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Abstract:    We present an efficient spherical parameterization approach aimed at simultaneously reducing area and angle dis-
tortions. We generate the final spherical mapping by independently establishing two hemisphere parameterizations. The essence of 
the approach is to reduce spherical parameterization to a planar problem using symmetry analysis of 3D meshes. Experiments and 
comparisons were undertaken with various non-trivial 3D models, which revealed that our approach is efficient and robust. In 
particular, our method produces almost isometric parameterizations for the objects close to the sphere. 
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INTRODUCTION 
 

Mesh parameterization plays a very important 
role in many mesh processing applications (Sheffer et 
al., 2006). It involves assigning a position on the 
parameter domain to each of the mesh vertices, such 
that the triangles on the parameter domain are not too 
distorted and do not overlap. Generally, a parameter 
domain should be homeomorphic to the original mesh. 
Hence it is best to use a spherical parameter domain 
for closed genus-zero meshes.  

A number of papers have addressed the problem 
of the construction of spherical parameterizations. It 
is well known that any closed genus-zero surface can 
be mapped conformally onto the sphere. Therefore, 
many previous methods focused on finding angle 
preserving mappings. Recently, geometry images (Gu 

et al., 2002) have emerged as an appealing tool in 
geometry processing. A spherical surface can be 
unfolded to form a regular 2D grid (Praun and Hoppe, 
2003). Therefore, spherical parameterization can also 
help create geometry images. However, spherical 
conformal mapping often lacks control of area 
distortion, resulting in significant undersampling. The 
existing non-linear methods (Friedel et al., 2005; Li et 
al., 2004; Praun and Hoppe, 2003; Zhou et al., 2002; 
2004) aimed at solving this problem usually lead to 
intricate and computationally expensive numerical 
schemes. Although a linear method was proposed by 
Zayer et al.(2006), a date line connecting two poles 
must be prescribed beforehand. The choice of the two 
poles is not obvious and may affect the result, 
especially for complex geometry surfaces. Conse- 
quently, the reduction of both area and angle 
distortions of spherical parameterization is still a 
challenging problem. 

In this paper, we present a novel approach for 
solving this problem (Fig.1). The essence of the ap-
proach is that spherical parameterization reduces to a 
2D planar problem with the help of symmetry 
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analysis of triangular meshes. With this simplification, 
we can incorporate the existing quasi-harmonic maps 
(Zayer et al., 2005a) into our frame to construct low 
distortion spherical parameterizations. The primary 
advantages of our algorithm are: (1) Quality: The 
parameterizations generated by our algorithm have 
low distortion both in angles and areas. In particular, 
our approach produces almost isometric parameteri-
zations for the objects close to the sphere; (2) Effi-
ciency: The computation time of our method is 
dominated only by solving sparse linear systems. In 
general we can parameterize meshes containing tens 
of thousands of triangles in a few seconds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Motivation and overview 
Our work is based on the crucial observation that 

a sphere has reflective symmetry about any plane 
through the center; hence the reflective symmetry of 
spherical parameterization can capture distortion in 
some sense. The ideal case is that spherical parame-
terizations should reflect the symmetry of the models 
completely. Therefore, if we split a closed genus-zero 
mesh into two pieces with the optimal reflective 
symmetry, then each piece can be independently pa-
rameterized onto the corresponding hemisphere with 
the lowest distortion. Noting that each piece resulting 
from the split is topologically equivalent to a disk, and 
stereographic projection is a bridge between the planar 
and spherical parameterization, we can construct each 
hemispherical parameterization (HMP) with low 
distortion using existing quasi-harmonic map tech-

niques developed for planar parameterization. To 
generate the final smooth mapping, we stitch the two 
HMPs together by Laplacian smoothing on the 
sub-patch around the cut seam. 
 
 
RELATED WORKS 

 
In the last decade, many studies have been car-

ried out on mesh parameterization (Floater and 
Hormann, 2005; Sheffer et al., 2006). In the following, 
we briefly review related works on spherical param-
eterization in relation to the type of parametric dis-
tortion that is minimized. 

