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Abstract:    Combustion kinetic parameters (i.e., activation energy and frequency factor) of coal have been proven to relate closely 
to coal properties; however, the quantitative relationship between them still requires further study. This paper adopts a support 
vector regression machine (SVR) to generate the models of the non-linear relationship between combustion kinetic parameters and 
coal quality. Kinetic analyses on the thermo-gravimetry (TG) data of 80 coal samples were performed to prepare training data and 
testing data for the SVR. The models developed were used in the estimation of the combustion kinetic parameters of ten testing 
samples. The predicted results showed that the root mean square errors (RMSEs) were 2.571 for the activation energy and 0.565 
for the frequency factor in logarithmic form, respectively. TG curves defined by predicted kinetic parameters were fitted to the 
experimental data with a high degree of precision. 
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1  Introduction 
 
Coal utilization requires a good understanding of 

the combustion characteristics of coal. The relation-
ship between the combustion characteristics and the 
coal properties has been widely investigated. Firstly, 
the ignition behavior is affected by the coal properties. 
The ignition order generally follows the coal rank 
(Man and Gibbins, 2011), and the mechanism of ig-
nition changes from heterogeneous to homogeneous 
for subbituminous coal and high volatile bituminous 
coal, respectively (Faúndez et al., 2005). According 
to the experimental results of Kizgut and Yilmaz 
(2004), the ignition temperature shows an almost 
linear relationship with the mean maximum vitrinite 
reflectance (Rm), H/C ratio, and fuel ratio (the ratio of 
fixed carbon to volatile matter). The low volatility 
coal types require a slightly higher level of oxygen 

(35% O2 (in volume) in CO2) to give ignition patterns 
similar to those in air; whereas coal samples with high 
volatile matter require about 30% oxygen in general 
(Man and Gibbins, 2011). Ash content tends to in-
crease the volumetric heat capacity, which slows the 
heating of coal particles, and thus delays ignition 
(Vleeskens and Nandi, 1986). Secondly, the maxi-
mum rate of mass loss in the thermo-gravimetry (TG) 
curve, which is an important indication of the reac-
tivity of coal, is found to show a good linear rela-
tionship with Rm and H/C ratio (Kizgut and Yilmaz, 
2004). Combustion experiments of 66 coal ranks, 
using derivative thermo-gravimetric analysis, showed 
that the temperature at which 50% of the samples 
achieve complete combustion has a linear relationship 
to the oxygen and carbon contents (Smith et al., 1981). 
Finally, combustion efficiency is tied to coal proper-
ties. Experiments and theoretical research have been 
undertaken to investigate coal burnout. Results 
showed that the burnout increases with the decrease 
of fuel ratio (Du et al., 2010) and that high volatile 
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matter coal has a stronger devolatilization and there-
fore, a higher burnout (Shen et al., 2009). Results also 
showed that high levels of ash, inertinite content, and 
oxidized vitrinite content can decrease burnout in a 
drop tube furnace (Vleeskens and Nandi, 1986). 

The stages of the combustion process are char-
acterized by different parameters. Ignition tempera-
ture represents the difficult degree of oxidation reac-
tion at the early stage of burning. The maximum rate 
of weight loss reflects the intensity of the combustion 
reaction in the middle stage. Burnout temperature 
reflects the burnout performance of coal at the end of 
combustion. In fact, the combustion of coal can be 
considered as a first-order reaction (Cumming, 1984; 
Kök et al., 1997; 2004; da Silva Filho and Miliol, 
2008), and the reaction rate can be correlated with 
kinetic parameters by the Arrhenius equation. 
Therefore, the whole combustion process can be 
characterized by kinetic parameters. Some attempts 
have been made to explore the influence that coal 
properties exert on the combustion kinetics. 
Küçükbayrak et al. (2001) performed the non- 
isothermal TG experiments to investigate the com-
bustion reactivities of 25 lignite samples. They related 
the combustion reactivity of the lignites to the 
proximate and ultimate analyses and the physical 
properties. The activation energy (E) tended to de-
crease as volatile matter content grew and increased 
as the content of total carbon or fixed carbon in-
creased. Their further study of the combustion reac-
tivity of different ranks of coal including peat, lignite, 
bituminous coal, and anthracite samples led to the 
same conclusion (Haykiri-Açma et al., 2002). How-
ever, diametrically opposite results were manifested. 
Wang et al. (2010) conducted the experiments and 
showed that E decreased gently and frequency factor 
(A) decreased quickly with increasing carbon content 
in the coal. 

