
Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 843

An XPath-based OWL storage model for effective ontology
management in Semantic Web environment*

Jinhyung KIM†1, Dongwon JEONG2, Doo-kwon BAIK†‡1

(1Department of Computer Science and Engineering, Korea University, Seoul 136-713, Korea)
(2Department of Informatics and Statistics, Kunsan National University, Kunsan 573-701, Korea)

†E-mail: jinhyung98.kim@gmail.com; baikdk@korea.ac.kr
Received May 8, 2008; Revision accepted Oct. 9, 2008; Crosschecked Mar. 27, 2009

Abstract: With the rapid growth of the Web, the volume of information on the Web is increasing exponentially. However,
information on the current Web is only understandable to humans, and this makes precise information retrieval difficult. To solve
this problem, the Semantic Web was proposed. We must use ontology languages that can assign data the semantics for realizing
the Semantic Web. One of the representative ontology languages is the Web ontology language OWL, adopted as a recommen-
dation by the World-Wide Web Consortium (W3C). OWL includes hierarchical structural information between classes or prop-
erties. Therefore, an efficient OWL storage model that considers a hierarchical structure for effective information retrieval on the
Semantic Web is required. In this paper we suggest an XPath-based OWL storage (XPOS) model, which includes hierarchical
information between classes or properties in XPath form, and enables intuitive and effective information retrieval. Also, we show
the comparative evaluation results for the performance of the XPOS model, Sesame, and the XML file system-based storage
(XFSS) model, in terms of query processing and ontology updating.

Key words: XPath, Web ontology language, Hierarchical structure, Ontology storage, Semantic Web
doi:10.1631/jzus.A0820355 Document code: A CLC number: TP31

INTRODUCTION

With the rapid growth of the Web, large volumes

of Web-based information are being created and
propagated. However, precise searching of requested
information is becoming more difficult, since there is
a considerable increase in the volume of information
on the Web. Precise retrieval of the requested infor-
mation is becoming the principal issue, and this is
more important than rapid retrieval of the data. The
data on the current Web is designed only for human
readability and understandability. At this point, the
realization of complete semantic interpretation and
understanding in a computing environment is impos-
sible. Therefore, the Semantic Web was proposed to
solve these problems (Decker et al., 2000; Lee et al.,
2001; Fahmi et al., 2007).

The Semantic Web is an intelligent Web for inter-
communication between machines, with data repre-
sentation in the form of a new language that com-
puters can interpret. The Semantic Web is designed
for interpretability and understandability of computer
data, to overcome the limitations of current forms of
Web data representation that only humans can read
and understand. The principle of the Semantic Web is
the translation of semantics between information
resources in the form of a new language that com-
puters can interpret. Therefore, computers can inter-
pret semantics of information resources and process
the information themselves, with inter-communication
of information between computers. We must use an
ontology language that can describe the semantics of
information formally, to enable complete construc-
tion of the Semantic Web. Resource description
framework (RDF) is the standard adopted by the
World-Wide Web Consortium (W3C) for describing

Journal of Zhejiang University SCIENCE A
ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the Brain Korea 21 Project

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 844

metadata (Beckett, 2004; Herman et al., 2004; Stuck-
enschmidt et al., 2004). RDF can describe metadata
with rich expressions as well as possess the advan-
tages of hyper text markup language (HTML) and
extensible markup language (XML) (Carroll and
Stickler, 2004; Koffina et al., 2005; Li and Wang,
2006). The Web ontology language OWL recently
recommended by W3C is designed for applications
that need to process the content of the information,
instead of just presenting information to humans.
OWL facilitates greater machine interpretability of
Web content than that supported by XML, RDF, and
RDF-Schema (RDFS), by providing an additional
vocabulary along with a formal semantics (Smith et
al., 2004).

Therefore, we need an OWL storage model for
effective information search. We must consider the
hierarchical structure of classes and properties for
effective storage and searching. RDB-based storage
systems, such as Jena (Carroll and Stickler, 2004;
McKenzie et al., 2006; Lausen et al., 2008), Sesame
(Broekstra et al., 2002), 3-Store (Riddoch et al., 2002;
Harris and Gibbins, 2003), and Hawk (Pan, 2008),
analyze the structure of OWL documents and store
information in a relational database. In addition,
XML file system based storage (XFSS) systems (Min
et al., 2003; Park et al., 2007; Woo et al., 2007) are
representative systems that consider the hierarchical
structure of OWL data and store information in an
XML file system. However, Sesame is inefficient,
due to the increasing number of iterations in the
searching of the hierarchical structure, with an in-
creasing hierarchical level. An XFSS system is not
efficient either, because we must access XML storage
and relational storage simultaneously, and obtain
integrated query results whenever a query is made.

In this paper, we propose an XPath-based OWL
storage model (XPOS), which considers hierarchical
structures of OWL data, to support more effective
extraction of hierarchical information and query
processing than Sesame and the XFSS system. XPOS
stores all data about OWL documents in a relational
database, and hierarchical information in XPath form.
Therefore, XPOS can search hierarchical information
effectively, without iterative searching, to obtain the
relationship between super-class/super-property and
sub-classes/sub-properties.

This paper is organized as follows. In Section 2
we describe Sesame and the XFSS system, which are

representative OWL storage systems, and related
works that consider the hierarchical structure. In Sec-
tion 3 we present the XPOS model, architecture, and
detailed modules in the XPOS system. In addition, we
illustrate the translation and storage processes of the
XPOS system, intermediate data, and final data stored
in the XPOS model, with an OWL example. In Sec-
tion 4 we make a comparison of the XPOS model,
Sesame, and the XFSS XML database (DB) based
system via a performance evaluation. Using quanti-
tative experiments, we validate the superiority of the
XPOS model over the conventional OWL storage
systems. Finally, we conclude this paper with future
work in Section 5.

RELATED WORKS

Relational database based OWL storage system
Relational DB based OWL storage systems

analyze information about OWL documents and store
that information in a relational database with a storage
schema. Typical relational DB based OWL storage
systems are Jena (Carroll and Stickler, 2004;
McKenzie et al., 2006; Lausen et al., 2008), 3-Store
(Riddoch et al., 2002; Harris and Gibbins, 2003),
Hawk (Pan, 2008), and Sesame (Broekstra et al.,
2002).