Early spherical parameterization techniques 
(Alexa, 2000; Isenburg et al., 2001) attempted to 
extend the graph embedding method of Tutte (1963) 
to spheres. They did not preserve any shape properties 
of the input mesh. Another approach (Shapiro and Tal, 
1999), without considering distortion, depended on 
multi-resolution techniques. It firstly embeds base 
mesh onto the sphere which is generated by simpli-
fying the original model, and then adds back the ver-
tices progressively.  

Many approaches attempt to construct angle 
preserving spherical mappings (Haker et al., 2000; 
Gotsman et al., 2003; Sheffer et al., 2003; Gu et al., 
2004; Hu et al., 2004; Saba et al., 2005; Kharevych 
et al., 2006; Li et al., 2006; Liu et al., 2008). Haker 
et al.(2000) generated spherical conformal mappings 
by lifting the planar angle preserving parameteriza-
tions to a sphere through stereographic projection. An 
elegant theory was proposed by Gotsman et al.(2003) 
extending the planar dirichlet energy to a sphere. 
Unfortunately, it does not provide an efficient way to 
solve the resulting quadratic system. Although not 
mentioned in their research, Gu et al.(2004) used 
projected Gauss-Seidel to solve the nonlinear system. 
Saba et al.(2005) pointed out that the projected 
Gauss-Seidel iterations decrease the residual for only 
a finite number of iterations. They proposed a prac-
tical method combining projected Gauss-Seidel it-
eration with nonlinear minimization to obtain the 
final solution. 

To avoid the additional constraints involved in 
solving the spherical dirichlet energy problem, 
Friedel et al.(2005) modified the discrete energy 
function accounting for the particularities of the 

(a) (b) (c) 

Fig.1  Stages of our approach for the Triceratops 
model. (a) Split the model into two pieces. The high-
lighted curve is the cut seam; (b) Establish two hemi-
spherical parameterizations (HMPs) with both low 
area and angle distortions. Above: two initial HMPs; 
Below: improvements on the two initial HMPs; (c) 
Stitch two HMPs together smoothly to generate the 
final spherical mapping 
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spherical setting, and blended angle and area meas-
ures to control distortion. The approaches of Praun 
and Hoppe, 2003; Zhou et al., 2002; 2004; Li et al., 
2004) related to the goal in this study are based on 
multi-resolution techniques similar to the method of 
Shapiro and Tal (1999). Praun and Hoppe (2003) 
extended the stretch defined in the plane by Sander 
et al.(2001) to a sphere. When progressively adding 
back the vertices, they used a nonlinear optimization 
method to minimize the spherical stretch. A linear 
approach directly aimed at balancing angle and area 
distortions was proposed by Zayer et al.(2006). They 
firstly cut the mesh along a date line connecting two 
poles prescribed by the user and computed a con-
formal mapping in the curvilinear coordinates, then 
used scalar quasi-harmonic maps to reduce the area 
distortion. 
 
 
SPLIT OF MESHES ACCORDING TO 
SYMMETRY ANALYSIS 
 

The first processing stage in our approach con-
sists of splitting the surface into two disk-like patches. 
We introduce a novel splitting method based on the 
optimum reflective symmetry plane of input models. 
In essence, it is directly related to the technique of 
symmetry analysis. It has been carefully studied for 
decades (Mitsumoto et al., 1992) and is still an active 
research field (Pauly et al., 2008). Symmetry is one of 
the basic features of many natural and man-made 
objects, and can be used to guide reconstruction, 
shape retrieval and classification, mesh segmentation, 
and so on. Consequently, symmetry analysis plays an 
important role in computer vision and computational 
geometry. 

Recently, Mitra et al.(2006) detected partial and 
approximate symmetries using a sampling approach 
to accumulate local evidence of pair wise symmetries 
in a transformation space. They then used it for shape 
symmetrization (Mitra et al., 2007). However, their 
approach focused on finding perfect symmetries of 
shapes. The objective of our work is to compute the 
optimum reflective plane for all models (even if they 
have no perfect reflective symmetries). So we use the 
reflective symmetry descriptor technique (Kazhdan et 
al., 2003) of 3D meshes to reach our goal. The de-
scriptor represents a measure of reflective symmetry 

for an arbitrary 3D model for all planes through the 
centroid. We can regard the plane corresponding to 
the minimum measure as the optimum reflective 
plane. Given a plane through the centroid, the meas-
ure can be computed by the L2-difference between the 
density function f and its reflection γ(f), i.e., 
 

( , ) ( ) ,SM f f fγ γ= −  

 
where f is constructed by transforming the 3D model 
into 3D function sampled on a regular voxel grid. It is 
defined by 
 

2 2( ) exp( ( ) / ),f D R= −x x  

 
where D(x) is the Euclidean distance transform, giv-
ing the distance from x to the nearest point on the 
model M and R is the average distance from a point on 
M to the centroid. D(x) can be computed by the effi-
cient algorithm of Meijster et al.(2000) in the regular 
voxel grid. 

