
Zhou et al. / J Zhejiang Univ Sci A 2008 9(4):524-530 524

Efficient SIMD optimization for media processors

Jian-peng ZHOU, Ce SHI†‡

(Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China)
†E-mail: shice@isee.zju.edu.cn

Received Apr. 18, 2007; revision accepted Nov. 27, 2007

Abstract: Single instruction multiple data (SIMD) instructions are often implemented in modern media processors. Although
SIMD instructions are useful in multimedia applications, most compilers do not have good support for SIMD instructions. This
paper focuses on SIMD instructions generation for media processors. We present an efficient code optimization approach that is
integrated into a retargetable C compiler. SIMD instructions are generated by finding and combining the same operations in
programs. Experimental results for the UltraSPARC VIS instruction set show that a speedup factor up to 2.639 is obtained.

Key words: Retargetable compiler, Single instruction multiple data (SIMD) instruction, LCC
doi:10.1631/jzus.A071203 Document code: A CLC number: TP314

INTRODUCTION

Nowadays more and more attention is paid to
multimedia application domain. The trend of using
multimedia will increase in the future. In the multi-
media application, there are many programs involved
executing the same operation on different elements of
a large data set (e.g., an array). In the traditional
computing model, a single instruction can only deal
with a single data element, which is not very efficient
for the intensive computation of multimedia applica-
tions. The single instruction multiple data (SIMD)
model allows the same arithmetic or logical operation
to be performed on multiple data elements using one
instruction and large registers (called SIMD registers).
For example, a 64-bit SIMD register can be logically
split into four sub-registers to store four 16-bit data
elements and identical computations are performed
on these data elements simultaneously. It can lead to a
more efficient program obviously. Moreover, it also
can obtain better register utilization by packing mul-
tiple data elements into a single large SIMD register.
In order to improve the performance of multimedia
process, SIMD model is widely used on generic-

purpose processors (e.g., Sun VIS, Intel MMX/SSE/
SSE2 and Motorola AltiVec) and DSP processors
(such as TI C6x and Philips Trimedia). These proc-
essors with SIMD instructions are known as media
processors which are designed for handling audio,
video, image and communication tasks.

In general, many multimedia applications are
written in assembly code by hand. Although this ap-
proach can take full advantage of the processor’s
SIMD capability, it will lead to poor readability of
code, portability problem and high cost of software
development. With increasingly fierce competition in
the market, this approach no longer meets the re-
quirement of the short development cycle. A better
solution is to compile the programs written in
high-level programming language into SIMD in-
structions. It can overcome the shortcomings of using
assembly code while still taking full advantage of the
processor’s SIMD capability. However, the traditional
code generation techniques are not well suited for
SIMD instructions generation (Aho et al., 1987). As a
result, most current compilers cannot directly exploit
SIMD instructions.

This paper presents an approach of SIMD in-
structions generation for media processor from ANSI
C programs, without use of compiler-known built-in

Journal of Zhejiang University SCIENCE A
ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author

Zhou et al. / J Zhejiang Univ Sci A 2008 9(4):524-530 525

functions. And we discuss the challenges and con-
siderations involved in implementing the approach on
the LCC compiler (Fraser and Hanson, 1995) for
SPARC processor with VIS instruction set.

The rest of this paper is organized as follows.
Some related work is discussed in Section 2. Section 3
describes the structure of the LCC compiler. Detailed
description of our approach of SIMD instructions
generation is provided in Section 4. The testing plat-
form and experimental results are presented in Sec-
tion 5, and Section 6 concludes the paper.

RELATED WORK

Most compilers have limited ability to exploit
SIMD instructions. Many of them provide semi-
automatic SIMD instructions support through com-
piler-known built-in functions, which are special
functions embedded in high-level programming lan-
guages. They will be mapped to SIMD instructions by
compilers. Programmers can write programs in high
level programming language and these programs can
utilize SIMD instructions as efficiently as those
written in assembly language. However, portability of
such programs is poor since different target proces-
sors offer different sets of compiler-known built-in
functions.