The previous work on the burning characteristics 
of coal indicated that the combustion kinetics of coal 
is closely related to coal properties. However, the 
quantitative relationship between combustion kinetics 
and coal properties requires further study. In this 
paper, the combustion kinetic parameters (E and A) 
are correlated to coal quality such as proximate 
analysis and ultimate analysis. Thermo-gravimetric 
analyses of 80 coal samples were employed for the 
combustion kinetic study. A support vector regression 

machine (SVR) was used to build two non-linear 
models. Model-E is a model of the relationship be-
tween E and the coal quality; Model-A is a model of 
the relationship between lnA and the coal quality. 
Both models were validated using 70 training samples 
to evaluate empirical error and were tested on 10 
holdout samples to mitigate model over-fitting. For 
assessing the generalization performance of the two 
models, kinetic parameters of the test samples were 
predicted using the two models together. TG curves 
of the test samples were calculated to manifest the 
prediction accuracy of the kinetic parameters. 

 
 

2  Theoretical bases 
 
SVR was developed on the statistical learning 

theory and has become a popular machine learning 
algorithm in many fields over the past decade years. 
With limited information from some training samples, 
SVR builds the model of the relationship between the 
output target and the input variables. SVR adopts a 
risk minimization principle in the modeling process; 
therefore, it has good inherent regularization proper-
ties to improve the generalization performance in the 
case of sparse data and large noise level (Müller et al., 
1997; Cherkassky and Ma, 2004). Besides, SVR has 
advantages in the assurance of global optimal solution 
(Iplikci, 2010) and the immunization against the 
problem of “dimension disaster” (Nizam et al., 2010) 
over the conventional machine learning algorithms. 
The success of SVR is also due to the remarkable 
ability of handling non-linear high-dimensional 
problems (Cherkassky and Ma, 2004). The input data 
of non-linear systems are mapped into a high- 
dimensional feature space, and then a linear model 
can be constructed in this feature space (Balasunda-
ram and Kapil, 2010). At the same time, the compu-
tation efficiency is enhanced by a kernel function that 
can replace the dot product in the feature space. 

In this present analysis, the ε-insensitive loss 
function and radial basis function are used for the 
architecture of the SVR. Three tunable parameters 
exist: the insensitivity parameter ε, the regularization 
parameter C, and the kernel parameter γ. Because the 
SVR is very sensitive to the setting of the tunable 
parameters, the issue of assigning values to these 
parameters should be considered carefully. However, 
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no general technique of parameter selection is uni-
versally effective. The differential evolution (DE) 
algorithm is a heuristic method that addresses the 
purpose of minimizing possibly non-linear and 
non-differentiable functions (Storn and Price, 1995). 
It has advantages in suitability for parallelization, 
conceptual simplicity (Storn, 1996) and good con-
vergence properties (Storn and Price, 1997). In this 
study, the DE algorithm is applied to the simultaneous 
search for the optimum values of the SVR parameters. 
The combination of SVR and DE is termed DE-SVR. 

 
 

3  Experiments 

3.1  Proximate and ultimate analyses 

Eighty different coal samples were selected for 
investigation. Proximate and ultimate analyses were 
performed following China’s National Standards 
GB/T 212-2008, GB/T 476-2008, GB/T 214-2007 
and GB/T 19227-2008. The distribution characteris-
tics with respect to volatile matter of the coal samples 
are described by a histogram as shown in Fig. 1. Ex-
tensive distribution of volatile matter (dry ash-free 
(daf) basis) from 7.61% to 56.19% (in mass) indicated 
that a large range of coal types was considered, from 
lignite to anthracite coal. The coal quality of the 80 
coal samples can be found in Table A1 in Appendix. 
 
 
 
 
 
 
 
 
 

 
 

3.2  TG experiments 

Thermo-gravimetric analyses of the 80 coal 
samples were employed for the combustion kinetic 
study. A NETZSCH thermo-gravimetric analyzer TG 
409 C was used. Each sample of 10 mg, ground to  
<90 μm in diameter, was placed in a thin layer in a 
porcelain crucible and heated from 50 to 1000 °C. 
The heating rate was 15 °C/min, and the air flow rate 
was 95 ml/min. 

