Journal of Zhejiang University SCIENCE A ISSN 1673-565X (Print); ISSN 1862-1775 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: jzus@zju.edu.cn

Hydrothermal synthesis and characterization of two novel inorganic-organic hybrid materials

Zeng-he LI¹, Hai-dan BAI^{†2}

(¹College of Science, Beijing University of Chemical Technology, Beijing 100029, China) (²China National Chemical Information Center, Beijing 100029, China) [†]E-mail: w-bhd@mail.cncic.gov.cn Received Apr. 4, 2007; revision accepted Oct. 18, 2007; published online Nov. 21, 2007

Abstract: By using different organic ligands, two 3D inorganic-organic hybrid compounds $Co(C_4H_4N_2)(VO_3)_2$ **1** and $Co(C_{12}H_{12}N_2)(VO_3)_2$ **2** were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: **1**. crystal system orthorhombic, space group *Pnna*, *a*=10.188(2) Å, *b*=11.497(2) Å, *c*=7.3975(15) Å, *V*=866.5(3) Å³, *Z*=4, *D*_{calcd}= 2.705 g/cm³; **2**. crystal system triclinic, space group P_1^- (No. 2), *a*=8.3190(17) Å, *b*=8.4764(17) Å, *c*=11.183(2) Å, *α*=95.48(3)°, β =92.03(3)°, γ =107.24(3)°, *V*=748.0(3) Å³, *Z*=2, *D*_{calcd}=1.958 g/cm³. The framework of compound **1** contains both {Co(C₄H₄N₂)} and infinite metavanadate chains. Crystal structure of compound **2** is constructed with inorganic {CoV₂O₆} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 °C and 350 °C, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.

Key words:Inorganic-organic hybrid materials, Hydrothermal synthesis, Crystal structure, Oxovanadiumdoi:10.1631/jzus.A071180Document code: ACLC number: 069

INTRODUCTION

In recent years, there are tremendous activities in the area of inorganic-organic hybrid materials because of their diversified structures and interesting properties (Hagrman et al., 1999), which endow these materials with applications to sorption, catalysis, electrical conductivity and solar energy conversion (Bruce and O'Hare, 1992; Mallouk and Lee, 1990). The inorganic-organic hybrid materials are constructed with extended inorganic covalent frameworks being linked by organic multidentate ligands through coordination bonds. Many compounds based on cobalt vanadate have been reported, such as $[{Co(3,3'-bipy)_2}_2V_4O_{12}]$ (3,3'-bipy=3,3'-bipyridine) (LaDuca et al., 2000), $[Co(dpa)_2V_4O_{12}]$ (dpa=4,4'-dipyridylamine) (LaDuca et al., 2001), Co(bipy)(H₂O)V₂O₆ (bipy=bipyridine) (Liu et al., 2002), $[Co(phen)_3][V_{10}O_{26}]H_2O$ (phen= 1,10-phenanthroline) (Lu et al., 2004), Co(bpy)(H₂O)V₂O₆ (bpy=bipyridine) (Li *et al.*, 2006) $[{Co_2(4,4'-tmdp)_4}V_4O_{12}]$ (4,4'-tmdp=4,4'and trimethylenedipyridine) (Khan et al., 2006).

In these materials, what influencing the structure are the coordination preferences of the "secondary" metal site, the ligand geometry and spatial extension. We are interested in the synthesis of metal-organic coordination polymers stabilized by metavanadate chains to useful inorganic-organic materials with high thermal stability.

Here we report the synthesis structures and characterization of two 3D inorganic-organic hybrid compounds: $Co(C_4H_4N_2)(VO_3)_2$ 1 and $Co(C_{12}H_{12}N_2)(VO_3)_2$ 2. Moreover, we investigated the use of different organic bridging ligands in the cobalt vanadate system. The thermal stability and optical properties are also reported.

EXPERIMENTS

General considerations

All reagents and solvents used in the synthesis were of reagent grade without further purification. Reactions were carried out in polytetrafluoroethylene-line stainless steel containers under autogenous pressure.

