
Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 776

Schedulability analysis for linear transactions under
fixed priority hybrid scheduling*

Zhi-gang GAO†, Zhao-hui WU

(School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)
†E-mail: gaozhigang@zju.edu.cn

Received July 26, 2007; revision accepted Jan. 30, 2008; published online May 5, 2008

Abstract: In hard real-time systems, schedulability analysis is not only one of the important means of guaranteeing the timelines
of embedded software but also one of the fundamental theories of applying other new techniques, such as energy savings and fault
tolerance. However, most of the existing schedulability analysis methods assume that schedulers use preemptive scheduling or
non-preemptive scheduling. In this paper, we present a schedulability analysis method, i.e., the worst-case hybrid scheduling
(WCHS) algorithm, which considers the influence of release jitters of transactions and extends schedulability analysis theory to
timing analysis of linear transactions under fixed priority hybrid scheduling. To the best of our knowledge, this method is the first
one on timing analysis of linear transactions under hybrid scheduling. An example is employed to demonstrate the use of this
method. Experiments show that this method has lower computational complexity while keeping correctness, and that hybrid
scheduling has little influence on the average worst-case response time (WCRT), but a negative impact on the schedulability of
systems.

Key words: Real-time systems, Hybrid scheduling, Linear transactions, Worst-case response time (WCRT), Schedulability

analysis
doi:10.1631/jzus.A071411 Document code: A CLC number: TP316

INTRODUCTION

In hard real-time embedded systems, timing re-
quirements of software must be respected. Schedula-
bility analysis is one of the most important means for
guaranteeing the timelines of the embedded software.
Today, such new techniques as energy savings and
fault tolerance have flourished in the embedded field.
Because most of the new techniques influence the
running time of the software, the schedulability
analysis becomes one of the fundamental theories as
these new techniques are applied to hard real-time
embedded systems.

The fixed priority scheduling has been widely
used in embedded operating systems because of its

simplicity and lower scheduling overheads. In hybrid
scheduling, tasks have fixed priorities. Additionally,
tasks can be preemptive or non-preemptive in order to
reduce the overheads of systems and make resource
synchronization easy to realize (Jeffay et al., 1991).
Hybrid scheduling is more general than preemptive
scheduling and non-preemptive scheduling. Today,
hybrid scheduling has been used in some hard
real-time operating systems, e.g., it is one of the
scheduling modes supported by OSEK/VXD (OSEK,
2003), a widely accepted standard in the automotive
electronic industry.

A transaction (Damm et al., 1989) is a sequence
of related tasks. Compared to independent tasks,
transactions can work well in modeling control
process, improving control effect and schedulability
(ARTIST2, 2005). Currently, there are many research
efforts on the schedulability analysis of fixed priority
preemptive scheduling (Liu and Layland, 1973;
Gonzalez Harbour et al., 1994; Tindell, 1994; Palen-

Journal of Zhejiang University SCIENCE A
ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project supported by the National Natural Science Foundation of
China (No. 60533040), the Hi-Tech Research and Development
Program (863) of China (Nos. 2007AA010304 and 2007AA01Z129),
and the Key Scientific and Technological Project of Hangzhou Tech-
nology Bureau, China (No. 20062412B01)

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 777

cia and Gonzalez Harbour, 1999; Redell, 2004; Henia
and Ernst, 2005; Fisher et al., 2007; Yomsi and Sorel,
2007). However, most of the research efforts on the
fixed priority non-preemptive scheduling (Jeffay et
al., 1991; Khil et al., 1997; Dolev and Keizelman,
1999; Baruah and Chakraborty, 2006) focus on the
schedulability analysis of independent tasks under
EDF (earliest deadline first) (Buttazzo, 1995). Wang
and Wu (2004) proposed a schedulability analysis
method on fixed priority hybrid scheduling. However,
their method is only suitable for independent tasks. In
this paper we extend the schedulability analysis
method proposed by Gonzalez Harbour et al.(1994),
and present a schedulability analysis method for lin-
ear transactions under fixed priority hybrid schedul-
ing on a single processor—the WCHS (worst-case
hybrid scheduling) algorithm. WCHS considers the
release jitters of transactions and extends schedula-
bility analysis to hybrid scheduling. Experiments
show that WCHS has lower computational complex-
ity while keeping correctness, and that hybrid sched-
uling has little influence on the average worst-case
response time (WCRT) besides a negative impact on
the schedulability of transactions.

RELATED WORK

Currently, there have been many research efforts
focusing on the schedulability analysis of transactions.
Tindell (1994) proposed a schedulability analysis
method, which uses static offsets to describe the
precedence constraints among tasks in a transaction.
Palencia and Gonzalez Harbour (1999) extended the
schedulability analysis method of Tindell and pre-
sented the WCDO (worst-case dynamic offsets) al-
gorithm. WCDO introduces dynamic offsets and jit-
ters to describe the influence of a task’s response time
variation on its succeeding tasks. Palencia and Gon-
zalez Harbour (1998) presented the WCDOPS algo-
rithm, which considers the execution order of tasks
among different jobs of a transaction. Redell (2004)
extended the WCDOPS algorithm and proposed the
WCDOPS+ algorithm, which considers not only the
influence of the execution order of tasks in different
jobs of a transaction, but also the influence of the
priority structure of tasks on the execution order of
tasks. Jiang (2006) presented a decoupled scheduling
approach for distributed hard real-time embedded

automotive systems that have tasks with precedence
constraints, and his research efforts focus on the ex-
tensibility of scheduling.