Now we can split the model according to the 
optimum symmetry plane. As for symmetrical models, 
the intersection curve between the plane and the 
models can be regarded as the cut seam (Fig.1a). 
However, it is not reasonable to use this simple split 
method for unsymmetrical models. In fact, there are 
more intersection closed curves for some complex 
objects. It is evident that a split regarding any of them 
as the cut seam will destroy the symmetry. Conse- 
quently, we propose an alternative way to account for 
the symmetry of unsymmetrical models (Fig.2). The 
method depends on the well known Voronoi diagram 
concept. It can be described briefly as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) (c) 

Fig.2  The split of the unsymmetrical Blob model. (a) 
Extract the optimum symmetry plane; (b) Find the two 
most symmetrical vertices for the optimum symmetry 
plane on the mesh model; (c) Generate the Voronoi 
diagram of the two vertices 
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(1) Find the two most symmetrical vertices in the 
mesh for the optimum symmetry plane as the seeds of 
the Voronoi diagram. For each vertex v of the mesh, 
we first compute the symmetry point s with respect to 
the optimum symmetry plane in R3. Then we find the 
closest vertex v* of s on the mesh using the above 
Euclidean distance transform. We define a symmetry 
measure for the two vertices v and v* as their Euclid 
distance. The two vertices corresponding to the 
minimum measure are chosen as the seeds of the 
Voronoi diagram. 

(2) Use the efficient fast marching method to 
compute the Voronoi diagram of the two vertices 
(Kimmel and Sethian, 1999). The Voronoi edge can 
be regarded as the final cut seam. 

The intuition for this method is that it can split a 
symmetrical object into two symmetrical parts. Ac-
cordingly, it accounts for not only the symmetry 
measure but also the complex structure of unsym- 
metrical objects. 

 
 

LOW DISTORTION HMP 
 

Our approach for the construction of low distor- 
tion HMP starts from an initial HMP, and then uses 
quasi-harmonic maps to reduce both area and angle 
distortions. The key ingredient in this step is how to 
incorporate the quasi-harmonic maps developed for 
planar parameterization into our spherical setting. 

 
Initial HMP 

The main tools are the most widely known mean 
value coordinates approach (Floater, 2003) and 
stereographic projection for the construction of the 
initial HMP. We first map the boundary vertices of 
the 3D piece into a 2D convex polygon with vertices 
on a unit circle. Then we solve a sparse linear system 
with the following equations about interior vertices: 

 
( ) 0ij j i

j

w − =∑ x x , i∈interior vertices,    (1) 

 
where {xj} are vertices corresponding to the one ring 
neighbors of {xi} in the parameterization, and {wij} 
are mean value coordinate weights. This computa-
tionally simple procedure produces a valid shape 
preserving planar parameterization. 

An initial HMP can be generated by lifting the 
unit disk parameterization to the hemisphere accord-
ing to the inverse stereographic projection. Although 
stereographic projection may produce fold-overs in 
the discrete case (Sheffer et al., 2006), we can guar-
antee the objectivity by mapping a unit disk to a 
hemisphere. It is obvious that for arbitrary triangles in 
the unit disk, their images on the sphere are always in 
the same order. 

 
Improvement of the initial HMP 

Recently Zayer et al.(2005a; 2005b) proposed 
tensorial quasi-harmonic maps to reduce the distor-
tion of planar parameterization. The essence of the 
approach is to introduce a piecewise tensor field that 
locally mimics the Jacobian of the initial map from a 
given planar configuration to the surface in 3D. It 
mimics the original 3D shape not only in angles but 
also in areas as the tensor captures the properties of 
the Jacobian of the initial map. In effect, it tries to find 
the most isometric mapping in a least squares sense. 
In the spherical setting, Zayer et al.(2006) pointed out 
that it is not obvious how to incorporate the Jacobian 
of the initial spherical mapping into the curvilinear 
coordinate setting. In our frame, we can easily in-
corporate the Jacobian of the initial mapping to re-
duce the distortion.  