Jena is a popular Semantic Web toolkit for Java
programmers. Studies of Jena commenced in 2000,
and Jena2 was released in 2003. The main contribu-
tion of Jena is the rich application program interface
(API) model for manipulating RDF graphs. Based on
this API, Jena provides various tools, including I/O
modules for: RDF/XML (Carroll, 2001; Carroll and
de Roo, 2004), N3 (Lee, 2000), N-triple (Grant and
Beckett, 2004), and RDQL (Miller et al., 2002). Us-
ing the API the user can choose to store RDF graphs
in memory or in persistent storage. Jena provides an
additional API for manipulating DARPA agent
markup language+ontology inference layer (DAML+
OIL). However, because Jena manages hierarchical
structural information about classes and properties in
only one table, Jena is inefficient in terms of query
processing, due to the many join operations (Jeon et
al., 2005).

3-Store efficiently supports RDF and RDFS en-
tailments over relatively large RDF knowledge bases,

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 845

using a relational database back-end to perform the
queries (Harris and Gibbins, 2003). At present,
3-Store is intended to extend the indexing scheme
techniques used for the tables to represent triples in
the schema, because the choice of indexes can dra-
matically affect the query or assertion time.

Hawk is a repository framework and toolkit that
supports OWL. It provides APIs as well as imple-
mentations for parsing, editing, manipulating, and
preserving OWL ontologies (Pan, 2008). It contains
the following storage models: SimpleMemory,
DLMemory, SimpleDB, and DLDB. Relational DB
based storage systems include Parka, Redland, and
TAP. However, most systems do not represent a
storage schema explicitly. Therefore, we use Sesame,
which represents the storage schema explicitly, as a
representative relational DB based storage system.

Sesame is a system developed as a part of
On-To-Knowledge in the information society tech-
nologies (IST) project. Sesame can support storage,
search, and inference of an ontology, with RDF and
RDFS. Key tables in Sesame for storage are class,
property, resources, subClassOf, subPropertyOf, and
triple tables; additional information about an ontology
is stored in domain, range, namespaces, type, labels,
comment, and literals tables. A storage schema and a
table description of Sesame are shown in Fig.1 and

Table 1, respectively. The class table includes in-
formation about classes in ontology documents.
Names of all classes are stored in the class table,
excluding hierarchical structures among classes. The
property table contains information about properties in

Table 1 Table description of Sesame
Table name Contents
Class Class information in ontology
Property Property information in ontology

Namespaces Namespace information including on-
tology

Resources Resource information about namespaces
and class local names

Range Value range information about classes
and properties

Domain Domain information about classes and
properties

Type Relationship information between
classes and namespaces

Labels Relationship information between literals
and namespaces

Triples Relationship information among classes,
instances, and properties

Comment Comment information about relationship
between literals and namespaces

Literals Value information included in classes
subClassOf Hierarchical structural information be-

tween classes
subPropertyOf Hierarchical structural information be-

tween properties

Fig.1 Storage schema of Sesame

is _ derived class is_derived property class is _ derived

is _ derived prefix name is_derived

resource literal is_derived

resource class is _derived namespace local name

resource is_ derived language value

subject predicate object is_derived is _ derived

subClassOf domain range

class namespaces

type resources

property

labels
triples subPropertyOf

comment literals

sub - class super - class property

ID ID

ID

ID

ID literal

sub-property super - property

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 846

ontology documents by storing the names of all prop-
erties, excluding hierarchical structures among prop-
erties. The literals table includes information about
namespaces and instances included in classes. The
literals table consists of an ID attribute as an identifier
of an instance, and a value attribute storing instance
values. The subClassOf table, which is composed of a
super-class attribute for parent classes and a sub-class
attribute for child classes, contains hierarchical struc-
tural information between classes. The subPropertyOf
table, which consists of a super-property attribute for
parent properties and a sub-property attribute for
child properties, includes hierarchical structural in-
formation between properties. The subClassOf table
and the subPropertyOf table contain only information
about adjacent parent/child classes and properties.
The triples table includes relationship information
among classes, instances, and properties in subject-
predicate-object form.

However, as the depth of a hierarchical structure
increases and the OWL document grows more com-
plex, operations have to be iterated. To extract hier-
archical structures between classes or properties, we
search the parent class/property from the super-class
attribute or the super-property attribute in the sub-
ClassOf table or the subPropertyOf table. Then, we
search the child class/property that has a relationship
with the searched parent class/property, and search
the child class/property that has a relationship with
the searched child class/property as the new parent
class/property again. This search process must be
iterated until there are no more child classes/proper-
ties. Table 2 shows the limitations of Sesame in terms
of the extraction of hierarchical structural information.
In Table 2, we must iterate 10 operations to extract
hierarchical structural information between nodes A
and K. Sesame is inefficient, due to unnecessary it-
eration, and if a hierarchical structure is complicated,
the time for extraction of hierarchical structural in-
formation increases.

XML file system based OWL storage (XFSS) system
The XFSS system is a system for efficient stor-

age and searching of hierarchical information in an
OWL document, using an XML file system. In the
XFSS system, hierarchical structural information is
stored in an XML file, and information about classes,
properties, and instances is stored in a relational da-
tabase (Min et al., 2003; Park et al., 2007; Woo et al.,
2007). In addition, the XFSS system creates addi-
tional XML documents for hierarchical structural
information, and stores the XML documents in XML
storage. This system creates an XML document, in-
cluding hierarchical information about classes and
properties. Fig.2 illustrates the XFSS system archi-
tecture for storing OWL data. If OWL documents are
provided, an OWL parser parses the OWL documents
and extracts information about classes, properties,
instances, hierarchical structure, and constraints. The
hierarchical information about classes and properties
is translated into an XML document by an XML
Manager. The created XML document, including
hierarchical structural information, is stored in the
XML file system. Other information, such as infor-
mation about classes, properties, and instances, is
stored in a relational database by the Ontology
Manager. Fig.3 shows an XML document created for
hierarchical structural information about classes and
properties.

In the case of the XFSS system, whenever a

query is processed, we access the XML file system
and acquire hierarchical structural information about
classes and properties. Then, we access the relational
database and obtain final query results with hierar-
chical structural information from the XML file system.

Table 2 Hierarchical structure in Sesame
Super-class/

Super-property
Sub-class/

Sub-property
Super-class/

Super-property
Sub-class/

Sub-property
A B F G
B C G H
C D H I
D E I J
E F J K

Fig.2 Architecture of an XFSS system

Hierarchical
information manager

Ontology information
manager

OWL document

OWL parser

XML document

XML storage RDBMS

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 847

However, we must access both the XML file system
and the relational database when we process inputted
queries. In addition, we must translate inputted que-
ries into the form of XQuery and SQL, to acquire
information from the XML file system and the rela-
tional database. Therefore, this system is inefficient in
terms of query processing performance. The XFSS
system creates tables for each root class and stores
instances included in the root class in these tables for
efficient searching of instances. By this method we
can search instances included in specified classes
effectively. However, if queries for searching all in-
stances or instances of many classes are provided, the
query processing time increases, due to several join
operations between tables. In this case, the XFSS
system can be less efficient than Sesame. Table 3
presents the storage schema for the XFSS system.