It is possible to develop a high level SIMD
language which defines a set of common SIMD op-
erations and provide a portable programming model
for the SIMD instructions of a variety of media
processors. Some SIMD languages such as SWARC
(SIMD within a register) (Fisher and Dietz, 1998) and
MMC (Multimedia C) (Bulic and Gustin, 2003) have
been developed. The disadvantage of this approach is
that it introduces a new programming language, re-
quiring the applications to be rewritten to achieve
portable usage of SIMD capabilities of the target
processors.

Automatic generation of SIMD instructions has
been tried out in both academia and industry. Most of
the techniques considered in these studies are based
on traditional loop-based vectorization (Allen and
Kennedy, 1987). Vectorization has been used to gen-
erate vector instructions for vector supercomputers.
Because of the similarity between vector instructions
and SIMD instructions (Ren et al., 2003), it is natural

applying vectorization to generate SIMD instructions.
The strategy of this approach is to find loops which
can be vectorized. If vectorization is possible, com-
piler-known functions are inserted into the source
program through language extensions by the compiler
(Krall and Lelait, 2000; Sreraman and Govindarajan,
2000; Naishlos, 2004). In (Bik et al., 2002) loops are
vectorized to generate SIMD instructions by using
traditional compiler optimizations and loop trans-
formations. These transformations can increase the
opportunities for exploiting implicit parallelism in a
program.

On the other hand, there are some approaches
(Larsen and Amarasinghe, 2000; Krall and Lelait,
2000; Leupers, 2000; Hohenauer et al., 2006; Pryan-
ishnikov et al., 2007) targeting basic blocks rather
than loops. In (Leupers, 2000) a SIMD instructions
generation approach based on the combination of
traditional instruction selection and ILP (integer lin-
ear programming) is presented. Highly optimized
assembly codes with SIMD instructions are obtained
in this approach. However, it takes too much time to
solve ILP problems and the time required to solve ILP
problems may be unacceptable. Larsen and Amaras-
inghe (2000) proposed an algorithm for SIMD in-
struction generation. The approach is performed
within a basic block by detecting the structurally
equivalent statements whose semantics allow them to
be executed in parallel. Such statements are packed
together into small groups and the groups are merged
until they reach the size of SIMD instructions.

Our approach presented in this paper is a basic
block approach since it is simple and effective com-
pared with the loop vectorization approach. Fur-
thermore, our SIMD generation algorithm is machine
independent. It is implemented as a special optimiza-
tion on the compiler. The algorithm combines several
structurally equivalent intermediate representation
(IR) operations into a single IR operation with the
corresponding SIMD operators. IR is accepted by the
back end of the compiler and SIMD instructions are
generated by the code generator.

LCC OVERVIEW

LCC is a widely used compiler for ANSI C
(Fraser and Hanson, 1995). It is a retargetable com-

Zhou et al. / J Zhejiang Univ Sci A 2008 9(4):524-530 526

piler and has been ported to the SPARC, MIPS, X86
and other target processors. Similar to most other
compilers, LCC as described in Fig.1 can generally be
divided into two parts: front end and back end. The
front end which is target-independent performs lexi-
cal, syntactic, and semantic analysis, IR generation
and some target-independent optimizations. During
the IR generation stage, LCC generates trees and the
task of the back end is mapping the trees into tar-
get-dependent assembly code. The back end is further
divided into a target-independent part and a target-
dependent part which is generated from machine
description (MD) file by using the lburg, a code-
generator generator (Fraser et al., 1992). Each target
processor that LCC supports has its own MD file
which models the target processor instruction set
architecture (ISA). Since the usage of MD file in
compiler reduces the difficulty in retargeting, we can
quickly get compiler support for a new target proc-
essor by rewriting the MD file.

The instruction set of the target processor is
represented as a set of rules in MD file. Each rule
contains a tree pattern which consists of terminal and
non-terminal symbols, an assembly code template
and a cost part. Non-terminal symbols correspond to
statements, variables, registers, constants and so on.
Terminal symbols represent operations such as addi-
tion, multiplication, loading and storing. The code
template part of the rule contains the assembly code
which will be inserted into the target code when the
rule is used. And the cost part is used by instruction
selector to minimize the assembly code size.