Synthesis

1. Synthesis of $Co(C_4H_4N_2)(VO_3)_2$

A mixture of CoCl₂·6H₂O (0.0476 g, 0.2 mol), pyrazine (0.032 mg, 0.4 mmol), NH₄VO₃ (0.0468 g, 0.4 mmol) and H₂O (13 ml) in a mole ratio of 1:2:2:3600 was heated in a 25 ml Parr bomb for 3 d at 140 °C. After heating, the reaction vessel was allowed to cool down to room temperature. The dark red block crystals for X-ray diffraction were isolated. Anal. Calcd (%) for Co(C₄H₄N₂)(VO₃)₂ is C 14.26, H 1.20, N 8.32; found C 13.78, H 1.18, N 8.40. Instrument type: Elementar Vario EL III (Germany).

2. Synthesis of $Co(C_{12}H_{12}N_2)(VO_3)_2$

A mixture of CoCl₂·6H₂O (0.0476 g, 0.2 mol), 1,2-bis (4-pyridyl) ethane (0.0737 g, 0.4 mmol), NH₄VO₃ (0.0468 g, 0.4 mmol) and H₂O (13 ml) in a mole ratio of 1:2:2:3600 was heated in a 25 ml Parr bomb for 3 d at 150 °C. After heating, the reaction vessel was allowed to cool down to room temperature. The dark red block crystals for X-ray diffraction were isolated. Anal. Calcd (%) for Co(C₁₂H₁₂N₂)(VO₃)₂ is C 29.06, H 1.94, N 6.78; found C 28.50, H 2.30, N 6.61. Instrument type: Elementar Vario EL III (Germany).

X-ray crystallography

The single crystals of compound 1 (0.24)mm×0.15 mm×0.12 mm) and compound 2 (0.10 mm×0.10 mm×0.10 mm) were selected for X-ray diffraction measurement. Intensity data were collected using a Rigaku R-AXIS PARID image plate diffractometer equipped with graphite-monochromated Mo K_{α} radiation (λ =0.071073 nm) at 295 K. The raw data were corrected for LP factors and empirical absorption. The structure was solved by direct method. Hydrogen atoms were placed in the calculated positions on the relevant atoms. All non-H atoms were refined anisotropically with full-matrix least-squares on F^2 . Computations were performed using the SHELX-97 program package (Sheldrik, 1997). Crystal drawings were generated with the SCHAKAL92 (Keller, 1992).

Details of the crystal data of compounds 1 and 2 and intensity collection are summarized in Table 1. Atomic positional parameters are given in Tables $2\sim3$. Selected bond lengths and angles are listed in Tables 4~5.

Thermal analysis

Thermal analyses have been performed in air for

Table 1	Crystallographic data for compounds 1 and 2

	Crystallographic data				
Parameters –	Compound 1	Compound 2			
Molocular formula	$C_{0}(C \parallel N)(VO)$	$C_{0}(C \parallel N)(VO)$			
Molecular Iolillula	226.00	$CO(C_{12}\Pi_{12}N_2)(VO_3)_2$			
Createl accenter	0 ath anh amh i a	441.05 Trialinia			
Crystal system	Orthornombic	$\frac{1}{1} = \frac{1}{1} = \frac{1}{2}$			
Space group	Pnna	P_1 (No. 2)			
Unit cell parameters					
<i>a</i> (A)	10.188(2)	8.3190(17)			
b(A)	11.497(2)	8.4764(17)			
<i>c</i> (Å)	7.3975(15)	11.183(2)			
α (°)	90	95.48(3)			
$\beta(^{\circ})$	90	92.03(3)			
$\gamma(^{\circ})$	90	107.24(3)			
$V(Å^3)$	866.5(3)	748.0(3)			
Z	4	2			
$D_{\text{calcd}} (\text{g/cm}^3)$	2.705	1.958			
$\mu (\mathrm{mm}^{-1})$	4.028	2.350			
<i>F</i> (000)	684	438			
Data collection	<i>−</i> 13≤ <i>h</i> ≤13,	0< <i>h</i> <10,			
range	-14≤ <i>k</i> ≤14, -9≤ <i>l</i> ≤9	-11< <i>k</i> <10, -14< <i>l</i> <14			
Collected θ range	3.27°~27.48°	3.25°~27.5°			
Reflections colle- cted/unique	3871/981	3330/3330			
Independent reflections $[l \ge 2\sigma(l)]$	782	2141			
Goodness-of-fit on F^2	1.033	1.062			
R1, wR2 [$I > 2\sigma(I)$]	0.0425, 0.1188	0.0438, 0.0966			
All data	0.0519, 0.1227	0.0795, 0.1217			
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e/\AA})$	0.728, -0.617	0.879, -0.930			