XPATH-BASED OWL STORAGE (XPOS)
MODEL

In this section, we describe an XPath-based

OWL storage (XPOS) model for overcoming limita-

tions in terms of storage and query processing of
hierarchical structural information of conventional
OWL storage systems. One aim of the XPOS model is
to support a more effective and intuitive information
search of OWL documents than Sesame and the
XFSS system. In addition, we define a schema for the
XPOS model, and an architecture for the XPOS sys-
tem. We also present the translation process from
OWL documents to the XPOS model with a simple
example.

XPOS model definition

The XPOS model includes information about the
hierarchical structure between classes or properties.
In addition, the XPOS model is designed for effective
search of hierarchical structural information. Table 4
presents the storage schema of the XOPS model.

The XPOS model consists of a class table, a
property table, a triples table, and an instance table.
The storage schema of the XPOS model is similar to
that of Sesame, excluding the class_path and
prop_path attributes, which include hierarchical
structural information. The class and property tables
include an ID attribute for classes/properties identi-
fication, and a name attribute for specific names of
classes/properties. The class and property tables
contain a path attribute and a root_id attribute, for
information about hierarchical structure between
classes and properties. In the path attribute, informa-
tion about hierarchical structure is stored in XPath
form (e.g., Student/Graduate School Student/Ph.D.
Student). The instance table includes an inst_id at-
tribute for instance identification, an inst_name at-
tribute, and a class attribute, in which instances are
included. The triples table contains relationships
among classes, instances, and properties. In the sub-
ject and object attributes, values of class_id and
inst_id can be stored. In a predicate attribute, values
in prop_id can be stored.

Property hierarchy

hasCompany
(0, 1)

hasMaker
(1 , 0)

Class hierarchy

Liquor (0, 2)

Wine (1, 1)

Whitewine (2, 0)

locatedIn
(0, 0)

hasFlavor
(0, 0)

3 10 54

11

23

12

18

<ClassHierarchy >
 <C 23 order=Liquor, 0, 2>
 < C 12 order=Liquor, 1, 1>
 < C18 order=Liquor, 2, 0/>
 < / C 12 >
 </ C23 >
</ ClassHierarchy >
<PropertyHierarchy>
 <P54 order=hasCompany, 0, 1>
 < P 11 order=hasMaker, 1, 0/>
 </ P54>
</ PropertyHierarchy>

Fig.3 XML document for hierarchical structure

Table 3 Storage schema of the XFSS system

preorder postorder class_uid value_u value_s
Propertyname_Table

preorder postorder uid
Classname_Table

Table 4 Storage schema of the XPOS model

subject predicate object
Triples_Table

prop_id prop_name prop_path root_id
Property_Table

inst_id inst_name class
Instance_Table

class_id class_name class_path root_id
Class_Table

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 848

For extraction of information about the hierar-
chical structure between classes or properties from
OWL documents, the following processes are needed.
First, we analyze the schema for the OWL document
and create a data graph with a hierarchical relation-
ship between classes and properties (Jang et al., 1999;
Kobayashi et al., 2005; Zhou et al., 2006). Second,
we perform a depth-first search from root classes/
properties to leaf classes/properties, based on the
created data graph, and create paths for each node.
When we create paths for each node, we search from
root nodes to leaf nodes. Then, if we arrive at a leaf
node, we create a path for the leaf node and the in-
termediate nodes. However, we create paths for in-
termediate nodes just once, and thus we can avoid
duplicate path creation. Extracted path information is
stored in a path attribute in the class and property
tables. Table 5 presents descriptions about the sym-
bols and notations used in the path creation algorithm.

In the data graph, each node consists of the fol-
lowing elements. Definition 1 presents the node con-
stitution in the data graph.

Definition 1 (Node constitution in the data graph)
Each node in the data graph is denoted by a 5-tuple:
N(name)=(Na, Nu, Vf, Cf, Sf), where Na represents a
specific name for each node, Nu represents a specific
node number assigned by DFS searching when the
data graph is created, Vf represents whether a node has
been visited and a path has been created for the node
or not, Cf represents whether a node has child nodes
or not, and Sf represents whether a node has sibling
nodes or not. If a node has been visited and a path has
been created for the node, the visiting_flag of this
node is 1, otherwise 0; a node that has no child nodes
has a flag set to 0, otherwise 1; a node that has no
sibling nodes has a flag set to 0, otherwise 1.
Definition 2 (Case definition in the path creation)
When we create a path for each node from a data
graph, there are two representative cases (1 and 2) and
four detailed cases (1, 2-1, 2-2, and 2-3):

Case 1: Node.visiting_flag=0 and Node.child_
flag=1.

Case 2: Node.visiting_flag=0 and Node.child_
flag=0.

Case 2-1: Node.sibling_flag=1 and Sibling_
node.visiting_flag=0.

Case 2-2: Parent_node.sibling_flag=0 and
Parent_node.sibling_node.visiting_flag=0.

Case 2-3: Ascendant_node.sibling_flag=0 and
Ascendant_node.sibling _node.visiting_flag=0.

Definition 2 defines various cases of path crea-
tion. Case 1 represents the case where the current
node has not been visited and has child nodes. In case
1, we store the name of the current node in the
visiting_node array and search the child node as the
next order. Case 2 describes the case where a node has
not been visited and does not have child nodes; the
current node is a leaf node. In this case, we create a
path for the node and the intermediate nodes between
the root node and the current node. However, we must
check for duplicate path creation in this case, because
the intermediate nodes of all sibling nodes are the
same. To check for duplication of node paths, we
temporarily store the created path in a path_temp
array. The path stored in the path_temp array is
compared with the path included in a path_storage
array. If the created path is not contained in the
path_storage array, the path is finally stored in the
path_storage array. Cases 2-1, 2-2, and 2-3 are back-
tracking cases, after we search leaf nodes. Case 2-1

Table 5 Description of symbols and notations

Notation Description
Node.number Node number assigned by DFS search

in the data graph
Node.visiting_flag Visited nodes have flag set to 1; nodes

that have not been visited have flag
set to 0

Node.child_flag Nodes that do not have child nodes
have flag set to 0; nodes that have
child nodes have flag set to 1