The instruction selector is part of the back end
and in LCC it is generated automatically from a
specification defined in the MD file by lburg. In-
struction selection is performed at the tree level. For
each tree of the program, the instruction selector uses
tree pattern matching and dynamic programming to
compute an optimal tree cover with the lowest cost in
linear time.

COMPILER OPTIMIZATIONS FOR SIMD IN-
STRUCTIONS

In this section, our approach of SIMD instruc-
tions generation for LCC compiler is presented. As
described in the previous section, instruction selec-
tion is performed on only one IR tree at a time. But a
SIMD instruction generation frequently needs to find
operations from different trees. Hence LCC cannot be
used directly to generate SIMD instructions.

Our approach is performed on the trees almost
directly after the trees have been generated by the
compiler’s front end. A directed graph called “use
graph” whose nodes are data elements is constructed.
After the use graph construction, the memory opera-
tions of several structurally equivalent trees are
grouped together. Each operation accesses data of the
same size, and the total size of accessed data is equal
to the size of the SIMD register. The memory opera-
tions in a group are sorted by their effective addresses.
Once the memory operations are grouped, the arith-
metic and logical operations of the trees are grouped
together. Finally, all grouped operations of the trees
are combined into SIMD operations which will gen-
erate SIMD instructions in the code generation stage.

Compared to (Larsen and Amarasinghe, 2000)’s
approach, our approach is more powerful in terms of
utilizing the use graph to manipulate some informa-
tion of data elements and is also less expensive be-
cause analyses are performed on the use graph rather
than on the IR structures of the compiler. On the other
hand, Larsen and Amarasinghe (2000)’s approach
locates statements with adjacent memory references
and packs them into groups of two at a time. When
more such groups are discovered, all groups are then
merged into larger clusters with size consistent with
the number of operations that one SIMD instruction
can perform. Whereas ours locates statements with
adjacent memory references and directly packs them
into groups with the same size as that one SIMD in-
struction can perform. Another major difference is
that Larsen and Amarasinghe (2000)’s approach tar-
gets three-address representation while our approach
is for tree representation. Thus, the code generation
for SIMD instructions is quite different.

Loop unrolling

In our approach SIMD instructions generation is
focused on the basic block. SIMD instructions are

Fig.1 Framework of LCC

Machine
description

Lburg

C source
code

Front
end

Target
code

machine.c

Machine inde-
pendent part

Back end

Intermediate
representation

Zhou et al. / J Zhejiang Univ Sci A 2008 9(4):524-530 527

extremely useful for improving loop performance in
multimedia applications. To make the statements in
different loop iterations appear in one basic block,
loop unrolling technique is needed. Loop unrolling,
where loop body is duplicated with a given unrolling
factor, can result in large basic blocks and thereby in a
high potential for SIMD instructions generation.

The first step of loop unrolling is to compute the
unrolling factor. This is done by scanning all the
statements in the loop. The unrolling factor is set
depending on the data types in the loop body. For
example, if the array in the loop contains 16-bit ele-
ments and the size of SIMD register is 64 bits, the
unrolling factor is set to 4 (=64/16) and three other
copies of the loop body are needed.

Use graph

After the loop has been unrolled, the algorithm
performs some analyses such as adjacent memory
search and data dependence analysis which need
some information about the IR nodes, especially the
memory addresses. The IR in LCC, i.e. trees, is not
suited for these analyses since the information about
data arrays such as base address and offset is distrib-
uted in various tree nodes. To reduce the complexity
of algorithm implementation, a kind of directed
graphs defined in (Osman and Williams, 2003) called
use graph is constructed.

A node of the use graph represents a variable or
an operation in a statement. The variables which are
defined in statements are represented as root nodes in
the use graph, while the variables which are used in
statements are represented as leaf nodes in the use
graph. The operator nodes in the use graph represent
the arithmetic operations in statements. After the root
nodes, operator nodes and leaf nodes are constructed,
the edges are then added between relative nodes in the
use graph. Figs.2a and 2b show the LCC compiler’s
IR-tree and the use graph for the statement a[i]=
b+c[i], respectively. The tree needs many nodes to
represent one variable while the use graph needs only
one node, especially for the array variables such as a[i]
and c[i] in this example. The use graph is very useful
for adjacent memory search and data dependence
analysis performed in our approach.