 D_{calcd} is calculated density

Table 2 Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (×10³ Å²) for compounds 1 and 2

Atoms	x	У	Z	$U_{(eq)}$
Со	4270(1)	2500	2500	20(1)
V	7249(1)	1463(1)	981(1)	21(1)
O(1)	5676(3)	1704(3)	891(4)	26(1)
O(2)	7500	0	1712(7)	33(1)
O(3)	7920(5)	2500	2500	28(1)
O(4)	7865(4)	1685(3)	-1027(4)	31(1)
Ν	4560(4)	3990(4)	846(5)	26(1)
C(1)	4382(5)	5044(5)	1557(7)	32(1)
C(2)	5187(6)	3967(4)	-729(6)	30(1)

 $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor

Table 3 Atomic coordinates and equivalent isotropic displacement parameters (Å²) for compound 2

Atoms	x	У	Z	$U_{(eq)}$	Atoms	x	У	Z	$U_{(eq)}$
Co(1)	1.18605(9)	0.84624(9)	0.05845(6)	0.0170(19)	C(2)	1.3338(7)	0.6747(7)	-0.2840(5)	0.0313(14)
V(1)	0.73853(10)	0.75570(11)	0.02070(8)	0.0189(2)	C(3)	1.2069(7)	0.5378(7)	-0.3275(5)	0.0246(12)
V(2)	0.42093(10)	0.59254(11)	0.17680(7)	0.0170(2)	C(4)	1.0684(7)	0.4956(7)	-0.2614(5)	0.0306(14)
O(1)	0.9398(4)	0.7794(5)	0.0434(3)	0.0292(9)	C(5)	1.0652(7)	0.5888(6)	-0.1548(5)	0.0235(12)
O(2)	0.6359(4)	0.6768(5)	0.1466(3)	0.0292(9)	C(6)	1.0839(7)	1.0636(7)	0.2462(5)	0.0301(14)
O(3)	1.2906(5)	1.0625(4)	0.0009(3)	0.0293(9)	C(7)	1.0780(8)	1.1584(8)	0.3507(5)	0.0364(16)
O(4)	0.3429(5)	0.3828(5)	0.1089(3)	0.0305(9)	C(8)	1.1783(7)	1.1538(7)	0.4498(5)	0.0259(13)
O(5)	0.4091(5)	0.5966(5)	0.3192(3)	0.0335(10)	C(9)	1.2804(8)	1.0540(8)	0.4370(5)	0.0364(16)
O(6)	1.3109(5)	0.7077(5)	0.1238(3)	0.0318(10)	C(10)	1.2801(7)	0.9636(8)	0.3294(5)	0.0321(15)
N(1)	1.1897(5)	0.7225(5)	-0.1141(4)	0.0207(10)	C(11)	1.1736(8)	1.2534(7)	0.5661(5)	0.0347(15)
N(2)	1.1836(5)	0.9697(5)	0.2326(4)	0.0216(10)	C(12)	1.2163(8)	0.4363(8)	-0.4431(5)	0.0405(17)
C(1)	1.3218(7)	0.7646(7)	-0.1786(5)	0.0333(15)					