Node.sibling_flag Nodes that do not have sibling nodes
have flag set to 0; nodes that have
sibling nodes have flag set to 1

visiting_node[] Array for representing visited node
lists

DFS_visit() Function for search in the data graph
by the DFS search method

Nextnode() Function for description of the next
ordered node in DFS search

path_temp[] Array for storing created path tempo-
rarily before duplication checking

path_storage[] Array for storing created path after
duplication checking

Createpath() Function for creating XPath from the
root node to the current node

Pathcheck() Function for checking duplicated
creation of node paths

Backtrackingpath() Function for execution of path back-
tracking in the data graph

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 849

illustrates the case where a leaf node has sibling nodes
that have not been visited. In this case, we perform
backtracking to a parent node and search sibling
nodes in the next ordering. Case 2-2 represents the
case where a leaf node does not have sibling nodes
that have not been visited. In this case, we perform
backtracking to a parent node that has sibling nodes
that have not been visited, and search sibling nodes of
the parent node. If there are no sibling nodes of the
parent node that have not been visited, we perform
backtracking to the ascendant node. If the ascendant
node has unvisited sibling nodes that have not been
visited, we search these nodes, as in case 2-3. This
process is iterated until we have searched every node in
the data graph, and path creation is completed when
there are no nodes in cases 1, 2-1, 2-2, and 2-3. Fig.4
shows the flow of path creation in terms of search cases.

In addition, we store the ID of the root

class/property in the root_id attribute in the class and
property tables, for efficient access and searching of
ontology data. If several ontologies are included in
the OWL document, information about the root_id
attribute enables us to search and modify the ontology
easily. Also, when we modify or reconstruct the on-
tology, we check the root class/property of the on-
tology. Then, we just modify or reconstruct
classes/properties included in the root class/property.
Using the root_id attribute, we can reduce ontology
modification and reconstruction time. Table 6 pre-
sents the entire path creation algorithm.

Fig.5 shows the data graph and path attribute
information, represented in XPath form, of the hier-
archical structure of classes of an OWL document. If
information about the hierarchical structure of classes
and properties is stored as shown in Fig.5, we can
extract hierarchical structural information efficiently
from the class and property tables, without iterating or

Table 6 Path creation algorithm
Procedure:
 Initialize i=1, j=0, k=0, m=0;
 Class Node
 Initialize string name=null;
 Initialize int number=0;
 Initialize int visiting_flag=0;
 Initialize child_flag=0;
 Initialize sibling_flag=0;
 For (Root_node to Final_leaf_node)
 Initialize visiting_node[];
 DFS_visit(Node);
 if (Node.visiting_flag==0 && Node.child_flag==0)
 visiting_node[k]=Node.name;
 Increase k;
 Node.visiting_flag=1;
 Nextnode(child_node);
 End if
 else if (Node.visiting_flag==0 && Node.child_flag==1)
 visiting_node[k]=Node.name;
 Do while (visiting_node[k]!=null)
 Initialize k=0;
 Initialize path_temp[], path_storage[];
 path_temp[k]=Createpath(Root_node, visiting_node[k]);
 For j=0 to jmax
 For m=0 to mmax
 Pathcheck(path_temp[j], path_storage[m]);
 End For
 Increase m;
 if (path_temp[j]!=path_storage[m])
 path_storage[mmax+1]=path_temp[j];
 End if
 End For
 Increase j;
 Increase k;
 if (Node.sibling_flag==0 && sibling_node.visiting_

flag==0)
 Backtrackingpath(sibling_node);
 Nextnode(sibling_node);
 else
 Do while (parent_node!=null)
 Backtrackingpath(parent_node);
 if (parent_node.sibling_flag==0 || parent_node.

sibling_node.visiting_flag==0)
 Nextnode(parent_node.sibling_node);
 else Loop
 End else if
End Procedure

Fig.4 Flow of path creation

Create the path

Searching start

Is there a
child node?

Searching child
node

Yes

No
Yes

Yes
Yes

No

No

No

No

No

Yes

Yes

Is there a sibling
node?

Visited
node?

Visited
node ?

Backtracking to
the parent node’s

sibling node

Backtracking to
the ascendant
node’ s sibling

node

Does the parent node
have a sibling node?

Dose the ascendant node
have a sibling node?

Searching end

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 850

accessing other storages, such as the XFSS system.
We can extract hierarchical structural information
about a specified class or property via the path at-
tribute in the class or property tables. In addition,
when we extract a sub-class or sub-property from a
specified class or property, we can extract a sub-class
or sub-property easily by searching the path attribute.
In the case where the hierarchical structure of an
OWL data is complicated, we can extract information
about the hierarchical structure rapidly and effec-
tively by searching the path attribute in the class or
property tables.

However, recently, terabyte or petabyte volumes
of data are being stored and managed in a database.
Mass data storage can be very complicated and data
can have a high level of depth. Therefore, mass data
storage can result in a storage capacity problem, in
terms of path attributes. Nevertheless, information
stored in the path attribute in the class and property
tables is simple string data, and the capacity of mass
data storage is not based on the complexity of the
structure, but the quantity of instance values. There-
fore, we will consider the storage capacity problem

concerning the path attribute in the class and property
tables as a part of future studies.

XPOS system architecture

Fig.6 presents the XPOS system architecture for
storing OWL data in a relational database. If OWL
documents are provided, the OWL parser parses
documents. First, the OWL parser analyzes docu-
ments syntactically and semantically. Then, the OWL
parser extracts information about classes, properties,
instances, hierarchical structure, and constraints from
OWL documents. Information about the OWL
documents is extracted and categorized into two
components by the hierarchical info extractor and the
ontology info extractor: one component is the hier-
archical information extracted by the hierarchical info
extractor; the other is ontology information extracted
by the ontology info extractor. Hierarchical structural
information is translated into a data graph by the data
graph generator, which analyzes the schema of hier-
archical information extracted by the hierarchical info
extractor, and creates data graphs about the hierar-
chical structure of classes and properties. The hier-
archical info manager performs a depth-first search
from root classes/properties to leaf classes/properties,
and extracts paths for every node in the data graph.
Information about classes, properties, and instances,
excluding hierarchical structural information, is ana-
lyzed and extracted by the ontology info extractor.
The ontology info extractor extracts relationships
between classes and instances, or between classes and
properties. Finally, hierarchical structural information
extracted by the hierarchical info manager, and on-
tology information extracted by the ontology info
manager, are translated by the converter and stored in
the XPOS model.