There is data dependence between two nodes if
they have the same base address and offset or the
same variable. The nodes with data dependence are in

the same strongly connected component (SCC). Data
dependence analysis is to find the nodes with data
dependence and add them into the same SCC. Do this
until each node in the use graph appears in one of the
SCCs. The trees can be grouped together only if the
nodes in the corresponding use graph appear in dif-
ferent SCCs.

SIMD instructions combination

For the given trees generated by LCC compiler’s
front end, we perform an algorithm that combines
related tree nodes into a new tree node which will be
accepted by the instruction selector to generate SIMD
instructions. The innermost loops are unrolled a few
times which are determined by the unrolling factor
and all basic blocks including basic blocks of unrolled
loop are inspected. Since memory operations (loads
and stores) for SIMD instructions must access con-
secutive data, adjacent memory searches are per-
formed to find several nodes with memory operations
with adjacent memory addresses in the use graph.
When the number of selected nodes reaches the
number of operations which one SIMD instruction
can perform, the trees corresponding to the use graph
are grouped into SIMD sets.

Fig.2 Intermediate representation. (a) LCC’s original
IR-tree; (b) Use graph

(a)

(b)

Base address: a
Offset: i

a[i]

ADD

Var: b

Root node

Leaf nodes

Operator

Base address: c
Offset: i

c[i]

ASGNI4

ADDRLP4

ADD4

c

a[i]

a[i]=b+c[i]

INDIRI4

ADDP4

INDIRI4

ADDP4
a

i b
ADDRLP4

INDIRI4

ADDRLP4

ADDRLP4

INDIRI4

ADDRLP4 c[i]

i

Zhou et al. / J Zhejiang Univ Sci A 2008 9(4):524-530 528

A SIMD set is a set of trees whose nodes can
potentially be combined into one SIMD node. Once
the trees are grouped into a SIMD set, several analy-
ses are performed to check whether the candidates’
nodes in the SIMD set can be combined. They can be
combined into one SIMD node if

(1) Operations in each candidate’s nodes are
compatible with each other, i.e., they can be imple-
mented by one instruction in the target ISA;

(2) There is no data dependence between each
candidate (check whether the candidates are in dif-
ferent SCCs);

(3) The addresses of memory operations must be
consecutive.

After a successful combination of each SIMD set,
the trees grouped in SIMD sets are replaced by com-
bined trees with SIMD nodes. The name of LCC’s
tree node is constructed by a generic operator, a type
suffix and a size indicator. For example, given a ge-
neric operator “ADD”, a type suffix “I”, and a size
indicator “8”, an operator is specified as “ADDI8”,
which denotes 8-byte integer addition. This method is
suited for general operation but is incapable of rep-
resenting SIMD operation since a SIMD operation
contains several individual general operations.
Therefore it is necessary to make some modifications
on LCC’s tree node. Considering the compatibility
with the general operation, a tag is attached to the tree
node. If the value of the tag is zero, the operator is a
general operation; otherwise the operator is a SIMD
operation and the value of the tag denotes the number
of the sub-registers of SIMD register. For example,
for the target processor with 64-bit SIMD register, the
operator ADDM8 with tag=4 denotes this operation is
a SIMD operation and the individual operation is
16-bit addition, i.e., the operation is a SIMD addition
with four individual 16-bit additions operated in the
64-bit SIMD register.

The description of SIMD instructions is added in
the MD file. Instruction selector accepts trees with the
additional tag in the tree node. The right code will be
generated by the code generator according to the tag
value.

EXPERIMENTAL RESULTS

This section presents performance improve-
ments with the use of SIMD instructions on the Ul-

traSPARC architecture. The UltraSPARC is LOAD-
STORE architecture with VIS instruction set
(Tremblay et al., 1996). VIS instruction set is a set of
SIMD instructions which are extensions to the stan-
dard SPARC V9 instruction set. VIS instructions
partition 64-bit floating point registers to hold multi-
ple short integer variables and perform arithmetic and
logic computation on the sub-registers, as well as
conversion between the different formats such as
packing and unpacking instructions.