In the task model with precedence relationship,
the release time of tasks is described by using offsets
and jitters. A transaction’s WCRT is obtained by
analyzing the WCRT of its tasks sequentially.

The HKL algorithm presented by Gonzalez
Harbour et al.(1994) makes use of the canonical
forms of tasks [“tasks” and “subtasks” in (Gonzalez
Harbour et al., 1994) are respectively equal to
“transactions” and “tasks” in logic] to simplify the
response time analysis of tasks. However, HKL as-
sumes that the release jitters of transactions are zero
and that the tasks are preemptive, which constrains its
application.

SCHEDULABILITY ANALYSIS UNDER FIXED
PRIORITY HYBRID SCHEDULING

Computational model and basic notation

There are n periodic transactions Γ1, Γ2, …, Γn in
the system. A transaction Γi has the period Ti, WCET
(worst-case execution time) Ci, and deadline Di. Γi is
composed of m tasks, τi1, τi2, …, τim (m≥1). The task τik

(m≥k≥1) has the priority Pik, WCET Cik, and period Ti.
If τik is a preemptive task, it can be preempted by other
high-priority tasks. If τik is a non-preemptive task, it
can only be preempted before it is executed; but once
τik is executed, it cannot be interrupted by other tasks
until it is completed. Γi is activated by a periodic
external event (i.e., Γi arrives). The delay between Γi’s
activation instant ai and its release instant ri is its
release jitter, denoted as Ji (=ri−ai), and Ji<Ti. When
τi1 is completed, it sends a message to τi2. τi2 releases
itself immediately when it receives the message from
τi1. When τi2 is completed, it sends a message to τi3.
This process is repeated until the last task τim of Γi is
completed. Di may be less than, larger than, or equal
to Ti. One instance of Γi activated by an external event
is called a job of Γi. In this paper, we assume that
different jobs of a transaction are executed sequen-
tially (which is very common in control systems), i.e.,
the (j+1)th job will be permitted to be executed only
after the jth job is completed. Moreover, we do not
consider the blocked time caused by accessing mu-
tually exclusive resources. The response time of the
jth job of Γi (Γj,i), Rj,i, is the time interval between Γj,i’s

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 778

activation instant and completion instant. The
maximum response time of all jobs of Γi is called its
WCRT. The goal of the schedulability analysis is to
decide whether all transactions meet their deadlines,
i.e., their WCRT is no longer than their deadlines.

Pmin(m) denotes the least priority of the tasks in Γm.
When Pmin(m) ≥Pij, Γm has multiply preemptive effect on
τij. When 1 (1), (, ,) (),m mk ij m k ijk P P P P P+∃ ⋅ ⋅ ⋅ ≥ ∧ < Γm has

singly preemptive effect on τij. When ∃k, l,
(1) (1)() (, ,) (),mk ij m k ml ij m l ijP P P P P P P+ +< ∧ ⋅⋅ ⋅ ≥ ∧ < Γm has

blocking effect on τij.
If a transaction consists of consecutive tasks

whose priorities do not decrease, the transaction is
said to be in canonical form. From the proof of (Gon-
zalez Harbour et al., 1994), we know the response
time of Γi is equal to that of its canonical form, Γi′. If
Γm is not in canonical form, it can be transformed into
its canonical form Γm′ by using the algorithm of
(Gonzalez Harbour et al., 1994). A canonical form
task ikτ ′ may consist of multiple tasks of Γi.

Length of the busy period

Lehoczky (1990) introduced the concept of the
busy period to derive the WCRT of a task under fixed
priority scheduling with arbitrary deadlines. Gonzalez
Harbour et al.(1994) showed no matter how long the
deadlines of the tasks are, it is necessary to use the
“busy period” to analyze the WCRT of tasks with
multiple subtasks.

If Li is a time interval during which only the
tasks whose priorities are larger than or equal to Pmin(i)
exist, and all jobs of Γi released during Li are all
completed during Li, Li is called a Γi-busy period.

In the following discussion, we use Γi as an
example to explain how to calculate its busy period.
For readability reasons, in most cases, we use “busy
period” to denote “Γi-busy period”.

Lehoczky (1990) proposed that the longest re-
sponse time of a task can be obtained from the jobs of
the task in a busy period, and that the maximum re-
sponse time in all the jobs in the Γi-busy period is the
WCRT of Γi. We must identify the length of the
Γi-busy period to obtain the job number in the Γi-busy
period before we calculate the response time of each
job of Γi.

In fact, multiply preemptive effect, singly pre-
emptive effect and blocking effect on τij are all rele-

vant to the Γi-busy period: if Γm has multiply pre-
emptive effect on τij, Γm may be executed multiple
times (i.e., multiple jobs of Γm may be activated)
during the Γi-busy period and they may preempt τij
multiple times; if Γm has singly preemptive effect on
τij, Γm is executed only once (i.e., one job of Γm is
activated) during the Γi-busy period; if Γm has
blocking effect on τij, Γm may block Γi once during the
Γi-busy period.