 Fig.6 XPOS system architecture

OWL document

OWL parser
Hierarchical info

Hierarchical info extractor

Data graph generator

Hierarchical info manager

Ontology info extractor

Ontology info

Ontology info manager

Converter

XPOS model

(b)

class_ID

01 University University University

02 Professor University/
Professor University

… … … …

13 Full University

14 Part University

class_name path root_ID

University/Stu-
dent/Graduate
/Ph.D./Full

University/Stu-
dent/Graduate
/Ph.D./Part

Fig.5 Data graph (a) and path attribute information (b)

(a)

University

Professor Student Employee

Undergraduate Graduate

Ph . D . Master

Full Part

Full Prof.

Associate
Prof .

Lecturer

Assistant
Prof.

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 851

Translation and storage processes of the XPOS
system

In this subsection, we describe the translation
and storage processes of the XPOS system, with
sample OWL data (University0_0.owl) created by the
Univ-Bench Artificial (UBA) data generator.

The sample OWL data includes information
about university, department, and activity in univer-
sity. This document is used for describing the trans-
lation and storage processes of the XPOS system as a
simple example. If the University0_0.owl document
is inputted into the XPOS system, the OWL parser
parses the document, and checks for syntactical or
grammatical errors. If there is a parsing problem, the
conversion and storage process for the OWL docu-
ment by the XPOS system is terminated at this step.
The OWL document is analyzed by the hierarchical
info extractor and the ontology info extractor and
classified into a hierarchical structural information
component and an ontology information component,
including classes, properties, instances, and triples
information. Then, the data graph generator creates a
data graph based on hierarchical structural informa-
tion. Fig.7 shows data graphs of the hierarchical
structure of classes and properties. After the data
graph is created, the hierarchical info manager per-
forms a depth-first search from the root node to the
leaf nodes. The hierarchical info manager creates a
node path when it arrives at leaf nodes. Then, node
paths for intermediate nodes are also created. When it
searches sibling nodes of leaf nodes, node paths for
intermediate nodes are not created. Via this method,

we can reduce duplicate path creation. Table 7 pre-
sents the search ordering, search path, and created
path of the class hierarchy data graph and property
hierarchy data graph.

If the node search and path creation are com-
pleted, hierarchical structural information is stored in
the path attribute in the class and property tables. In
addition, names of classes, names of properties, val-
ues of instances, and values of triples are stored in the
class, property, instance, and triples tables, respec-
tively. The IDs in the class, property, and instance
tables are sequentially assigned, and hierarchical
structural information created by the hierarchical info
manager is stored in the path attribute in XPath form.
In the root_id attribute, we store the root nodes of the
class and the property data graphs, for efficient

Table 7 Search ordering, search path, and created path of the class/property data graph
Order Data graph Search path Created path

1 Employee->PostDoctor Employee/PostDoctor
2 Employee->Faculty->Professor->Full Professor Employee/Faculty
 Employee/Faculty/Professor
 Employee/Faculty/Professor/Full Professor

3 Employee->Faculty->Professor->Associate Professor Employee/Faculty/Professor/Associate Professor
4 Employee->Faculty->Professor->Assistant Professor Employee/Faculty/Professor/Assistant Professor
5 Employee->Faculty->Professor->Visiting Professor Employee/Faculty/Professor/Visiting Professor
6 Employee-> Faculty->Professor->Dean Employee/Faculty/Professor/Dean
7 Employee->Faculty->Professor->Chair Employee/Faculty/Professor/Chair
8 Employee->Lecturer Employee/Lecturer
9 Employee->Administrative Staff->Systematic Staff Employee/Administrative Staff
 Employee/Administrative Staff/Systematic Staff

10

Class

Employee->Administrative Staff->Clerical Staff Employee/Administrative Staff/Clerical Staff
11 degreeFrom->Doctoral degreeFrom degreeFrom/Doctoral degreeFrom
12 degreeFrom->Master degreeFrom degreeFrom/Master degreeFrom
13

Property
degreeFrom->Undergraduate degreeFrom degreeFrom/Undergraduate degreeFrom

Doctoral
degreeFrom Master

degreeFrom

Undergraduate
degreeFrom

DegreeFrom

Fig.7 (a) Class hierarchy data graph; (b) Property
hierarchy data graph

staff lt
Lecturer

Systematic

Full Prof.

Associate
Prof.

Assistant
Prof. Visiting

Prof.

Clerical

Administrative
staff

PostDoctor

Dean

Chair

Employee

Faculty

Professor staff lt

(a)

(b)

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 852

ontology modification and reconstruction. We store
the names of instances and related classes in the in-
stance table. The triples table includes triples infor-
mation as classes-properties-instances or classes-
properties-classes and each triple is represented as a
uniform resource identifier (URI). Table 8 presents
the XPOS model translated by the XPOS system, with
the simple OWL document.

PERFORMANCE EVALUATION

In this section, we describe the performance

evaluation for query processing among the XPOS
system, Sesame, and the XFSS system.

Experimental environment and data

For the comparative experiment, we used a
Pentium Dual CPU 2.66 GHz system with 1 GB
memory. In addition, we used Oracle 9i as the DBMS,
and Java as the implementation language.

The data used in the experiment was the dataset
created by UBA (Guo et al., 2005), which is an on-
tology creation tool developed by Lehigh University,
able to create ontologies of various sizes. The created

ontology data consisted of contents about university,
department, and university activity, and included 43
classes and 32 properties. In the comparative ex-
periment, we created LUBM(1, 0), LUBM(5, 0), and
LUBM(10, 0) OWL ontologies, which contained
OWL files for 1, 5, and 10 universities, respectively.
LUBM(N, S) means that the dataset contains N uni-
versities, beginning with university 0, which were
generated using a seed value of S. OWL ontologies
were translated by the XPOS system, Sesame, and the
XFSS system, and stored in each storage model. Then,
we evaluated the performance in terms of the query
processing time and the ontology updating time. At
present, systems storing ontology information in a
relational database are Sesame, 3-Store, DLDB,
Hawk, the XFSS system, etc. However, many systems
do not present an explicit storage schema structure.
Therefore, we used Sesame and the XFSS system,
which have released explicit storage schemas, for an
accurate experiment. Fig.8 shows data graphs of
classes and properties for the experimental data, the
LUBM ontology data.

Query processing time

We used six experimental queries for a com-
parative evaluation in terms of the query processing
time. Query 1 was a query for searching all

Systematic
staff

Systematic
staff

Systematic
staffSystematic

staff

Systematic
staff

Employee

Faculty

Professor
Full

Visiting Dean
Chair

Assistant

Lecturer

Administra-
tive staff Systematic

staff

Clerical
staff

PostDoctor

Prof.
Associate

Prof. Prof.
Prof.