3.3  Calculation of the kinetic parameters 

The parameters E and A of the coal samples were 
obtained from the kinetic analysis of TG data. The 
Coats-Redfern method has a great advantage of sim-
plicity among the kinetic approaches and is exten-
sively acknowledged (Jiang et al., 2007; Avsar et al., 
2010; Janković, 2011; Kök, 2011a; 2011b; Liu et al., 
2011; Syed et al., 2011; Wang et al., 2011). When the 
sample size is small and the air supply is excessive, 
the progress of the reaction is independent of the 
oxygen concentration. It is therefore reasonable to 
assume that the oxidation can be described by 
first-order kinetics (Cumming, 1984; Kök et al., 2004) 
and the Coats-Redfern equation (Coats and Redfern, 
1965; Ebrahimi-Kahrizsangi and Abbasi, 2008), and 
therefore  

 

m
2

2ln(1 )
ln ln 1 ,

RTα AR E

T βE E RT

           
    (1) 

 
where α is the fractional conversion, T is the absolute 
temperature, β is the constant heating rate (15 °C/min), 
and Tm is the average of the absolute temperature of the 
fitting interval. For Eq. (1), the Arrhenius plot of the 
left side of the equation against 1/T results in a straight 
line. As a result, E can be calculated from the slope, 
and A can be calculated from the intercept. The kinetic 
parameters of all the 80 coal samples are listed in Table 
A1 in Appendix. The ranges were as follows: E=78.8 
to 162.9 kJ/mol, and lnA=11.13 to 21.70 min−1. 

 

 
4  Training data and holdout data 

 
Because the SVR may exhibit unsatisfactory 

performance on some tasks with a large range of 
values (Meyer et al., 2003), each variable in the em-
pirical data is scaled using Eq. (2) to unify the statistic 
distribution as follows: 

 

min max min( ) / ( ),X X X X X                (2) 

 
where X represents the variable to be scaled, and Xmax 
and Xmin are the maximum and minimum values of X, 
respectively. 

Training data is used to guide the modeling 
process, while holdout data, which is absent in the 

7.0 11.5 16.0 20.5 25.0 29.5 34.0 38.5 43.0 47.5 52.0 56.5
0

2

4

6

8

10

12

14

16

18

C
ou

nt
 o

f t
he

 c
oa

l s
am

pl
es

Volatile matter on a daf basis (%)

Fig. 1  Volatile matter distribution characteristics 
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training process, carries novel information. The SVR 
models were built based on training data and were 
tested on holdout data. To this end, 70 coal samples 
were chosen uniformly from the 80 coal samples as 
training data, and the remaining coal samples were 
used as holdout data. 

 
 

5  Application of DE-SVR 

5.1  Key features affecting kinetic parameters 

The coal quality parameters generally have 
unequal effect on the combustion kinetic parameters. 
Feature selection is intended to produce a low di-
mensionality of the input space and provide high 
prediction capability for the DE-SVR model. Dif-
ferent combinations of coal quality were studied to 
determine the key features. The following input 
features were manually determined: moisture on an 
air-dried basis (Mad), fixed carbon on a dried basis 
(FCd), volatile matter on a daf basis (Vdaf), and hy-
drogen and sulfur contents on a dried basis (Hd and 
St,d). Therefore, the prediction of combustion kinetic 
parameters from coal quality can be represented  
by 

 

ad d daf d t,d( ,FC , , , ),E f M V H S           (3) 

ad d daf d t,dln ( ,FC , , , , ).A f M V H S E       (4) 

 
Considering the existence of the kinetic com-

pensation effect (Koga and Tanaka, 1988; Koga and 
Sesták, 1991; MacCallum and Munro, 1992; Yip et 
al., 2011) between E and lnA, the calculated E is 
chosen as a sixth input feature, while the prediction 
model of lnA is trained using SVR. 