When creating the busy period, the other trans-
actions need to be classified according to Pmin(i) in
order to find their maximum contribution to the busy
period. In fact, because Pmin(i) is equal to 1,iP′ classi-
fying the types of transactions according to Pmin(i) is
equal to that according to 1.iP′ To use the notations of
transaction types in a uniform manner, in the fol-
lowing discussion about the busy period, unless oth-
erwise stated, we use 1iP′ instead of Pmin(i), 1iτ ′ instead
of Γi. If the priority of 1iP′ is 3, a transaction with the
priority sequence (6, 5, 1, 2, 9) is classified to be task
segments (H, L, H), where H denotes one or more
tasks whose priorities are larger than or equal to 1,iP′
L denotes one or more tasks whose priorities are less
than 1.iP′ A transaction other than Γi can be classified
into one of the following five types:

(1) Type-1 transaction, i.e., (H) transaction. All
tasks’ priorities of a type-1 transaction are equal to or
higher than 1,iP′ and may preempt 1iτ ′ more than once
during the busy period.

(2) Type-2 transaction, i.e., ((HL)+) transaction
(+ denotes equal to or more than one). A type-2
transaction is composed of H segments followed by L
segments. Usually, every type-2 transaction uses its
initial H segment to preempt 1iτ ′ once during the busy
period. In some special cases, an internal H segment
can also block 1iτ ′ once. A type-2 transaction can
exhibit singly preemptive effect or blocking effect.

(3) Type-3 transaction, i.e., ((HL)+H) transaction.
A type-3 transaction differs from a type-2 transaction
in that it ends with an H segment. Like type-2 trans-
actions, it usually exhibits singly preemptive effect. In
some special cases, it can exhibit blocking effect.

(4) Type-4 transaction, i.e., ((LH)+L0) transac-
tion (0 denotes equal to zero or one). A type-4 trans-
action is composed of L segments followed by H
segments. No or one L segment lies at the end of a

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 779

type-4 transaction. It can only exhibit blocking effect.
(5) Type-5 transaction, i.e., (L) transaction. All

tasks’ priorities of a type-5 transaction are lower than

1,iP′ and it has no effect on the completion time of 1.iτ ′
Note that type-2 and type-3 transactions con-

tribute singly preemptive effect under the default
condition. In some special cases, a type-2 or type-3
transaction may contribute the blocking effect. The
blocking effect contributed by type-2, type-3 and
type-4 transactions is caused by H segments, and we
call it task blocking. Under hybrid scheduling,
non-preemptive tasks can also contribute the blocking
effect, which is called the non-preemptive blocking.

After transactions are classified, in order to deal
with the non-preemptive blocking, we perform the
following process. Let’s use τjp as an example. If τjp

(j≠i) is a non-preemptive task with Pjp≥ 1,iP′ τjp will be
classified into an H segment, so we need not consider
its non-preemptive blocking effect. When Pjp < 1,iP′ if
τjp is the immediate predecessor of Hjk, an internal H
segment or final H segment of Γj, τjp should be merged
with Hjk, i.e., transformed into a new H segment jkH ′

which consists of τjp and Hjk; otherwise, transform τjp
into an H segment. Note that if τjq, …, τjp are con-
secutive non-preemptive tasks with Pjr< 1iP′ (p≥r≥q)
before Hjk, only τjp can be merged with Hjk because
preemption can occur between non-preemptive tasks.
Because of non-preemptive blocking, type-2 transac-
tions may add a final H segment and/or internal H
segments. With respect to a type-4 or type-5 transac-
tion, it may add internal H segments wherever
non-preemptive tasks lie. After the above process, all
non-preemptive blockings are merged into internal H
segments or final H segments of transactions.

When calculating the blocked time of Γi, we
should consider the maximum blocking effect from
the internal H segments and final H segments of
type-2 and type-3 transactions, together with the in-
ternal H segments of type-4 and type-5 transactions.
By extending the method of blocking time calculation
in (Gonzalez Harbour et al., 1994), we can derive the
blocked time of a transaction. Assuming the H seg-
ment with the longest WCET in all type-4 and type-5
transactions is 4,5 ,B′ and Γp is a type-2 or type-3
transaction with the initial H segment’s WCET Fp, the
maximum internal H segment’s WCET Mp, and the

final H segment’s WCET Lp. If there is no internal H
segment or final H segment, Mp or Lp is equal to zero.
The maximum blocking time caused by type-2 and
type-3 transactions is

()()
1

2,3 4,5 4,523
max max , ,
p i

p p pΓ T
B M F B L B

∈
′ ′= − − − (1)

where T23i1 denotes the set of type-2 and type-3
transactions of 1.iτ ′ If B2,3 is no more than zero, the
blocked time of 1,iτ ′ i.e. Bi, is equal to 4,5.B′ Other-
wise, the maximum blocking time is caused by a
type-2 or type-3 transaction. Assuming that the
transaction Γb in T23i1 causes the maximum blocking
effect, if Mb−Fb>Lb, the blocking time is caused by an
internal H segment. Set Bi to be Mb and change the
transaction type of Γb to be a type-5 transaction.
Otherwise, set Bi to be Lb and keep the transaction
type of Γb unchanged.

In the HKL algorithm, the critical instant of Γi is
defined as the instant when Γi is released with its
multiply preemptive tasks and singly preemptive
tasks simultaneously, and suffers from the maximum
blocked time. In this paper, because of release jitters
of transactions, the definition of critical instant should
be redefined to make the other transactions have the
maximum interference in Γi.