Employee

Employee

Employee
Employee

Employee

Employee

Employee
Employee

Employee

Employee

Employee
Employee

Employee

Systematic
staff

Systematic
staff Systematic

staff
Systematic

staff
Systematic

staff

Systematic
staff

Systematic
staff

Systematic
staff

Systematic
staff

Systematic
staff Systematic

staff

Fig.8 Hierarchical structure of Univ-Bench Artificial
(UBA) ontology data

Table 8 XPOS model

class _ id class _ name class _ path root_id
c 01 Employee Employee Employee
c 02 PostDoctor Employee/PostDoctor Employee
...

Class _ Table

prop _ id prop _ name prop _ path root_id
p 01 degreeFrom degreeFrom degreeFrom
p 02 Doctoral degreeFrom degreeFrom/Doctoral degreeFrom degreeFrom
...

Property _ Table

http://www.Department0.University0.
edu/AssistantProfessor0

inst _ id inst _ name class
i 01 Assistant Professor

i 02 http://www.Department0.University0.
edu/FullProfessor2 Full Professor

...

Instance _ Table

property object

Http://www.
University932.edu

...

Triples _ Table

Http://www.Department5.
University0.edu/
AssistantProfessor4

Http://www.lehigh.edu/~zhp2/
2004/0401univ-bench.owl#
doctoraldegreeFrom

Http://www.Department5.
University0.edu/
AssistantProfessor4

Http://www.lehigh.edu/~zhp2/
2004/0401univ-bench.owl#
masterdegreeFrom

Http://www.
University264.edu

subject

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 853

sub-classes of a specified class. Query 2 searched all
sub-classes of a specified class, then all instances
included in the sub-classes. Query 3 was a query for
searching all sub-properties of a specified property.
Query 4 searched all sub-properties of a specified
property, and all objects related to sub-properties.
Query 5 searched all sub-properties of a specified
property, and all subjects related to sub-properties.
Query 6 searched all sub-properties of a specified
property and all objects related to sub-properties, and
the classes related to the objects.

All queries in the performance evaluation were
related to searches of the hierarchical structure be-
tween classes or properties. Therefore, we performed
an experiment focusing on a comparative evaluation
among storage systems, in terms of the query proc-
essing performance with respect to the storage struc-
ture of hierarchical structural information. In other
words, we focused on a performance comparison of
the extraction of hierarchical structure between
classes and properties.

We measured the average time by repeating the
experiment 100 times, for a more precise experiment.
Fig.9a presents the processing results for the three
systems, for query 1. Though the size of the OWL file
increases, the number of classes remains constant—
the experimental results of query 1 are unrelated to
the size of the OWL file. To process query 1, Sesame
performs an iterative search of sub-classes, to search
sub-classes of the employee class. The XFSS system
accesses the XML storage and checks the root class of
the employee class based on the XML file, including
hierarchical structural information. Then, the XFSS
system searches sub-classes in the employee table.
However, in the case of the XPOS system, we can
search sub-classes by searching the path attribute in
the class table. Therefore, the XPOS system shows
the best performance in terms of the processing time
of query 1, because the XPOS system searches only
one table without any join operation, for performing
query 1.

Fig.9b shows the processing results for the three
systems for query 2. As the size of the OWL file in-
creases, the number of instances also increases; if the
size of the OWL file increases, the query response
time for query 2 increases. Sesame and the XPOS
system retrieve instances by searching the instanceOf/
instance table, based on the results of query 1. Sesame

requires more iterations for searching sub-classes
than the XPOS system, for the processing of query 1.
Therefore, query processing performance for query 2
of the XPOS system is better than that of Sesame.
However, the XFSS system requires many more join
operations, because instances are stored in many
classs and property tables. As a result, the XFSS
system involves higher computational costs for query
2 than the XPOS system and Sesame.

Fig.9c illustrates the processing results for the
three systems for query 3. As the size of the OWL file
increases, the number of properties remains con-
stant—the size of the OWL file does not affect the
processing time of query 3. Sesame needs more it-
erations for searching sub-properties of the mem-
berOf property in the subPropertyOf table. The XFSS
system accesses the XML storage and checks the root
property of the memberOf property. Then, it searches
all sub-properties by searching the memberOf table
with hierarchical structural information. In the XFSS
system, instances are stored in each property table.
Though the number of properties is not great, we must
search as many property tables as the number of
stored instances. However, the XPOS system can
search sub-properties only by searching the path at-
tribute in the property table. Therefore, in the case of
query 3, the XPOS system shows the best perform-
ance in terms of the query response time, because the
XPOS system performs an efficient search of the hi-
erarchical structure, in only one class/property table.

Figs.9d and 9e show the processing results of the
three systems for queries 4 and 5, respectively. As the
size of the OWL file increases, the numbers of in-
stances and objects in the triple also increase; the size
of the OWL file is directly proportional to the proc-
essing time of query 4. However, as the size of the
OWL file increases, the number of subjects in the
triple structure remains constant. In other words, there
is no relationship between the size of the OWL file
and the response time of query 5. Queries 4 and 5 are
similar queries, and search objects or subjects in the
triple properties retrieved as the results of query 3 are
included in a predicate in the triple. Sesame and the
XPOS system retrieve objects and subjects by
searching the triples table based on the results of
query 3. In terms of the query processing performance
of queries 4 and 5, the XPOS system shows better
performance than Sesame, due to the difference in

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 854

the search processing time of sub-properties of the
specified property. The XFSS system searches objects
and subjects in one table, and shows the best per-
formance in terms of searching objects and subjects
related to the specific property. However, the com-
putational cost for searching sub-properties is greater
than that of Sesame and XPOS.

Fig.9f presents the processing results of the three
systems for query 6. As the size of the OWL file in-
creases, the numbers of instances in classes and
properties also increase. In other words, the size of the
OWL file is directly proportional to the query proc-
essing time for query 6. Sesame and the XPOS system
search classes in the instance table based on the re-
sults of query 4. However, query processing results
for query 6 of XPOS show better performance

compared with those of Sesame, due to the difference
in the time of searching sub-properties. The XML DB
based storage model has a short search time of classes,
because it searches classes in one table, based on the
results of query 4; however, the time of searching
sub-properties is much longer than that of the XPOS
system. Therefore, the XPOS system shows the best
performance, in terms of query processing for query 6.