Table 4 Selected bond lengths (Å) and bond angles (°) for compound 1

Compound 1	Value	Compound 1	Value	Compound 1	Value	Compound 1	Value
$Co-O(4)^{\#1}$	2.029(3)	O(4)-Co ^{#5}	2.029(3)	O(4) ^{#2} -Co-N	91.99(15)	O(1)-V-O(2)	108.30(13)
$Co-O(4)^{#2}$	2.029(3)	N-C(2)	1.329(6)	O(4) ^{#2} -Co-N	91.99(15)	O(4)-V-O(2)	111.58(19)
$Co-O(1)^{#3}$	2.075(3)	N-C(1)	1.334(7)	O(1) ^{#3} -Co-N	83.03(15)	O(3)-V-O(2)	112.70(15)
Co-O(1)	2.075(3)	$C(1)-C(2)^{\#6}$	1.364(7)	O(1)-Co-N	85.96(15)	V-O(1)-Co	137.0(2)
Co-N	2.126(4)	$C(2)-C(1)^{\#6}$	1.364(7)	$O(4)^{\#1}$ -Co-N ^{#3}	91.99(15)	V ^{#4} -O(2)-V	144.7(3)
Co-N ^{#3}	2.126(4)	$O(4)^{\#1}$ -Co- $O(4)^{\#2}$	90.2(2)	$O(4)^{#2}$ -Co-N ^{#3}	99.28(15)	V-O(3)-V ^{#3}	134.7(3)
V-O(1)	1.627(4)	$O(4)^{\#1}$ -Co- $O(1)^{\#3}$	177.44(13)	$O(1)^{#3}$ -Co-N ^{#3}	85.96(15)	V-O(4)-Co ^{#5}	146.3(2)
V-O(4)	1.633(3)	$O(4)^{#2}$ -Co- $O(1)^{#3}$	88.58(14)	O(1)-Co-N ^{#3}	83.03(15)	C(2)-N-C(1)	115.4(4)
V-O(3)	1.776(2)	$O(4)^{\#1}$ -Co-O(1)	88.58(14)	N-Co-N ^{#3}	164.0(2)	C(2)-N-Co	123.7(3)
V-O(2)	1.7848(18)	$O(4)^{\#2}$ -Co-O(1)	177.44(13)	O(1)-V-O(4)	108.33(18)	C(1)-N-Co	119.1(3)
O(2)-V ^{#4}	1.7848(18)	$O(1)^{\#3}$ -Co-O(1)	92.70(19)	O(1)-V-O(3)	106.9(2)	$N-C(1)-C(2)^{\#6}$	122.4(5)
O(3)-V ^{#3}	1.776(2)	$O(4)^{\#1}$ -Co-N	99.28(15)	O(4)-V-O(3)	108.82(15)	$N-C(2)-C(1)^{\#6}$	122.1(5)

Symmetry transformations used to generate equivalent atoms: $^{\#1}(x-1/2, y, -z)$; $^{\#2}(x-1/2, -y+1/2, z+1/2)$, $^{\#3}(x, -y+1/2, -z+1/2)$, $^{\#4}(-x+3/2, -y, z)$; $^{\#5}(x+1/2, y, -z)$; $^{\#6}(-x+1, -y+1, -z)$