Assuming that Γp is a type-1 transaction of Γi,
and tc is the instant when a job of Γi is released. Γp has
the capability of multiple preempting Γi. According to
the interference time analysis of (Audsley et al., 1993)
for tasks with release jitters, we can derive that Γp has
the maximum preemption time for Γi during the busy
period when the jobs of Γi and Γp before tc undergo the
maximum release jitters and are released at tc simul-
taneously, and the jobs of Γi and Γp after tc have the
release jitters of zero. This scenario is shown in Fig.1,
where am,n and rm,n denote the arrival instant and the
release instant of the mth job of Γn, respectively.

If Γp is a type-2, type-3, type-4, or type-5 trans-
action, it may be a singly preemptive transaction or a
blocking transaction, i.e., Γp can be executed once at
most in the busy period. Γp will contribute the maxi-
mum time to the busy period if it is released at tc when
it is a singly preemptive transaction, or its maximum
blocking H segment is released at tc when it is a
blocking transaction. The tc constructed as above is
the critical instant of Γi.

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 780

Because of the release jitters, there will be more
jobs of transactions in the busy period of Γi. Consid-
ering the release jitters, we extend the definitions of
the length of the busy period in (Gonzalez Harbour et
al., 1994) and the definitions of the job number of Γi
in the busy period.

The length of the busy period is defined as

()
1

1

h

= min >0 | + () /

 + + () / ,

p i

p i

i i p p p
Γ MP

p p i i
Γ SP

L t t B t J T C

C t J T C

∈

∈

⎛
⎡ ⎤= +⎜ ⎢ ⎥⎜

⎝
⎞

⎡ ⎤+ ⎟⎢ ⎥ ⎟
⎠

∑

∑
 (2)

where Bi is the blocked time that Γi suffers; MPi1 is the
set of transactions which exhibits multiply preemp-
tive effect on 1;iτ ′ the term in which MPi1 lies denotes
the multiply preemptive time that Γi suffers in the
busy period; SPi1 is the set of transactions which ex-
hibits singly preemptive effect on 1;iτ ′ h

pC is the

WCET of the initial H segment of Γp; the term in
which SPi1 lies denotes the singly preemptive time
that Γi suffers in the busy period; the last term in the
right of Eq.(2) denotes the total execution time of all
the jobs of Γi in the busy period. Eq.(2) can be solved
by iteration.

The job number of Γi in the busy period is

= (+)/ .i i i iN L J T⎡ ⎤⎢ ⎥ (3)

WCRT of a transaction

The WCRT of Γi is equal to the maximum re-
sponse time of all jobs of Γi in the busy period. When
calculating the response time of the kth job of Γi, first
transform Γi into its canonical form Γi′, and then
calculate the completion time of each canonical form
task ijτ ′ sequentially. According to the completion

time of the last canonical form task of the kth job of Γi,
we can obtain the response time of the kth job of Γi.

Assuming that ijτ ′ consists of one or more

task(s), we first prove a lemma before calculating the
completion time of .ijτ ′

Lemma 1 If the last task of ijτ ′ is preemptive, the

completion time of ijτ ′ will not be affected by the

preemption properties of the other task(s) it includes.
Proof In the response time of ,ijτ ′ if j=1, the

interference time from other transactions includes
three parts: multiply preemptive time, singly
preemptive time and blocked time; if j>1, the
interference time from other transactions only
includes multiply preemptive time and singly
preemptive time. Because blocking always occurs
before ijτ ′ is executed, the blocked time that ijτ ′ suf-

fers is not affected by the preemption properties of
tasks that ijτ ′ includes. Assume that the last task ijτ ′

includes is τe. Γp is a multiply preemptive or singly
preemptive transaction, and it is released before τe.
From the transformation algorithm of canonical form
tasks of (Gonzalez Harbour et al., 1994), we know
that the priority of τe is equal to ,ijP′ i.e., τe has the

least priority in all tasks included in .ijτ ′ Whether the

task(s) included in ijτ ′ is/are preemptive or not, even

in the worst case, Γp will be executed by preempting τe
after τe is released. If Γp is released between the re-
lease instant and completion instant of τe, it will be
executed by preempting τe. From the above discussion,
we can conclude that all tasks which have interference
effect on ijτ ′ can exhibit their interference effect be-

tween the release instant and completion instant of ijτ ′ .

Therefore if τe is preemptive, the response time of ijτ ′

will not be affected by the preemption properties of
the other task(s) it includes.

We number the first job of Γi in the busy period
to be 1, and the subsequent jobs to be 2, 3, and so on.
Assume the instant at which the critical instant occurs
to be zero, and the completion time is the time span
from the critical instant on. For simplicity, in the
following parts, we assume Cij and Cp refer to the
WCET of ijτ ′ and Γp′, respectively.

Fig.1 Maximum preemption effect of Γp on Γi

tc

Ji

Jp

0, i 1, i 2, i 3, i
t

0, p 1, p 2, p 3, p 4, p 5, p
a0, i a1, i a2, i a3, i

a0, p a1, p a2, p a4, pa3, p a5, pr0, p

r0, i

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 781

According to the computational model, we ex-
tend the algorithm presented by Gonzalez Harbour et
al.(1994) by incorporating release jitters and
non-preemptive tasks, and develop the WCHS algo-
rithm to analyze the completion time of transactions
under hybrid scheduling.