The results of the aforementioned experiments
for queries 1~6 prove that the performance of the
XPOS model for searching hierarchical structural
information between classes or properties is superior
to that of Sesame and the XML DB based storage
system. Sesame must perform an iterative search of
sub-classes in the subClassOf table and subProper-
tyOf table. The XML DB based storage system

0

5

10

15

20

25

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
s)

Sesame XML DB based storage system XPOS system

4
3

20

4

22

3 3

19

2
0

500

1000

1500

2000

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
s)

73
203

53

760

1097

530

1530

1900

1145

0
10
20
30
40
50
60
70
80
90

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
s)

4

78

1 6

77

1 4

78

1
0

20

40

60

80

100

120

140

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
s)

48

62

36

79 81

56

123

101

76

0
10

20

30

40

50

60

LUBM(1, 0) LUBM(5, 0) LUBM(10, 0)
OWL ontology type

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
s)

 (e)

32

57

22

57

32 31

56

23 22

0
200
400
600
800

1000
1200
1400
1600
1800

LUBM(1, 0) LUBM(5, 0) LUBM(10, 0)
OWL ontology type

Q
ue

ry
 re

sp
on

se
 ti

m
e

(m
s)

64 67 50

877770

410

1618
1492

1139

Fig.9 Query processing time for the three systems—Sesame, the XPOS system, and the XML DB based storage
system—of six queries of LUBM(1, 0), LUBM(5, 0) and LUBM(10, 0)
(a) Query 1; (b) Query 2; (c) Query 3; (d) Query 4; (e) Query 5; (f) Query 6

(a)

(c)

(b)

(d)

(f)

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 855

accesses the XML storage and always performs an
XPath query for extracting hierarchical structural
information. In addition, the XML DB based storage
system has to access RDBMS and search ontology
information based on the extracted hierarchical
structural information. However, the XPOS system
searches only values of the path attribute in the class
and property tables to extract hierarchical structural
information. Therefore, in terms of query processing
performance with respect to hierarchical structure, the
XPOS system always shows better performance than
the other two systems.

Ontology updating time

Ontology data in a Web environment can be
frequently modified and removed. Hierarchical
structural information or instance values in the on-
tology can be modified. If instance values are
changed, modification of the ontology is very simple.
We can find the specified instance, and change the
value in the storage. However, if the hierarchical
structure is changed, ontology reconstruction and
updating require much more time. If the hierarchical
structure of the ontology is changed, as shown in
Fig.10, each system must reconstruct hierarchical
structural information in storage. For a performance
evaluation of the ontology updating time, we assumed
the ontology updating scenario shown in Fig.10.

As in Fig.8, there are seven ontologies in the
UBA ontology data. However, part of the ontology is
modified, as shown in Fig.11. In this case, we do not
need to completely reconstruct all the ontologies, and
reload all the data; we do not need to reconstruct the
remaining six ontologies. The performance evalua-
tion of the ontology updating time is performed with
the UBA ontology updating shown in Fig.8 and the
ontology updating scenario shown in Fig.10. Fig.11
illustrates the ontology updating time of three OWL
storage systems with the aforementioned ontology
data and updating scenario.

The ontology updating time means the ontology

reconstruction time and storage time for each storage
model. In Sesame, the ontology updating time is the
same as the ontology loading time of the entire on-
tology. Sesame cannot partially reconstruct the on-
tology; it loads all ontology data and re-constructs the
hierarchical structure. The XFSS system modifies the
XML file system with the modified hierarchical
structure and reconstructs the relational storage with
changed values. The reconstruction time of the hier-
archical structural information in the XFSS system is
also the same as the initial construction time of the
hierarchical structural information. However, the
XFSS system can rapidly present modified values
easily, because the XFSS system stores values about
classes and properties in each ontology table. The
XPOS system can update and partially reconstruct the
ontology, because the XPOS system manages the root
node of every node, classes and properties. The class
and property tables in the XPOS model include the
root_id attribute for managing the root nodes in each
ontology. By managing the root nodes, the XPOS
system can rapidly update and reconstruct the ontology

Fig.11 Ontology updating time

0

5

10

15

20

25

0 10 60 110
Number of instances (×104)

O
nt

ol
og

y
up

da
tin

g
tim

e
(×

10
3 s)

 Sesame
XFSS system
XPOS system

Employee

Faculty

Professor

Dean

Chair

Lecturer

Systematic
staff

Administrative
staff

Clerical
staff

Full Prof .

Associate
Prof.

Assistant
Prof.

PostDoctor

Visiting
Prof.

Employee

Professor

Dean

Chair

Lecturer Student

Master

Ph.D.

Full Prof.

Associate
Prof.

Assistant
Prof. Visiting

Prof.

Systematic
staff

Administrative
staff

Clerical
staff

PostDoctor

Under-
graduate

Fig.10 Ontology updating scenario

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 856

in a short time. As shown in Fig.11, the XPOS system
shows 90%~92% better performance than Sesame,
and 95%~97% better performance than the XFSS
system, in terms of ontology updating time.

Except for query processing and ontology up-
dating, the loading time of the ontology is also an
important factor for evaluating the translation system.
Obviously, an XPOS system consumes more loading
time of ontology data than conventional systems,
because it includes a path creation step additionally
for more efficient query processing and ontology
management. However, the major contribution of this
study is to present a method that can provide more
precise and effective query processing and ontology
management than the methods proposed before. In
addition, effective query processing and management
of stored ontology data is more important than load-
ing speed in the Semantic Web environment. There-
fore, we do not focus on loading time complexity of
an XPOS system in this work.

CONCLUSION AND FUTURE WORK

As the volume of Web information increases

rapidly, extraction of precise information becomes the
principal issue. In such an environment, the Semantic
Web emerged, for assigning semantics to information
and defining Web data formally. In addition, ontology
description languages such as RDF, RDFS, and OWL
were developed and utilized. In an ontology, hierar-
chical structural information between classes and
properties is a critical factor. Therefore, we need an
effective storage method for OWL data, which con-
siders hierarchical structural information for precise
extraction of information in the Semantic Web.

In this paper we described an XPOS model that
considers hierarchical structure for effective and ac-
curate extraction of information. In addition, we il-
lustrated the structure of the XPOS system for the
translation and storage of OWL data. An XPOS sys-
tem analyzes a data schema of inputted OWL data and
creates a data graph with hierarchical structural in-
formation between classes and properties. Also, an
XPOS system extracts paths from the root
class/property to all classes/properties via a depth-
first search method. Extracted hierarchical structural
information is stored in a path attribute in the class
and property tables of the XPOS model.