Table 5 Selected bond lengths (Å) and bond angles (°) for compound 2

Compound 2	Value	Compound 2	Value	Compound 2	Value	Compound 2	Value
Co(1)-O(1)	1.953(3)	C(2)-C(3)	1.352(7)	$O(1)-V(1)-O(3)^{\#1}$	109.8(2)	C(5)-N(1)-Co(1)	120.2(3)
Co (1)-O(6)	1.956(4)	C(3)-C(4)	1.367(8)	$O(1)-V(1)-O(4)^{\#2}$	109.74(18)	C(6)-N(2)-C(10)	117.0(4)
Co(1)-O(3)	1.962(4)	C(3)-C(12)	1.501(7)	$O(3)^{\#1}-V(1)-O(4)^{\#2}$	107.97(18)	C(6)-N(2)-Co(1)	117.8(3)
Co(1)-N(1)	2.112(4)	C(4)-C(5)	1.372(7)	O(1)-V(1)-O(2)	108.50(19)	C(10)-N(2)-Co(1)	125.1(3)
Co(1)-N(2)	2.124(4)	C(6)-C(7)	1.364(7)	$O(3)^{\#1}-V(1)-O(2)$	110.79(18)	N(1)-C(1)-C(2)	122.4(5)
V(1)-O(1)	1.634(4)	C(7)-C(8)	1.374(8)	$O(4)^{\#2}-V(1)-O(2)$	110.02(19)	C(3)-C(2)-C(1)	120.6(5)
$V(1)-O(3)^{\#1}$	1.668(4)	C(8)-C(9)	1.367(7)	$O(5)-V(2)-O(6)^{\#3}$	109.40(19)	C(2)-C(3)-C(4)	116.9(5)
$V(1)-O(4)^{#2}$	1.753(4)	C(8)-C(11)	1.490(7)	O(5)-V(2)-O(2)	108.42(19)	C(2)-C(3)-C(12)	121.9(5)
V(1)-O(2)	1.757(4)	C(9)-C(10)	1.363(7)	$O(6)^{#3}-V(2)-O(2)$	109.15(19)	C(4)-C(3)-C(12)	121.2(5)
V(2)-O(5)	1.596(4)	C(11)-C (12) ^{#5}	1.499(8)	O(5)-V(2)-O(4)	109.4(2)	C(3)-C(4)-C(5)	119.8(5)
$V(2)-O(6)^{\#3}$	1.656(4)	C(12)-C (11) ^{#6}	1.499(8)	$O(6)^{#3}-V(2)-O(4)$	110.90(18)	N(1)-C(5)-C(4)	122.4(5)
V(2)-O(2)	1.776(4)	O(1)-Co(1)-O(6)	122.35(17)	O(2)-V(2)-O(4)	109.56(18)	N(2)-C(6)-C(7)	124.0(5)
V(2)-O(4)	1.784(4)	O(1)-Co(1)-O(3)	113.03(17)	V(1)-O(1)-Co(1)	169.6(3)	C(6)-C(7)-C(8)	119.0(5)
$O(3)-V(1)^{\#1}$	1.668(4)	O(6)-Co(1)-O(3)	124.61(17)	N(2)-C(10)-C(9)	122.3(5)	C(9)-C(8)-C(7)	117.3(5)
$O(4)-V(1)^{\#2}$	1.753(4)	O(1)-Co(1)-N(1)	90.51(15)	$C(8)-C(11)-C(12)^{\#5}$	113.5(5)	C(9)-C(8)-C(11)	121.9(5)
$O(6)-V(2)^{\#4}$	1.656(4)	O(6)-Co(1)-N(1)	88.43(16)	V(1)-O(2)-V(2)	133.9(2)	C(7)-C(8)-C(11)	120.7(5)
N(1)-C(1)	1.315(7)	O(3)-Co(1)-N(1)	90.92(16)	$V(1)^{\#1}$ -O(3)-Co(1)	143.9(2)	C(10)-C(9)-C(8)	120.3(5)
N(1)-C(5)	1.318(6)	O(1)-Co(1)-N(2)	89.77(16)	$V(1)^{#2}-O(4)-V(2)$	148.3(3)	$C(11)^{\#6}$ -C(12)-C(3)	114.1(5)
N(2)-C(6)	1.312(6)	O(6)-Co(1)-N(2)	91.12(16)	V(2) ^{#4} -O(6)-Co(1)	178.4(3)		
N(2)-C(10)	1.339(7)	O(3)-Co(1)-N(2)	89.31(16)	C(1)-N(1)-C(5)	117.8(4)		
C(1)-C(2)	1.365(7)	N(1)-Co(1)-N(2)	179.55(16)	C(1)-N(1)-Co(1)	121.7(3)		

Symmetry transformations used to generate equivalent atoms: $^{\#1}(2-x, 2-y, -z)$, $^{\#2}(1-x, 1-y, -z)$, $^{\#3}(-1+x, y, z)$, $^{\#4}(1+x, y, z)$; $^{\#5}(x, 1+y, 1+z)$; $^{\#6}(x, -1+y, -1+z)$

compounds **1** and **2** on a Rigaku TG analyzer. The powder samples of 3.00 mg and 4.64 mg were loaded into an alumina pan and heated in air with a ramp rate of 10 °C/min from room temperature to 600 °C. α -Al₂O₃ was selected as the reference.