5.2  Optimal models correlating kinetic parame-
ters to coal quality 

According to Eqs. (3) and (4), DE-SVR was 
applied to correlating the kinetic parameters and coal 
quality. The SVR parameters were optimized using 
the DE algorithm. It is necessary for the users to set 
the following three controlling variables of DE at the 
beginning: the size of the population NP, the scale 
factor F and the crossover probability CR. Some 
helpful rules (Storn, 1996; Storn and Price, 1997; 
 

Gämperle et al., 2002; Ronkkonen et al., 2005) have 
been summarized to instruct the users in setting 
the controlling variables correctly. The strategy 
DE/rand/1/bin (Storn, 1996; Storn and Price, 1997) 
with NP=100, F=0.7, and CR=0.85 was used in this 
study. 

Optimum design of the SVR parameters corre-
sponded to the minimization of the score function in 
the DE algorithm. In this study, the score of a candi-
date solution (i.e., the SVR parameters) was evaluated 
by using ten-fold cross validation (Kohavi, 1995; 
Salzberg, 1997) within the training data. The training 
data were further portioned into ten symmetrical 
subsets. Each of the ten subsets was used to test the 
model which was built by training on the remaining 
subsets. The test error was represented by the root 
mean squared error (RMSE) between the predicted 
and true kinetic parameters. The score was defined as 
the average value of the ten test errors. In this sense, 
the solution with the minimum score gave the optimal 
SVR parameters. 

The established models will be appropriate for 
use as long as the optimal SVR parameters are used in 
the training progress. In this way, we built two opti-
mal DE-SVR models named Model-E and Model-A. 
These models depicted the non-linear relationship 
between the combustion kinetic parameters and coal 
quality. Model-E and Model-A can be used as the 
prediction models for E and lnA, respectively. 

5.3  Validation of the optimal models 

The accuracy of the DE-SVR models was vali-
dated with training data and holdout data. Predicted 
results are shown in Fig. 2. The predicted points of 
both the training data and the holdout data were ap-
proximately linear. In the case of validation using 
training data, the RMSEs for E and lnA were 2.707 
and 0.143, respectively. The satisfactory model per-
formance indicated that both of the DE-SVR models 
had low empirical errors and that the relationship 
between the combustion kinetic parameters and coal 
quality can be established using the DE-SVR models. 
In the case of validation using holdout data, the ac-
curate prediction (RMSEs for E and lnA were 2.571 
and 0.245, respectively) of the holdout data, with 
which the models had not been trained, implied the 
absence of over-fitting in the training process. 
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6  Results 

6.1  Prediction of the kinetic parameters 

The ten coal samples in the holdout data were 
used as test samples for the two models. Considering 
that the kinetic parameters were unknown to the user 
in practice, the prediction was performed with the test 
samples using the models together, according to the 
manner in which the models will be applied in prac-
tice. Firstly, the value of E was predicted from 
Model-E, which reproduced identical results to those 
as shown in Fig. 2c. Additionally, the value of lnA can 
be predicted from Model-A using the predicted value 
of E. The predicted results of lnA are shown in Fig. 3. 
The difference between the RMSEs of Fig. 3 (0.565) 
and Fig. 2d (0.245) was small, which revealed that the 
predicted value of E could be used for the prediction 
of lnA. The predicted results of lnA of the test samples 
indicated that the DE-SVR models had good gener-
alization performance. Combustion kinetic parame-
ters of novel coals can be accurately predicted from 
coal quality using the two models together. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2  Prediction of the TG curves 

TG curves will allow us to measure the accuracy 
of the predicted kinetic parameters distinctly. Ac-
cording to Eq. (1), TG curves (300–700 °C, 5 °C step) 
could be determined by the predicted combustion 
kinetic parameters. The predicted TG curves of ten 
test samples deviated from the experimental data to 
different degrees. By using the experimental data as a 
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benchmark, the RMSE based on this deviation was 
calculated. The average and maximum RMSEs were 
0.029 and 0.052, respectively. The overall fit between 
the predicted TG curves and the experimental TG data 
is shown in Fig. 4. The best results were obtained for 
sample 3, where the predicted TG curves fit the ex-
perimental data exactly. In sample 7, with moderate 
RMSE, the predicted TG curve deviated slightly from 
the experimental data. The maximum RMSE was 
observed for sample 9, where the accuracy of the fit of 
the predicted TG curve was acceptable. The overall fit 
between the predicted differential thermo-gravimetry 
(DTG) curves and the experimental DTG data of 
samples 3, 7, and 9 is shown in Fig. 5. These three 
different samples demonstrated that the predicted 
kinetic parameters were successful in determining the 
TG curves accurately. In other words, the combustion 
kinetic parameters based on the TG curves have been 
accurately predicted from the coal quality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7  Conclusions 
 