In our experiments, to show the effectiveness of
the proposed algorithms, the speedup factors are
evaluated with the use of SIMD instructions for some
kernel programs from the DSPStone benchmarks
(Zivojnovic et al., 1994). These programs, consisting
of vector addition, dot product, fir filtering, matrix
operations, n_real_updates and n_complex_updates,
show the effect of the proposed algorithm for Ul-
traSPARC processor. All of the programs are exe-
cuted on UltraSPARC-IIIi 1.5 GHz workstation with
Solaris 10 operating system. Execution time and
speedup for the test suites are shown in Table 1.
VIS-LCC, our compiler which generates VIS in-
structions, is compared with the LCC compiler which
does not use these SIMD instructions. Columns 2 and
3 give the execution time of the benchmarks with and
without exploitation of SIMD instructions, respec-
tively. Column 4 shows the speedup for the test suites.
Most arithmetic instructions of VIS instruction set
work on 16-bit sub-registers, especially the multipli-
cation instructions. Therefore, all experiments have
been carried out with 16-bit data types and the un-
rolling factor is 4. Each test suite is executed multiple
times and the execution time is averaged. In Fig.3 we
compare the speedups obtained by VIS-LCC with that
obtained by GCC 4.1 (Naishlos, 2004) applying
vectorization described in Section 2.

Execution time (μs)

Benchmark
VIS-LCC LCC

Speedup
(times)

vector addition 101 252 2.495
dot product 572 725 1.267
n_real_updates 164 419 2.555
n_complex_updates 507 1338 2.639
fir 796 725 0.911
matrix1 75 722 106 803 1.410

Table 1 Speedup of execution time on UltraSPARC
processor by using SIMD instructions

Zhou et al. / J Zhejiang Univ Sci A 2008 9(4):524-530 529

As illustrated by Table 1, a relatively satisfactory
speedup was obtained in most cases. For vector addi-
tion, n_real_updates and n_complex_updates, the
achieved speedups are between 2.495 and 2.639.
Because these programs can almost be completely
vectorized, few additional instructions are needed.
For the programs of dot product and matrix operations,
the speedup is a bit lower since some operations such
as reduction, which is used to construct a single value
by combining the elements of a vector or array, cannot
be used directly to generate SIMD instructions.
However, a speedup between 1.267 and 1.410 was
still achieved. There is also a counter example, i.e., fir
filter, where a slowdown has been measured. A de-
tailed analysis revealed that this is because only a
small fraction of this program can be mapped to
SIMD instructions and data reorganization is needed
in this small fraction program. Thus, it results in many
additional instructions such as packing and unpacking
instructions.

Fig.3 shows the speedups obtained by our ap-
proach and vectorization. An average speedup of
1.880 was achieved by VIS-LCC, while an average
speedup of 1.684 was achieved by GCC vectorizer.
As illustrated in Fig.3, in most cases our approach
obtained better results than vectorization. However,
as to dot product and fir, there are some idiom opera-
tions such as reduction. Since it is not very good
support for these operations in our approach, the
speedups are lower than those of vectorization.
Therefore, our approach’s improvement will focus on
idiom operations support in the future.

CONCLUSION

In this paper, a target-independent approach for
SIMD instructions generation is presented. This ap-
proach has been implemented on LCC. The
SIMD-enabled LCC-based compiler can fully utilize
the SIMD instructions. The experimental results show
that the SIMD instructions are generated efficiently
and the performance of SIMD computation is im-
proved. We can easily port the compiler to other me-
dia processors with SIMD instruction set since the
algorithm is performed before code generation as an
optimization of IR. Furthermore, this approach can
not only be implemented on LCC but also be applied
to any other compiler with the tree IR code.

Future work will focus on recognizing idiom
operations such as saturation, min/max, reduction, etc.
from multimedia applications. At the same time, we
would also like to integrate the energy cost model into
our approach to estimate whether it is profitable to use
SIMD instructions.

References
Aho, A.V., Sethi, R., Ullman, J.D., 1987. Compilers: Principles,

Techniques and Tools. Addison-Wesley Publishing Com-
pany.