UV-VIS-NIR diffuse reflectance spectrum

Reflectance spectrum of the crystal was taken on a UV-3100 recording spectrophotometer from 250 nm to 2500 nm. BaSO₄ was selected as the reference (reflectivity was ordered 100%), and specimen was prepared by the reported method (Rabenau, 1985; Lu *et al.*, 1999).

RESULTS AND DISCUSSION

Crystal structures

The structure of $Co(C_4H_4N_2)(VO_3)_2$ 1 is built up from corner-sharing metavanadate chains running along the *b*-axis and $\{Co(C_4H_4N_2)\}_n$ chains (Fig.1). There are two types of $\{Co(C_4H_4N_2)\}_n$ chains in the lattice, oriented in the (011) and (01-1) directions, respectively. The flexible $\{VO_3\}_n$ chains link the $\{Co(C_4H_4N_2)\}_n$ chains to form a 3D framework structures. As shown in Fig.2, each Co²⁺ is coordinated in an octahedron, and the two nitrogen atoms from two equivalent pyrazine ligands occupy the axial positions of each cobalt octahedron [Co-N 2.126(4) Å]. The nitrogen atoms which come from the same ligand are connected to the different Co. The four equatorial sites are occupied by four oxygen atoms from three $\{VO_3\}_n$ chains [Co-O 2.075(3) Å, 2.029(3) Å]. In the inorganic layer (Fig.3), vanadium is tetrahedrally coordinated by four oxygen atoms with the V-O bond length 1.627(4) Å, 1.633(3) Å, 1.776(2) Å, 1.7874(18) Å and the O-V-O angles 106.9(2)°, 108.82(15)°, 108.30(13)°, 111.58(19)°, 112.70(15)°. The two tetrahedron are connected to form a $[V_2O_7]^-$ by sharing corner O(3) atom. The $[V_2O_7]^-$ is connected to other two $[V_2O_7]^-$ by sharing O(2) atoms. Thus it forms an infinite cluster along b-axis.

The structure of $Co(C_{12}H_{12}N_2)(VO_3)_2$ 2 is built up with inorganic bimetallic oxide $[CoV_2O_6]$ layers and organic 1,2-bis(4-pyridyl) ethane ligands bridging the layers. As shown in Fig.4, each Co^{2+} is coordinated in a trigonal bipyramid, where the equatorial plane comprises three oxygen atoms, O(1), O(4) and

Fig.1 View of the structure of compound 1 along the *c*-axis. Hydrogen atoms are omitted

Fig.2 An ORTEP diagram with 50% probability displacement ellipsoids showing the atoms in the asymmetric unit of compound 1

Fig.3 Structure of an inorganic layer in (010) plane of compound 1

O(5) respectively from three different tetraoxovanadates to form the [CoV₂O₆] layers parallel to the (001) plane and the apical positions are occupied by two pyridyl nitrogen atoms N(1) and N(2), respectively from two different 1,2-bis(4-pyridyl) ethane ligands to bridge the [CoV₂O₆] layers along the *c*-axis direction through coordination bonds. In the 3D covalent framework, O(6) atoms of V(2) coordination tetrahedra are still terminal atoms, and which are located in bigger channels in the *a*-axis direction. In the inorganic layer (Fig.5), two crystallo-graphically distinct vanadium atoms, V(1) and V(2), are both tetrahedrally coordinated by oxygen atoms. [V(1)O(1) O(2)O(3)O(4)] and [V(2)O(2)O(3)O(5)O(6)] tetrahedrons are alternately connected to form a tetraoxovanadate cluster [V₄O₁₂]⁴⁻ by sharing corner O(2) and O(3) atoms. The [V₄O₁₂]⁴⁻ contains a centrosymmetric eight-membered ring [-V(1)-O(2)-V(2)-O(3)-V(1)-O(2)-V(2)-O(3)-]. The crystal structure determination revealed a 3D inorganic-organic covalent framework for Co(C₁₂H₁₂N₂)(VO₃)₂ **2**, as shown in Fig.6.