Kinetic analyses on TG data of 80 coal samples 
were performed to prepare sample data for the mod-
eling of an SVR. The combustion kinetic parameters 
were correlated to the coal quality by the established 
DE-SVR models. The following conclusions can be 
drawn: 

1. Validation results showed that both DE-SVR 
models had small empirical errors and were free of 
over-fitting. 

2. Predicted results (RMSEs for E and lnA were 
2.571 and 0.565, respectively) of the test samples 
showed that the DE-SVR models had good generali-
zation performance. 

3. The combustion kinetic parameters can be 
accurately predicted from the coal quality using the 
two DE-SVR models together. 

4. Predicted TG curves, which were defined by 
the predicted kinetic parameters, fit the experimental 
TG data well. 
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Appendix 
 

The coal quality and kinetic parameters of all the 
80 coal samples are listed in Table A1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A1  Coal quality and kinetic parameters of the 80 coal samples 

Coal quality (%) Kinetic parameter 
Sample 

Mad FCd Vdaf Hd St,d E (kJ/mol) lnA (min−1)
Training data 

No. 1 5.4 46.51 49.99 3.06 1.60 78.8 12.52 
No. 2 2.3 45.65 39.17 4.18 0.33 81.5 11.39 
No. 3 2.7 51.87 33.35 3.16 0.65 81.7 11.13 
No. 4 2.3 48.84 38.50 4.21 1.68 82.6 11.55 
No. 5 2.4 51.05 33.19 2.91 0.68 84.1 11.51 
No. 6 4.3 51.02 37.87 2.62 0.40 84.6 12.51 
No. 7 3.0 53.03 34.73 4.08 0.51 84.9 11.98 
No. 8 1.7 53.88 32.07 3.78 0.45 85.7 11.70 
No. 9 3.9 44.70 43.83 4.46 1.14 86.7 13.13 
No. 10 2.6 48.03 37.48 3.96 1.10 86.7 12.26 
No. 11 3.2 45.61 39.63 4.10 0.73 87.3 12.33 
No. 12 9.6 41.88 52.15 4.07 2.41 87.7 12.97 
No. 13 6.0 36.00 54.08 3.26 0.60 87.9 13.61 
No. 14 1.6 47.43 38.90 2.16 0.28 88.2 12.74 
No. 15 2.7 54.95 36.24 4.83 0.88 88.5 12.49 
No. 16 2.9 48.97 38.80 2.95 1.70 89.2 12.74 
No. 17 2.4 39.68 43.04 2.96 0.24 89.3 12.84 
No. 18 1.8 47.43 38.19 2.35 0.36 89.6 12.89 
No. 19 4.4 50.05 37.40 3.73 1.27 89.8 12.83 
No. 20 2.2 45.00 39.43 3.88 1.52 90.2 12.91 
No. 21 1.9 41.48 42.91 3.80 0.39 90.2 12.96 
No. 22 0.6 47.39 36.22 4.29 0.82 90.4 12.69 
No. 23 2.4 50.32 37.03 4.21 0.73 90.9 12.87 
No. 24 2.7 47.41 39.12 4.00 0.64 91.1 13.23 
No. 25 3.3 51.74 35.90 3.80 0.97 92.8 13.18 
No. 26 5.5 33.89 45.06 2.34 0.59 92.9 14.22 
No. 27 3.6 51.60 36.18 3.79 1.25 93.1 13.14 
No. 28 3.6 55.80 35.04 3.28 1.01 93.1 13.24 
No. 29 3.3 54.99 35.18 3.82 1.00 93.8 13.33 
No. 30 5.4 41.42 50.75 4.63 0.69 96.2 15.37 

(To be continued) 
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    (Table A1) 
Coal quality (%) Kinetic parameter 

Sample 
Mad FCd Vdaf Hd St,d E (kJ/mol) lnA (min−1)