Therefore, we can overcome the limitations of
Sesame and the XML file system based storage sys-
tem using the XPOS model proposed in this paper.
Sesame and the XML file system based storage sys-
tem are inefficient and ineffective in terms of query
processing. Sesame requires unnecessary iterations
for extraction of hierarchical structural information.
In the case of the XML file system based storage
system, it needs twice the number of accesses and two
kinds of queries for RDB and the XML file system in
every query processing. However, the XPOS model
shows effective query processing performance, and
enables intuitive and fast information extraction via
XPath-based storage of a hierarchical structure.

In future studies, we need to consider the
trade-off between storage efficiency and query proc-
essing time for hierarchical structural information. In
general, if the storage efficiency is good, the query
processing time is long, because it does not consider
hierarchical structure in detail. Conversely, if the
query processing time is short, with detailed consid-
eration about hierarchical structure of an OWL
document, the loading time is long, because this sys-
tem has complex pre-processing steps. Therefore, we
must research both of these cases, with consideration
of the trade-off between storage efficiency and query
processing time.

References
Beckett, D., 2004. RDF/XML Syntax Specification. W3C

Recommendation. Available from http://www.w3.org/
TR/rdf-syntax-grammar/

Broekstra, J., Kampman, A., van Harmelen, F., 2002. Sesame:
an architecture for storing and querying RDF data and
schema information. LNCS, 2342:54-68.

Carroll, J.J., 2001. CoParsing of RDF & XML. HP Labs
Technical Report, HPL-2001-292.

Carroll, J.J., de Roo, J., 2004. OWL Test Cases. W3C.
Http://www.w3.org/TR/owl-test/

Carroll, J.J., Stickler, P., 2004. RDF Triples in XML. HP Labs
Technical Reports, HPL-2003-268.

Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne,
A., Wilkinson, K., 2004. Jena: Implementing the Seman-
tic Web Recommendations. Int. World Wide Web Conf.,
p.74-83.

Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.,
Erdmann, M., Horrocks, I., 2000. The Semantic Web: the
roles of XML and RDF. IEEE Internet Comput., 4(5):63-
73. [doi:10.1109/4236.877487]

Fahmi, I., Zhang, J., Ellermann, H., Bouma, G., 2007. SWHi
system description: a case study in information retrieval,

Kim et al. / J Zhejiang Univ Sci A 2009 10(6):843-857 857

inference, and visualization in the Semantic Web. LNCS,
4519:769-778.

Grant, J., Beckett, D., 2004. RDF Test Cases. W3C.
Http://www.w3.org/TR/rdf-testcases/

Guo, Y.B., Pan, Z.X., Heflin, J., 2005. LUBM: a benchmark
for OWL knowledge base systems. J. Web Semant.,
3(2):158-182.

Harris, S., Gibbins, N., 2003. 3store: Efficient Bulk RDF
Storage. PSSS, p.1-15.

Herman, I., Swick, R., Brickley, D., 2004. Resource Descrip-
tion Framework (RDF). W3C. Http://www.w3.org/RDF/

Jang, H., Kim, Y., Shin, D., 1999. An Effective Mechanism for
Index Update in Structured Documents. Proc. 8th Int.
Conf. on Information and Knowledge Management,
p.383-390. [doi:10.1145/319950.320031]

Jeon, H., Kim, J., Jun, J., Kim, J., Im, D., Kim, H.J., 2005. RDF
and OWL storage and query processing based on rela-
tional database. KIISE J. Comput. Pract., 11(5):451-457.

Kobayashi, K., Liang, W.X., Kobayashi, D., Watanabe, A.,
Yokota, H., 2005. VLEI Code: An Efficient Labeling
Method for Handling XML Documents in an RDB. ICDE,
p.386-387.

Koffina, I., Serfiotis, G., Christophides, V., Tanen, V., Deutsch,
A., 2005. Integrating XML Data Sources Using RDF/S
Schemas: The ICS-FORTH Semantic Web Integration
Middleware (SWIM). Deutsch Dagstuhl Seminar: Se-
mantic Interoperability and Integration, p.1-6.

Lausen, G., Meier, I., Schmidt, M., 2008. SPARQLing Con-
straints for RDF. Proc. 11th Int. Conf. on Extending Da-
tabase Technology Advances in Database Technology,
p.499-509. [doi:10.1145/1352431.1352492]

Lee, T.B., 2000. Primer: Getting into RDF & Semantic Web
Using N3. W3C. Http://www.w3.org/2000/10/swap/
Primer.html

Lee, T.B., Hendler, J., Lassila, O., 2001. The Semantic Web.
Scientific American, New York.

Li, Z., Wang, Y.Z., 2006. An approach for XML inference
control based on RDF. LNCS, 4080:338-347.

McKenzie, C., Preece, A., Gray, P., 2006. Implementing a
Semantic Web blackboard system using Jena. LNCS,
4187:204-218.

Miller, L., Seaborne, A., Reggiori, A., 2002. Three implemen-
tations of SquishQL, a simple RDF query language.
LNCS, 2342:423-435.

Min, J.K., Ahn, J.Y., Chung, C.W., 2003. Efficient extraction
of schemas for XML documents. Inf. Processing Lett.,
85(1):7-12. [doi:10.1016/S0020-0190(02)00345-9]

Pan, Z.X., 2008. HAWK: OWL Repository and Toolkit. Le-
high University, Bethlehem. Available from http://swat.
cse.lehigh.edu/downloads/index.html#hawk

Park, M.J., Lee, J., Lee, C.H., Lin, J.X., Serres, O., Chung,
C.W., 2007. An Efficient and Scalable Management of
Ontology. DASFFA, p.975-980.

Riddoch, A., Gibbis, N., Harris, S., 2002. 3Store.SourceForge.
NET. Http://sourceforge.net/projects/threestore

Smith, M., Welty, C., McGuinness, D., 2004. OWL Web On-
tology Language Guide. W3C Recommendation. Http://
www.w3c.org/Tr/2004/REC-owl-guide-20040210/

Stuckenschmidt, H., van Harmelen, F., de Waard, A., Scerri, T.,
Bhoal, R., van Buel, J., Fluit, C., Kampman, A., Broekstra,
J., van Mulligen, E., 2004. Exploring large document
repositories with RDF technology: the DOPE project.
IEEE Intell. Syst., 19(3):34-40. [doi:10.1109/MIS.2004.9]

Woo, E.M., Park, M.J., Chu, C.W., 2007. An efficient storage
schema construction and retrieval technique for querying
OWL data. KIISE J. Database, 34(3):206-216.

Zhou, J.T., Wang, M.W., Zhang, S.S., Sun, H.W., 2006.
Semi-structure Data Management by Bi-directional Inte-
gration between XML and RDB. CSCWD, p.1077-1081.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