We first calculate the completion time of 1iτ ′ in
the kth job of Γi, , 1.k iτ ′

If the last task of , 1k iτ ′ is a preemptive task, the

completion time of , 1k iτ ′ is

1

1

, 1

h
1

=min >0 | + () /

 + (1) .

p i

p i

k i i p p p
Γ MP

p i i
Γ SP

E t t B t J T C

C C k C

∈

∈

⎛
⎡ ⎤= +⎜ ⎢ ⎥⎜

⎝
⎞

+ + − ⎟⎟
⎠

∑

∑
 (4)

If the last task of , 1,k iτ ′ τe1, is a non-preemptive

task with the WCET of Ce1, the completion time of
, 1k iτ ′ is

 , 1 , 1 e1= + ,k i k iE W C (5)
where

1

1

, 1

h
1 e1

= min >0 | + () /

 + (1) ,

p i

p i

k i i p p p
Γ MP

p i i
Γ SP

W t t B t J T C

C C C k C

∈

∈

⎛
⎡ ⎤= +⎜ ⎢ ⎥⎜

⎝
⎞

+ − + − ⎟⎟
⎠

∑

∑
 (6)

where Wk,i1 is the waiting time of , 1.k iτ ′

After obtaining the completion time of the first
task, we should adjust the types of transactions be-
cause , 2k iτ ′ has a higher priority. The multiply pre-

emptive tasks of , 2k iτ ′ can be classified according to

the priority level of , 2 .k iτ ′ The singly preemptive task

of , 2k iτ ′ is a subset of MPi1, denoted as

{ (
)}

2 1 2 1

2 (1) 2

| () , (, ,

) () .

i p p i i p pk

i p k i

SP Γ Γ MP MP k P P

P P P+

= ∈ − ∧ ∃ ⋅ ⋅⋅

′ ′ ≥ ∧ <
 (7)

If the last task of , 2k iτ ′ is a preemptive task, the

completion time of , 2k iτ ′ is

(

)

2

2

, 2 , 1 2

, 1

h
, 1

=min >0 | = + + () /

 () / + min 1, () /

() / . (8)

p i

p i

k i k i i p p
Γ MP

k i p p p p p
Γ SP

k i p p p

E t t E C t J T

E J T C t J T

E J T C

∈

∈

⎛
⎡⎡ ⎤ +⎜ ⎢ ⎥⎣⎜

⎝

⎤ ⎡⎡ ⎤ ⎡ ⎤− + +⎢ ⎥ ⎢ ⎥⎦ ⎣

⎞⎤⎡ ⎤− + ⎟⎢ ⎥⎦ ⎠

∑

∑

If the last task of , 2 ,k iτ ′ τe2, is a non-preemptive
task with the WCET of Ce2, the completion time of

, 2k iτ ′ is

 , 2 , 2 e2= + ,k i k iE W C (9)
where

(

)

2

2

, 2 , 1 2 e2

, 1

h
, 1

=min >0 | = + + () /

() / min 1, () /

() / . (10)

p i

p i

k i k i i p p
Γ MP

k i p p p p p
Γ SP

k i p p p

W t t E C C t J T

E J T C t J T

E J T C

∈

∈

⎛
⎡⎡ ⎤− +⎜ ⎢ ⎥⎣⎜

⎝

⎤ ⎡⎡ ⎤ ⎡ ⎤ − + + +⎢ ⎥ ⎢ ⎥⎦ ⎣

⎞⎤⎡ ⎤− + ⎟⎢ ⎥⎦ ⎠

∑

∑

After obtaining the completion time of , 2 ,k iτ ′ the
completion time of the subsequent canonical form
tasks can be calculated sequentially. When calculating
the completion time of , ,k ijτ ′ we should obtain MPij

and SPij. MPij can be obtained by classifying all
transactions according to the priority level of , .k ijτ ′ By

considering the release jitters of transactions in task
type classification of the algorithm presented by Gon-
zalez Harbour et al.(1994), SPij is denoted as follows:

.ij ij ijSP SP SP′ ′′= ∪ (11)

({
) (

)}
{ (

)}

(1) , (1)

, (2) 1

(1)

(1) 1

(1)

| () /

() / 0 , (, ,)

() ,

| () , (, ,)

() .

ij p p i j k i j p p

k i j p p p pl ij

p l ij

ij p p i j ij p pl ij

p l ij

SP Γ Γ SP E J T

 E J T l P P P

 P P

SP Γ Γ MP MP l P P P

 P P

− −

−

+

−

+

′ ⎡ ⎤= ∈ ∧ +⎢ ⎥

′⎡ ⎤− + = ∧ ∃ ⋅ ⋅ ⋅ ≥⎢ ⎥

′∧ <

′′ ′= ∈ − ∧ ∃ ⋅ ⋅ ⋅ ≥

′∧ <

After that, using equations similar to Eqs.(8) and
(9), we can obtain the completion time of , .k ijτ ′ The

response time of the kth job of Γi is

, , (1) .k i k im i iR E J k T= + − − (12)

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 782

Table 1 Task parameters of the transactions in Fig.2

Task Priority WCET (ms) Preemption property
τ11 9 0.5 non-preemptive
τ12 6 2 preemptive
τ13 11 3 preemptive
τ14 10 1 non-preemptive
τ21 11 0.5 non-preemptive
τ22 8 2 preemptive
τ23 6 3 preemptive
τ24 7 2 non-preemptive
τ31 5 1 non-preemptive
τ32 3 40 preemptive
τ33 4 15 preemptive
τ34 5 20 preemptive
τ41 2 2 non-preemptive
τ42 1 40 preemptive

EXAMPLE AND EXPERIMENTS

Example

In this subsection, we use an engine electronic
control system as an example to illustrate the use of
the WCHS algorithm. The transactions are shown in
Fig.2.