In fact, the initial HMP can be decomposed into 
two mappings: One is the stereographic projection s−1 
from the hemisphere to the unit disk; The other is the 
mapping g from the unit disk to the piece P (Fig.3). 
Now, our aim is to construct a quasi-harmonic map f 
from the unit disk to itself so that s°f exactly mimics 
the behavior of g. The quasi-harmonic map f can be 
computed by solving the quasi-harmonic equation: 
div(Cgradf)=0, where C is the Jacobian of f. A direct 
discretization based on an extension of the mean 
value coordinates yields the same form equations as 
Eq.(1) for the interior vertices. wij is recomputed by 
the Jacobian tensor C (Zayer et al., 2005a). The key to 
the construction of the quasi-harmonic map is the 
generation of the Jacobian C.  

We now describe how we compute the Jacobian  
C in our setting. Let us consider a single triangle T0 in 
the piece P (Fig.3). To make the mapping s°f mimic 
the behavior of g, we have the following equation 
according to a simple computation of their deforma- 
tions: 
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dUTJTJdU=dUT(KC)T(KC)dU. 
 

Therefore, the Jacobian C of the new mapping f 
should satisfy: 
 

(KC)T(KC)= JTJ. 
 

Since JTJ and KTK are both the first fundamental 
form matrices which are symmetrical positive definite, 
we can compute their square roots A and B respectively, 
i.e., JTJ=AA, KTK=BB. Then we get C=B−1A. 

The matrix A can be computed by the initial HMP. 
Noting that stereographic projection is a conformal 
mapping, we can compute B by KTK=τI=BB, where I 
is the unit matrix and τ is the scalar factor, i.e., the 
triangle area ratio between the triangles T3 and T2. But 
unfortunately, the triangle T2 is unknown. We use the 
triangle area ratio between T3 and T1 as an alternative 
and derive satisfactory results. This is not surprising 
since the singular values of the Jacobian of the stereo- 
graphic projection s vary from 1 to 2 in the unit disk. 
The variation between T1 and T2 for each iteration will 
not result in an obvious change in the scale factor τ. 

Our HMP can be further improved by iteratively 
resolving the same form sparse linear system Eq.(1) 
until convergence. In our implement, three to five 
iterations were used which appeared to be sufficient. 

 
 

SMOOTHING AROUND THE CUT SEAM 
 
In previous sections, we have described how to 

generate two HMPs that are low both in angle and 
area distortions. The two HMPs are combined by the 
common boundary. However, it is clear from Fig.4 
that some distortions have been caused near the cut 
seam. To reduce such distortions, we define a 
sub-patch around the cut seam by choosing its five 
ring neighborhoods, then perform Laplacian 
smoothing on the sub-patch (similar to Zayer et 
al.(2006)). Although the Laplacian smoothing is de-
signed to reduce only angle distortion, the area dis-
tortion does not increase too much in our setting as 
the sub-patch has low area distortion before smooth-
ing. To avoid fold-overs, we restrict the new vertex 
inside its kernel on the sphere. The smoothing is re-
peated until a fixed number of iterations are reached. 
Generally, five iterations give good results (Fig.4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RESULTS AND DISCUSSION 

 
We implemented the above algorithm on a 3.2 

GHz PC with 2 G RAM. To solve a linear system, we 
used the backslash operator of Matlab version 7.2. 
The size of the test models varied from 5660 to 
149 524 triangles. The split step took between 1.5 and 
3.6 s. The runtime for solving the sparse linear sys-
tems was in the order of a few seconds. In the final 
smoothing step, the time varied from 0.05 to 0.8 s. 
Table 1 summarizes the total runtime of our approach. 