Fig.4 An ORTEP diagram with 50% probability displacement ellipsoids showing the atoms in the asymmetric unit of compound 2

Fig.5 Structure of the inorganic layer $[CoV_2O_6]$ of compound 2

In compound 1, the infinite metavanadate chain can be crystallized. When 1,2-bis (4-pyridyl) ethane ligand replaces pyrazine, the V_4O_{12} tetramers are formed. It is clear that the bridging ligand influences different vanadium oxide polymeric units.

Fig.6 A packing view of compound 2 along the *a*-axis, including the crystallographic

Thermal stability

The two TG curves (Fig.7) both show a one-step, sharp decomposition process, with the maximum rate at 410 °C and 350 °C, respectively. The weight losses for 1 (from 410 to 490 °C) and 2 (from 350 to 440 °C) are about 25% and 44%, due to the broken Co-N coordination bonds in the crystal and the removed organic ligands (calcd.: 23.7% for 1 and 41.8% for 2). It is shown that the two compounds are thermally stable up to 410 °C and 350 °C, respectively.

Fig.7 TG curves for compounds 1 (curve a) and 2 (curve b)

Optical properties

The measurement of diffuse reflectivity can be used to obtain the value of band gap which agrees quite well with the value obtained by absorption measurement from single crystal of the same compound (McCarthy *et al.*, 1993). Absorption data were calculated from the reflectance data using the Kubelka-Munk (K-M) function, $F=(1-R_{\infty})^2/(2R_{\infty})$, where R_{∞} is the reflectance of an infinitely thick layer at a given wavelength (Kotum, 1969). The band gap (E_g) was determined as the intersection point between the energy axis and the line extrapolated from the linear portion of the absorption edge in a F vs E plot (Pankove, 1971). The F vs E plots of the two compounds exhibit steep absorption edge from which the E_g can be assessed at 2.13 eV and at 2.12 eV (Fig.8). The reflectance spectrum measurement revealed the nature of semiconductor and strong selective absorption to the solar radiation for these two compounds.

Fig.8 *F-E* curves for compounds 1 (curve a) and 2 (curve b)

CONCLUSION

In summary, two novel cobalt vanadate compounds $Co(C_4H_4N_2)(VO_3)_2 \mathbf{1}$ and $Co(C_{12}H_{12}N_2)(VO_3)_2 \mathbf{2}$ have been synthesized by employing pyrazine and 1,2-bis(4-pyridyl) ethane bridging ligands by hydrothermal methods. Compound $\mathbf{1}$ contains metavanadate chains, and compound $\mathbf{2}$ includes cyclic V_4O_{12} tetramers. The two compounds are thermally stable up to 410 °C and 350 °C, respectively. It can be concluded that the thermal stabilities of coordination polymers are increased by the combination of vanadate oxide. Studies on optical properties for the powder sample suggest that both compounds are semiconductors with a band gap of 2.13 eV and 2.12 eV, and have strong selective absorption to the solar radiation.