In Fig.2, Γ1 is an electronic ignition transaction.

It works as follows. First, τ11 collects shaft and load
signals and regulates these signals. Then τ12 collects
the rotation speed signals. After that, τ13 calculates the
ignition time. Finally, τ14 sends the ignition command
to the execution component. Γ2 is an electronic
fuel-injecting transaction. First, τ21 receives timer
signals and initializes all the parameters about fuel
injection. Then τ22 obtains the rotation speed signals.
After that, τ23 calculates the optimal position for fuel
injection. Finally, τ24 drives the injection component
to inject fuels. Γ3 is an electronic throttle control
transaction. First, τ31 collects the signals of the pedal
and the other related sensors. Then τ32 calculates the
optimal position of the throttle. After that, τ33 calcu-
lates the adjustment angles according to the current
position and the optimal position. Finally, τ34 sends
commands to adjust the position of the throttle. Γ4 is a
transaction responsible for collecting the water tem-
perature of the engine. τ41 first collects the water
temperature information of the engine, and then sends
it to τ42. τ42 stores the water temperature information
to a specific position. Γ1, Γ2, Γ3 and Γ4 are all periodic
transactions with the periods of 20, 20, 500 and 2000
ms, and release jitters of 2, 3, 60 and 400 ms, respec-
tively. All transactions’ deadlines are equal to their
periods. The parameters of all tasks are shown in
Table 1.

First, calculate the WCRT of Γ1. Γ1′ consists of

two tasks, 11τ ′ and 12.τ ′ 11τ ′ includes τ11 and τ12; 12τ ′
includes τ13 and τ14.

After classifying the types of transactions with

11 6,P′ = we can conclude that Γ2 is a multiply pre-
emptive transaction, and Γ3 and Γ4 are blocking
transactions. τ31 and τ41 are non-preemptive transac-
tions with priorities less than 6, so they have blocking
effect on Γ1′. From Eq.(1), we can derive that the
blocked time Γ1′ suffers is contributed by τ41, and is
equal to 2 ms. The length of the Γ1′-busy period is

(
)

1 min 0 | 2 (3) / 20 7.5

 (2) / 20 6.5 16,

L t t t

t

= > = + + ×⎡ ⎤⎢ ⎥

+ + × =⎡ ⎤⎢ ⎥

where the first item, 2, is the blocked time that Γ1′
suffers; the second term is the multiply preemptive
time that Γ2 contributes to Γ1′; the third term is the
total execution time of all Γ1′’s jobs in the busy period.
Because Γ1 has the release jitter of 2 ms and period of
20 ms, there is only one job of Γ1 in the busy period.

Because the last task that 1,11τ ′ includes, τ12, is
preemptive, we can obtain the completion time of

1,11τ ′ using Eq.(4):

()1,11 min 0 | =2 (3) / 20 7.5 2.5 12,E t t t= > + + × + =⎡ ⎤⎢ ⎥

where the first item, 2, is the blocking time that τ41

contributes to 1,11;τ ′ the second term is the multiply

11τ 12τ 13τ 14τ

1Γ

2Γ

3Γ

4Γ

21τ 22τ 23τ 24τ

31τ 32τ 33τ 34τ

41τ 42τ

Fig.2 Engine electronic control system. Each transac-
tion consists of multiple tasks, and the arrows between
tasks denote the execution sequence of tasks. The tasks
filled with gray color denote non-preemptive tasks

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 783

preemptive time that Γ2 contributes to 1,11;τ ′ the third

item 2.5 is the WCET of 1,11.τ ′
After that, classify the types of all transactions in

MP11 according to 12P′ . We can know that SP12 has
only the transaction Γ2, and MP12 is empty. 12τ ′ is a
non-preemptive task. From Eq.(10), we can derive its
waiting time:

((
))

1,12 min 0 | 12 min 1, (3) / 20

 15/ 20 0.5 3 15,

W t t t= > = + ⎡ +⎡ ⎤⎢ ⎥⎣

− ⎤ × + =⎡ ⎤⎢ ⎥⎦

where 12 is the completion time of 1,11;τ ′ 0.5 is the
singly preemptive time coming from the initial H
segment of Γ2; 3 is the WCET of τ13. Because the
singly preemptive time is zero during the waiting time
of 1,12 ,τ ′ the waiting time of 1,12τ ′ is 12+3=15 (ms).

The completion time of 1,12τ ′ is

1,12 15 1 16.E = + =

There is only one job of Γ1′ in the busy period.

The WCRT of Γ1′ is equal to that of Γ1, i.e., 16+2=18
(ms).

Similarly, we can derive that the WCRTs of Γ2,
Γ3 and Γ4 are 19, 334 and 812 ms, respectively. Be-
cause the WCRT of each transaction is less than its
deadline, the system is schedulable.