Fig.3  Improvement of the initial HMP 
The triangle T0  is located in the piece P, T1 and T2 are both trian-
gles in the unit disk, while the triangle T3 is on the hemisphere. T1 
corresponds to T0 under the mapping g, while f maps T1 to T2 and s 
maps T2 to T3. Jac() denotes the Jacobian. U and x are both points 
in the unit disk 

T0 
T3 

T1 T2 

U x 

Jac(g)=J g Jac(s)=K
s 

Jac(f)=C 

f 

Y 

Z 
X 

X 

Y 

O 

O 

Fig.4  Texture mapping effect of Laplacian smoothing 
applied to the Skull model. (a) Before smoothing; (b) 
After smoothing. The comparison of the zoom-in near 
the cut seam shows that the two HMPs are well stitched

(a) 

(b) 
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To evaluate the visual quality of a spherical 

parameterization, we used the parameterization to 
map the normals of the original model to the sphere, 
and to map a spherical chessboard texture (Fig.5a) to 
the original model. A spherical chessboard texture 
can be generated by mapping a regular quadrilateral 
chessboard to a sphere according to polar coordinates. 
For a quantitative evaluation of a spherical  
parameterization we determined the area and angle 
distortions as follows: 

 

* *

* *
area

3
*

angle
1

( ) ( ) ( ) ( ) ,

1 ,
3

j j

i j i j
i T M T M

ij ij
i j

Dist A T A T A T A T

Dist
F

θ θ

∈ ∈

=

= −

= −

∑ ∑ ∑

∑∑
 

 
where Distarea is taken over all the triangles Ti and  
 
 
 
 
 
 
 
 
 

Ti
* of the original mesh M and the parameterization 

M*, respectively, Distangle is taken over all the angles 
θij and θij

* of the triangles of M and M*, respectively, F 
is the total number of triangles of M, and A() denotes 
the triangle area. 

All the results (Fig.1, Figs.4~9, Table 1) dem-
onstrated that our approach has low distortion both in 
angles and areas. In particular, our work produces 
almost isometric parameterizations for the objects 
close to the sphere (Fig.7: Skull and Hygeia). Fur-
thermore, the resulting solutions are valid in that they 
have no triangle fold-overs. Currently, we cannot 
claim that properties of our approach have any gen-
eral validity. The main reason is that the weight wij 
generated by a general tensor matrix C is not always 
positive when improving two HMPs using the 
quasi-harmonic maps. But because the positivity of 
weights about convex combination maps is only a 
sufficient condition and given the good properties of 
quasi-harmonic maps (Zayer et al., 2005a), general 
validity is quite likely. Fig.6 shows the parameteriza-
tion sensitivity for two chosen seeds for the unsym-
metrical Blob model using our method. It can be seen 
that parameterization using the split of the Voronoi 
diagram of the two most symmetrical points has lower 
distortion. 

We compared our method to the practical ap-
proach of Saba et al.(2005) (Figs.7 and 8, Table 1), 
which aims to solve the minimizing problem of the  
spring dirichlet energy using a nonlinear optimized 
method on the sphere. For complex objects, their 
results have lower angle distortion while our results 
clearly have lower area distortion (Fig.7: Gargoyle 
and Manbody, Fig.8). We believe that these results 
arise from the fact that the isometric spherical maps 
exist only for objects with similar shapes to the  
 

 
 
 
 
 
 
 
 
 
 
 

Table 1  Performance comparison of different methods 

Model Triangles Method Angle 
distortion 

Area  
distortion Time (s)

Ours 0.12 0.07 6.9 
Zayer 0.21 0.10 4.7 Skull 

(Fig.7) 40 000 
Saba 0.16 0.52 115.6 
Ours 0.11 0.10 8.8 
Zayer 0.17 0.12 6.9 Hygeia 

(Fig.7) 53 736 
Saba 0.18 0.38 160.1 
Ours 0.39 0.46 4.4 
Zayer 0.41 0.52 2.6 

Gar-
goyle 
(Fig.7) 

20 000 
Saba 0.32 1.09 92.1 
Ours 0.54 0.82 6.5 
Zayer 0.58 0.87 4.3 

Man-
body 
(Fig.7) 

35 998 
Saba 0.26 1.38  198.0 
Ours 0.29 0.32 27.9 Bimba 

(Fig.8) 149 524 
Saba 0.23 1.02 1425.9 
Ours 0.23 0.28 11.9 Bunny 

(Fig.9) 69 666 
Zayer 0.27 0.41 9.3 

Zayer: the method of Zayer et al.(2006); Saba: the method of Saba et 
al.(2005) 