Allen, R., Kennedy, K., 1987. Automatic translation of Fortran
programs to vector form. ACM Trans. on Programming
Languages and Systems, 9(4):491-542. [doi:10.1145/
29873.29875]

Bik, J.C., Girkar, M., Grey, P.M., Tian, X., 2002. Automatic
intra-register vectorization for the Intel® architecture. Int.
J. Parallel Programming, 30(2):65-98. [doi:10.1023/A:
1014230429447]

Bulic, P., Gustin, V., 2003. An extended ANSI C for processors
with a multimedia extension. Int. J. Parallel Program-
ming, 31(2):107-136. [doi:10.1023/A:1022617308483]

Fisher, R.J., Dietz, H.G., 1998. Compiling for SIMD within a
Register. Proc. 11th Int. Workshop on Languages and
Compilers for Parallel Computing, p.209-304.

Fraser, C.W., Hanson, D.R., 1995. A Retargetable C Compiler:
Design and Implementation. Addison-Wesley, Menlo
Park, CA.

Fraser, C.W., Hanson, D.R., Proebsting, T.A., 1992. Engi-
neering a simple, efficient code generator generator. ACM
Lett. on Programming Languages and Systems, 1(3):213-
226. [doi:10.1145/151640.151642]

Hohenauer, M., Schumacher, C., Leupers, R., 2006. Retarge-
table Code Optimization with SIMD Instructions. Proc.
4th Int. Conf. on Hardware/Software Codesign and Sys-
tem Synthesis, p.148-153. [doi:10.1145/1176254.1176291]

0

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

(ti
m

es
)

VIS-LCC GCC

vector
additon

dot
product

n_real_
updates

n_complex_
updates

fir matrix1

2.495
2.297

1.267
1.590

2.555

1.651

0.911

1.674
1.410

1.185

2.639

1.709

Fig.3 Comparison of speedup between VIS-LCC and
GCC (Naishlos, 2004) vectorizer

Zhou et al. / J Zhejiang Univ Sci A 2008 9(4):524-530 530

Krall, A., Lelait, S., 2000. Compilation techniques for multi-
media processors. Int. J. Parallel Programming, 28(4):
347-361. [doi:10.1023/A:1007507005174]

Larsen, S., Amarasinghe, S., 2000. Exploiting superword level
parallelism with multimedia instruction sets. ACM SIG-
PLAN Notices, 35(5):145-156. [doi:10.1145/358438.349
320]

Leupers, R., 2000. Code Selection for Media Processors with
SIMD Instructions. Proc. Conf. on Design, Automation
and Test in Europe, p.4-8. [doi:10.1145/343647.343679]

Naishlos, D., 2004. Auto-Vectorization in GCC. Free Software
Foundation. Http://gcc.gnu.org/projects/treessa/vectori-
zation.html

Osman, S., Williams, R., 2003. Towards Optimal Instruction
Vectorization. Http://www.cs.cmu.edu/~sosman/classes/
compilers/project/project.ps

Pryanishnikov, I., Krall, A., Horspool, N., 2007. Compiler
optimizations for processors with SIMD instructions.

Software Practice and Experience, 37(1):93-113. [doi:10.
1002/spe.751]

Ren, G., Wu, P., Padua, D., 2003. A Preliminary Study on the
Vectorization of Multimedia Applications for Multimedia
Extensions. Proc. 16th Int. Workshop on Languages and
Compilers for Parallel Computing. Texas A&M Univer-
sity, p.420-435.

Sreraman, N., Govindarajan, R., 2000. A vectorizing compiler
for multimedia extensions. Int. J. Parallel Programming,
28(4):363-400. [doi:10.1023/A:1007559022013]

Tremblay, M., O′Connor, J.M., Narayanan, V., He, L., 1996.
VIS speeds new media processing. IEEE Micro, 16(4):
10-20. [doi:10.1109/40.526921]

Zivojnovic, V., Velarde, J.M., Schlager, C., Meyr, H., 1994.
DSPstone: A DSP-oriented Benchmarking Methodology.
Proc. Int. Conf. on Signal Processing Applications and
Technology, p.715-720.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