Experiments and discussion

In order to evaluate the performance of the
WCHS algorithm, we compared the WCHS algorithm
with the WCDOPS+ algorithm, an algorithm working
well in transaction models. The experiment was per-
formed on a PC with CPU AMD AthlonXP 2500+,
512 MB memory, and running Windows XP. We
made use of the fact that transactions were executed
sequentially to reduce the computational complexity
of WCDOPS+. We investigated the WCRT of trans-
actions and the computation time of the schedulability
analysis with the average task numbers of transac-
tions being 3, 5, 7, 9, 11 and 13. For a specific average
task number, we created 20 transactions randomly.
We used the method presented in (Pillai and Shin,
2001) to generate transaction sets. The periods of
transactions can be short (1~10 ms), medium (10~100

ms), or long (100~1000 ms) periods to simulate dif-
ferent kinds of applications. The purpose of using
transaction sets generated randomly is to avoid the
limitation of transaction types and preemptive prop-
erties in real-world systems. Transactions are uni-
formly distributed into these three kinds of periods.
Transactions are all preemptive with deadlines larger
than or equal to their periods. The release jitters of
transactions are generated randomly, and they are less
than 20% of the transactions’ deadlines. We compared
their computational results and computing speed.
Experiments showed that there are no differences in
WCRT between WCHS and WCDOPS+ algorithms.
The computation time of the schedulability analysis is
shown in Fig.3.

Fig.3 shows that the computation time of
WCDOPS+ is always larger than that of WCHS. The
larger the average task number of transactions, the
more significant their time difference. WCDOPS+
calculates the best-case response time and the WCRT
of tasks one by one to obtain the WCRT of transac-
tions, which incurs more computation overheads.
WCHS calculates the completion time of canonical
form tasks to obtain the WCRT of transactions. The
number of the canonical form tasks of a transaction is
always less than that of the tasks of the transaction, so
WCHS has less computation overheads. With the
increment of average task numbers, difference be-
tween the computed task numbers in the two algo-
rithms increases, which leads to more significant
difference between their computation time.

Because there are many transactions triggered by
the user input in automotive electronic systems, a
steady average response time is desirable for the
driver. Besides that, non-preemptive tasks may in-
fluence the schedulability of transactions, which re-

Fig.3 Computation time of the schedulability analysis
vs. the average task number (N) of transactions

Ti
m

e
(m

s)

N

500

400

300

200

100

0
3 7 11

WCDOPS+
WCHS

5 9 13

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 784

quires the developer to arrange the tasks’ granularities
(their WCET) and assign their priorities and preemp-
tion properties properly to develop correct software.
Therefore, we investigated the influence of hybrid
scheduling on the average WCRT and schedulability
of transactions. Because there is no other existing
algorithm for schedulability analysis of transactions
under hybrid scheduling, we used the WCHS algo-
rithm to perform the scheduling analysis. We used
two transaction sets in the experiments. The first
transaction set, TS1, was generated by using the
above method and had 20 transactions. The average
task number of transactions in TS1 was 7. After that,
adjust the CPU utilization to be 10%, …, 80% by
scaling the tasks’ WCET proportionally. Under every
utilization, generate the transaction set TS2 by
changing the tasks’ preemption property with the
probability of 10% to be non-preemptive. The aver-
age WCRT is shown in Fig.4, and the average un-
schedulable transaction number is shown in Fig.5.
Note that every datum is the average value of 10
measurements.

Fig.4 shows that the average WCRT of transac-
tions increases with the increment of utilization, and
the average WCRT of TS2 is usually larger than that
of TS1. Under higher utilization, more interference
among transactions makes the average WCRT of
transactions longer. Although the non-preemptive
task may reduce the WCRT of the transaction it be-
longs to, it may increase the WCRT of transactions
with higher task priorities, which increases the aver-
age response time of systems. However, in some
cases, the average WCRT of TS2 is smaller than that
of TS1. It is because some transactions with lower
task priorities can improve schedulability greatly after
changing tasks’ properties into non-preemption. In a
word, there is little difference of the average WCRT
of transactions between TS1 and TS2.

Fig.5 shows that some transactions become un-
schedulable after some tasks become non-preemptive,
and the non-preemptive task number increases with
the increment of utilization. Usually, short and me-
dium period transactions consist of tasks with high
priorities. In some cases, non-preemptive tasks may
contribute blocking effect to short and medium period
transactions, making them unschedulable. With the
increment of utilization, more interference among
transactions leads to more unschedulable transactions.

It is well known that non-preemptive tasks have
the advantage of preventing tasks’ execution from
being interrupted, reducing system overheads and
making resource synchronization easy to realize.
From the above experiments, we can draw the con-
clusion that non-preemptive tasks have little influence
on the average WCRT of transactions. Sometimes we
can make use of non-preemptive tasks to reduce the
WCRT of some transactions. However, if the WCET
of a non-preemptive task is too long, it is necessary to
take some measures, for example, dividing a
non-preemptive task into multiple tasks with smaller
WCET, or assigning tasks’ priorities and preemption
properties properly to reduce the blocking effect on
other transactions.

CONCLUSION

In this paper, we present the worst-case hybrid

scheduling (WCHS) algorithm, a schedulability
analysis method for transactions with release jitters

Fig.5 Number of missing deadline tasks vs. utiliza-
tion U

N
um

be
r o

f m
is

si
ng

de

ad
lin

e
ta

sk
s

U

2.5

2.0

1.5

1.0

0.5

0
0.1 0.3 0.5 0.7

TS1

TS2

Av
er

ag
e

W
C

RT
 (m

s)

U

Fig.4 Average WCRT vs. utilization U

TS1

TS2

150

100

50

0
0.3 0.7 0.5 0.1

Gao et al. / J Zhejiang Univ Sci A 2008 9(6):776-785 785

under a hybrid scheduling model. Experiments show
that this algorithm has lower computation overheads
while keeping correctness. Moreover, we analyze the
influence of hybrid scheduling on the average
worst-case response time (WCRT) and schedulability
through experiments. We propose the method on how
to limit the negative influence of hybrid scheduling.
Our future work will focus on how to extend the
WCHS algorithm to more hard transaction models,
such as the tree-shaped transaction model.