Fig.5  Texture mapping results of our method. (a) 
Spherical chessboard texture; (b) Hygeia model; (c) 
Mannequin model; (d) Bunny model 

(a) (b) (c) (d)

Fig.6  The parameterization sensitivity for two seed 
choices for the unsymmetrical Blob model using our 
method. (a) One is a random point; the other is its 
furthest point on the mesh; (b) The two most sym-
metrical points; (c) Texture mapping corresponding 
to (a). Angle distortion 0.31, area distortion 0.23; (d) 
Texture mapping corresponding to (b). Angle dis-
tortion 0.19, area distortion 0.22 

(a)                     (b)                       (c)                       (d)
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sphere, while the conformal spherical maps exist for 
any closed genus-zero objects. 

We also compared our approach to a linear 
method aimed at balancing angle and area distortions 
(Zayer et al., 2006) (Figs.7 and 9, Table 1). As men-
tioned above, the choice of two poles in their method 
is not obvious. An additional advantage of our ap-
proach is that the cut seam generated by the optimal 
symmetry plane provides a good guideline for the 
selection of the date line. However, it is hard to 
quantify because the approach is sensitive to this 
choice as illustrated in Fig.10. In all test objects, we 
note that with careful choice of two poles on the cut 
seam their method often produces good results. But 
even so, our results still have lower distortion than 
theirs both in angles and areas. We believe the reason 
is that our method improves the spherical mapping 
using quasi-harmonic maps incorporating the Jaco-
bian of the initial mapping.  

 
 
 
 
 
 
 
 
 

 
Our low area and angle distortion spherical 

parameterizations can be used to create geometry 
images and can also be used to create remeshed ge-
ometry. We considered remeshing using subdivision 
connectivity triangulations since it is both a conven-
ient way to illustrate the properties of a parameteri-
zation and an important subject. We have developed 
two remeshing strategies (Fig.11). One is to map a 
nearly uniform icosahedron subdivision at different 
levels on the sphere back to an object surface. The 
other is to construct an adaptive subdivision remesh-
ing of the icosahedron on the sphere according to the 
guaranteed error bound in order to keep the number of 
triangles small and avoid the overhead of subdividing 
the mesh to a fine level. Figs.8 and 9 show the com-
parison between our approach and some state of the 
art methods using the same uniform remeshing 
strategy (the uniform subdivision level is 5). Our 
results produced a much better remeshed geometry, 

(a)                    (b)                       (c)                  (d) 

Fig.7  Parameterization comparison. (a) The original 
models. From top: Skull, Hygeia, Gargoyle and Man-
body; (b) The method of Saba et al.(2005); (c) The 
method of Zayer et al.(2006); (d) Our method 

(a)                                            (b) 

Fig.8  Parameterization and remeshing comparison for 
the Bimba model. (a) The method of Saba et al.(2005). 
In the remeshing result, one shoulder has been under-
sampled; (b) Our method 

(a)                                                   (b) 
Fig.9  Parameterization and remeshing comparison for 
the Bimba model. (a) The method of Zayer et al.(2006). 
In the remeshing result, the two ears have been un-
dersampled; (b) Our method 

(a)                                            (b) 

Fig.10  Parameterization comparison for different date 
lines of Zayer et al.(2006). (a) Angle distortion 0.38, 
area distortion 0.43; (b) Angle distortion 0.41, area 
distortion 0.51 
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while the methods of Saba et al.(2005) and Zayer et 
al.(2006) led to some undersampling. 

 
 

CONCLUSION 
 
Given a closed genus-zero triangular mesh, we 

have presented an efficient spherical parameterization 
approach aimed at simultaneously reducing area and 
angle distortions. According to symmetry analysis, 
the low distortion spherical parameterization is gen-
erated by the independent construction of two HMPs. 
The time of our approach is dominated only by solv-
ing sparse linear systems. Experiments and com-
parisons reveal that our approach is robust and effi-
cient. 

It is important to note that our method is heuris-
tic and is supported by numerical results. Currently 
we are not able to support it by rigorous mathematical 
theories. 
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