Training data  
No. 31 3.9 29.33 40.64 2.81 0.36 96.4 14.77 
No. 32 2.4 72.55 18.54 3.79 2.10 98.0 12.86 
No. 33 3.3 48.85 28.40 3.24 2.53 98.5 13.38 
No. 34 1.4 44.93 37.22 2.05 0.35 98.5 14.13 
No. 35 17.2 45.28 46.98 5.91 0.33 103.4 18.60 
No. 36 7.3 38.76 43.19 3.83 1.09 103.5 16.64 
No. 37 6.3 33.43 40.80 3.04 0.32 103.5 15.96 
No. 38 3.8 61.36 31.15 4.45 1.03 104.4 14.72 
No. 39 9.4 53.21 35.70 3.19 0.34 105.7 16.02 
No. 40 6.0 50.04 34.02 4.48 0.27 106.8 16.62 
No. 41 11.4 46.43 44.68 4.58 0.25 107.3 18.79 
No. 42 9.1 47.02 47.55 5.57 0.31 108.1 19.28 
No. 43 2.2 58.37 20.73 3.13 2.15 110.6 15.08 
No. 44 12.2 43.89 47.42 5.33 0.33 113.0 20.75 
No. 45 1.8 58.19 21.81 3.01 1.84 116.3 16.04 
No. 46 1.7 56.92 20.22 2.93 2.78 120.6 16.50 
No. 47 1.3 45.16 17.91 1.92 0.85 122.2 16.73 
No. 48 0.7 57.33 19.31 2.56 1.29 126.1 17.51 
No. 49 2.3 57.12 19.52 2.89 2.59 127.2 17.35 
No. 50 0.8 48.16 22.93 3.22 2.75 127.4 17.69 
No. 51 2.2 61.32 17.36 3.08 2.39 128.9 17.53 
No. 52 1.7 64.95 13.60 2.91 0.31 129.0 16.95 
No. 53 1.3 47.08 21.34 2.75 2.97 129.5 17.87 
No. 54 0.6 54.24 19.13 3.14 2.35 129.9 17.91 
No. 55 1.6 67.04 14.65 3.07 0.72 130.8 17.84 
No. 56 1.2 58.10 17.38 2.87 2.37 131.0 18.24 
No. 57 12.1 58.65 56.19 4.55 0.42 132.5 21.70 
No. 58 2.3 63.97 14.18 2.77 1.07 132.9 17.94 
No. 59 2.1 61.24 15.21 2.90 0.53 133.4 17.95 
No. 60 1.3 50.03 17.95 2.65 2.33 135.8 18.75 
No. 61 1.7 68.64 13.54 3.17 0.29 137.6 18.70 
No. 62 1.7 64.11 14.31 2.83 1.27 139.6 19.04 
No. 63 2.1 69.73 11.41 2.67 3.18 143.4 18.82 
No. 64 2.2 73.50 10.21 2.58 1.10 144.3 18.63 
No. 65 1.2 67.36 11.78 3.66 0.51 151.0 20.88 
No. 66 3.4 58.89 13.02 2.94 4.73 153.7 20.92 
No. 67 3.2 51.67 15.15 2.49 3.77 154.3 21.02 
No. 68 1.9 68.03 10.65 3.01 1.32 155.5 21.30 
No. 69 3.3 66.28 9.50 2.55 0.75 162.8 21.44 
No. 70 1.4 68.11 7.61 2.69 0.32 162.9 21.56 

Holdout data (test samples) 
No. 71 1.9 53.98 32.77 3.88 0.46 82.5 11.27 
No. 72 2.7 53.56 37.47 3.72 0.96 87.1 12.58 
No. 73 2.5 49.14 38.16 4.31 0.88 89.4 12.72 
No. 74 2.5 57.86 29.35 3.86 0.32 92.3 12.80 
No. 75 3.9 60.08 33.31 4.59 0.88 97.7 13.73 
No. 76 11.6 47.01 46.85 4.48 0.45 104.8 18.20 
No. 77 1.0 47.13 21.19 3.26 0.79 118.2 16.31 
No. 78 2.0 65.43 14.75 3.02 0.55 129.3 17.27 
No. 79 0.6 61.45 18.39 3.18 4.27 134.9 18.82 
No. 80 3.4 57.52 13.86 2.68 3.62 153.8 21.25 

 


