

 
where a is additive QTL effects, d is dominance QTL 
effects, i is the effects due to interaction between QTL 
I and QTL II. The population mean (µ) was 100, 
values for residuals (e) were from N(0, 2σ e ) with 

2σ e =50. Two data sets were simulated. For the first 
data, the ratio of additive QTL variance over total 

phenotypic variance was 0 for the first QTL and 0.11 
for the second QTL, the ratio of dominance QTL 
variance was 0 for both QTL, and the ratio of epistatic 
QTL variance was 0.2. For the second data, the ratio 
of additive QTL variance over total phenotypic vari-
ance was 0.15 for the first QTL and 0.06 for the 
second QTL, the ratio of dominance QTL variance 
was 0.08 for the first QTL and 0.1 for the second QTL, 
and the ratio of epistatic QTL variance was 0.09. 

For QTL mapping results, the posterior QTL 
density was estimated in RJMCMC LDL mapping 
with additive effects only (additive model), additive 
and dominance effects only (additive and dominance 
model), or additive, dominance and epistasis effects 
(full model). In all cases, marker genotypes and 
phenotypes were available for the last 2 generations 
(200 animals) used for analyses. 
 
 
RESULTS AND DISCUSSION 
 

When there are complex interactions between 
QTL, the full model fitting additive, dominance and 
epistatic effects gives a higher mapping resolution 
than other reduced models. Fig.1 shows that reduced 
models fitting additive effects only or additive and 
dominance effects only without epistatic effects could 
not catch the signal of the first QTL (Figs.1a and 1b). 
This is probably due to the fact that the additive and 
dominance effects of the first QTL are negligible. 
However, the full model clearly maps the first and 
second QTL on the true position within a small region 
(Fig.1c).  

Fig.2 shows that the model fitting additive ef-
fects only could not detect the second QTL because 
the second QTL has small additive effects (Fig.2a). 
However, when the model includes dominance, the 
second QTL can be detected (Fig.2b). When the 
model includes epistasis in addition to dominance and 
additive effects, the mapping resolution becomes 
higher (Fig.2c). 

From the results, when there are complex inter-
actions between QTL, the model considering additive, 
dominance and epistatic effects can properly capture 
the signals of the multiple QTL. The empirical 
Bayesian approach with LDL information (used in 
this study) can help to simultaneously map multiple 
interacting QTL within a small region. Therefore, the 
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present approach would be an efficient tool to study 
complex traits. 
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Fig.1  The posterior QTL density with additive model
(a), additive and dominance model (b) and full model
including additive, dominance and epistasis (c) when
using the first data set 
Triangle shows the true QTL positions. The ratio of addi-
tive variance over phenotypic variance is ~0 and ~0.11 for 
the first and second QTL respectively. The ratio of domi-
nance variance over phenotypic variance is close to 0 for
all QTL. The ratio of epistatic variance over phenotypic 
variance is 0.2 

(a) 

(b) 

(c) 

0.8

0.6

0.4

0.2

0

Genomic region 

0        20        40       60       80      100     120     140

0.8

0.6

0.4

0.2

0

0.8

0.6

0.4

0.2

0

Q
TL

 d
en

si
ty

 

Fig.2 The posterior QTL density with additive model
(a), additive and dominance model (b) and full model
including additive, dominance and epistasis (c) when
using the second data set 
Triangle shows the true QTL positions. The ratio of addi-
tive variance over phenotypic variance is ~0.15 and ~0.06 
for the first and second QTL respectively. The ratio of 
dominance variance over phenotypic variance is ~0.08 and 
~0.1 for the first and second QTL respectively. The ratio of 
epistatic variance over phenotypic variance is 0.09 
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