References

- Bruce, D.W., O'Hare, D., 1992. Inorganic Materials. John Wiley and Sons, New York, USA, p.295.
- Hagrman, P.J., Hagrman, D., Zubieta, J., 1999. Organic-inorganic hybrid materials: from "simple" coordination polymers to organodiamine-templated molybdenum oxides. *Angew. Chem. Int. Ed. Engl.*, **38**(18):2638-2684. [doi:10.1002/(SICI)1521-3773(19990917)38:18<2638::AID-ANIE2638>3.3.CO;2-W]
- Keller, E., 1992. SCHAKAL92: A Computer Program for Graphical Representation of Molecular and Crystallographic Models. University of Freiburg, Germany.
- Khan, M.I., Deb, S., Doedens, R.J., 2006. A new inorganic-organic hybrid material containing a neutral

three-dimensional open framework: synthesis and characterization of $[{Co_2(4,4'-tmdp)_4}V_4O_{12}]$ (4,4'-tmdp=4,4'-trimethylenedipyridine). *Inorg. Chem. Commun.*, **9**(1):25-28. [doi:10.1016/j.inoche.2005.09.033]

- Kotum, G., 1969. Reflectance Spectroscopy. Springer-Verlag, New York, USA.
- LaDuca, R.L.Jr., Brodkin, C., Finn, R.C., Zubieta, J., 2000. A three-dimensional organic-inorganic composite material constructed from cobalt-3,3'-bipyridyl networks linked through tetravanadate clusters: [{Co(3,3'-bpy)₂}₂V₄O₁₂]. *Inorg. Chem. Commun.*, **3**(5):248-250. [doi:10.1016/ S1387-7003(00)00066-6]
- LaDuca, R.L.Jr., Rarig, R.S.Jr., Zubieta, J., 2001. Hydrothermal synthesis of organic-inorganic hybrid materials: network structures of the bimetallic oxides [M(Hdpa)₂V₄O₁₂] (M=Co, Ni; dpa=4,4'-dipyridylamine). *Inorg. Chem.*, 40(4):607-612. [doi:10.1021/ic000224i]
- Li, J., Liu, Y. H., Ma, P.T., Wang, J.P., 2006. Hydrothermal synthesis and crystal structure of a two-dimensional (2D) layered vanadium oxide: Co(bpy)(H₂O)V₂O₆. *Journal of Henan University (Natural Science)*, **36**:33-36 (in Chinese).
- Liu, C.M., Gao, S., Hu, H.M., 2002. Hydrothermal syntheses and crystal structures of two-dimensional (2D) layered vanadium oxide complexes: M(bipy)(H₂O)V₂O₆ (M=Ni, Co; bipy=bipyridine) and [Ni(bipy)₂V₆O₁₇]. J. Chem. Soc., **3**:598-601.
- Lu, J.Y., Lawandy, L., Li, J., Yuen, L.T., Lin, C.L., 1999. A new type of two-dimensional metal coordination systems: Hydrothermal synthesis, crystal structure and magnetic properties of a new one-dimensional polymer [{Cu(4,4'bipy)(CH₃COO)₂}·3H₂O]_n. *Inorg. Chem.*, **38**(11):2695-2704. [doi:10.1021/ic990243w]
- Lu, Y., Wang, E.B., Chen, J.T., 2004. Hydrothermal synthesis and crystal structure of a layered vanadium oxide with an interlayer metal coordination complex: [Co(phen)₃][V₁₀O₂₆]H₂O. J. Solid State Chem., 177(3):946-950. [doi:10.1016/j.jssc.2003.09.034]
- Mallouk, T.E., Lee, H., 1990. Designer solids and surfaces (SYMP). J. Chem. Educ., 67(10):829-833.
- McCarthy, T.J., Ngeyi, S.P., Liao, J.H., DeGroot, D.C., Hogan, T., Kannewurf, C.R., Kanatzidis, M.G., 1993. Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS₂, γ-CsBiS₂, and K₂Bi₈Se₁₃. *Chem. Mater.*, 5(3):331-340. [doi:10.1021/ cm00027a016]
- Pankove, J.I., 1971. Optical Processes in Semiconductors. Prentics-Hall, Inc., Englewood Cliffs, New Jersey, USA.
- Rabenau, A., 1985. The role of hydrothermal synthesis in preparative chemistry. *Angew. Chem. Int. Ed. Engl.*, 24(12):1026-1040. [doi:10.1002/anie.198510261]
- Sheldrik, G.M., 1997. SHELX-97: Program for Structure Refinement. University of Gottingen, Germany.