References
ARTIST2, 2005. ARTIST2 Roadmap on Real-Time Tech-

niques in Control. Http://www.artist-embedded.org/artist/
ARTIST-2-Roadmap-on-Real-Time.html

Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings,
A.J., 1993. Applying new scheduling theory to static
priority pre-emptive scheduling. Software Eng. J., 8(5):
284-292.

Baruah, S.K., Chakraborty, S., 2006. Schedulability Analysis
of Non-Preemptive Recurring Real-Time Tasks. Proc.
20th Int. Parallel and Distributed Processing Symp., p.1-8.
[doi:10.1109/IPDPS.2006.1639406]

Buttazzo, G.C., 1995. Hard Real-Time Computing Systems.
Kluwer, Boston, MA.

Damm, A., Reisinger, W., Schwabl, W., Kopetz, H., 1989. The
real-time operating system of MARS. ACM SIGOPS Oper.
Syst. Rev., 23(3):141-151. [doi:10.1145/71021.71029]

Dolev, S., Keizelman, A., 1999. Non-preemptive real-time
scheduling of multimedia tasks. Real-Time Syst., 17(1):
23-39. [doi:10.1023/A:1008033411290]

Fisher, N., Nguyen, T.H.C., Goossens, J., Richard, P., 2007.
Parametric Polynomial-Time Algorithms for Computing
Response-Time Bounds for Static-Priority Tasks with
Release Jitters. Proc. 13th IEEE Int. Conf. on Embedded
and Real-Time Computing Systems and Applications,
p.377-385. [doi:10.1109/RTCSA.2007.54]

Gonzalez Harbour, M., Klein, M.H., Lehoczky, J.P., 1994.
Timing analysis for fixed-priority scheduling of hard
real-time systems. IEEE Trans. on Software Eng.,
20(1):13-28. [doi:10.1109/32.263752]

Henia, R., Ernst, R., 2005. Context-Aware Scheduling Analy-
sis of Distributed Systems with Tree-Shaped Task-Depen-
dencies. Proc. Design, Automation and Test in Europe,
1:480-485. [doi:10.1109/DATE.2005.104]

Jeffay, K., Stanat, D.F., Martel, C.U., 1991. On Non-Preemp-
tive Scheduling of Periodic and Sporadic Tasks. Proc.
IEEE Real-Time Systems Symp., p.129-139. [doi:10.
1109/REAL.1991.160366]

Jiang, S., 2006. A Decoupled Scheduling Approach for Dis-
tributed Real-Time Embedded Automotive Systems. Proc.
12th IEEE Real-Time and Embedded Technology and
Applications Symp. p.191-198. [doi:10.1109/RTAS.2006.5]

Khil, A., Maeng, S., Cho, J., 1997. Non-preemptive scheduling
of real-time periodic tasks with specied release times.
IEICE Trans. on Inf. Syst., E80-D(5):562-572.

Lehoczky, J.P., 1990. Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadline. Proc. 11th Real-Time
Systems Symp., p.201-209. [doi:10.1109/REAL.1990.128
748]

Liu, C.L., Layland, J., 1973. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. J. ACM,
20(1):46-61. [doi:10.1145/321738.321743]

OSEK, 2003. OSEK/VDX Operating System, Version 2.2.1.
Http://www.osek-vdx.org/mirror/os221.pdf

Palencia, J.C., Gonzalez Harbour, M., 1998. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. Proc.
19th IEEE Real-Time Systems Symp., p.26-37. [doi:10.
1109/REAL.1998.739728]

Palencia, J.C., Gonzalez Harbour, M., 1999. Exploiting
Precedence Relations in the Schedulability Analysis of
Distributed Real-Time Systems. Proc. 20th IEEE Real-
Time Systems Symp., p.328-339. [doi:10.1109/REAL.
1999.818860]

Pillai, P., Shin, K.G., 2001. Real-Time Dynamic Voltage
Scaling for Low-Power Embedded Operating Systems.
Proc. 18th ACM Symp. on Operating Systems Principles,
p.89-102. [doi:10.1145/502034.502044]

Redell, O., 2004. Analysis of Tree-Shaped Transactions in
Distributed Real Time Systems. Proc. 16th Euromicro
Conf. on Real-Time Systems, p.239-248. [doi:10.1109/
EMRTS.2004.1311026]

Tindell, K.W., 1994. Adding Time-Offsets to Schedulability
Analysis. Technical Report YCS 221, Univ. of York.

Wang, L., Wu, Z.H., 2004. Schedulability Test for Fault-
Tolerant Hybrid Real-Time Systems with Preemptive and
Non-Preemptive Tasks. Proc. 4th Int. Conf. on Computer
and Information Technology, p.1169-1174. [doi:10.1109/
CIT.2004.10001]

Yomsi, P.M., Sorel, Y., 2007. Extending Rate Monotonic
Analysis with Exact Cost of Preemptions for Hard Real-
Time Systems. Proc. 19th Euromicro Conf. on Real-Time
Systems, p.280-290. [doi:10.1109/CRTS.2007.15]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

