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Abstract:    This paper describes one approach to the design of reinforced concrete (RC) bridge piers, using a three-hybrid multi- 
objective simulated annealing (SA) algorithm with a neighborhood move based on the mutation operator from the genetic algo-
rithms (GAs), namely MOSAMO1, MOSAMO2 and MOSAMO3. The procedure is applied to three objective functions: the 
economic cost, the reinforcing steel congestion and the embedded CO2 emissions. Additional results for a random walk and a 
descent local search multi-objective algorithm are presented. The evaluation of solutions follows the Spanish Code for structural 
concrete. The methodology was applied to a typical bridge pier of 23.97 m in height. This example involved 110 design variables. 
Results indicate that algorithm MOSAMO2 outperforms other algorithms regarding the definition of Pareto fronts. Further, the 
proposed procedure will help structural engineers to enhance their bridge pier designs. 
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1  Introduction 
 
The traditional design of concrete structures 

concentrates on cost. However, other objectives, such 
as the embedded emissions of carbon dioxide, the 
consumption of energy and water, the constructability, 
the durability, amongst others, now attract research 
attention (Paya et al., 2008; Paya-Zaforteza et al., 
2009; Yepes et al., 2012). The emergence of personal 
computers in the 1980s indicated a turning point in 
the structural analysis, in particular with regard to the 
use of finite elements-based models. Other advances 
in the 1990s came with the use of the computer-aided 
design (CAD) tools, which significantly improved the 
structural designs. However, those design tools did 

not, by themselves, optimize any structure, since 
structures were designed based on data supplied by 
users. The only way to achieve improvements in the 
CAD designs was to make several tests and reject 
those solutions that did not comply with any re-
quirements imposed by the designer, in a trial-and- 
error process, where human-computer interaction is 
essential. Fortunately, optimization methods have 
provided an effective alternative to traditional-based 
design methods, where CAD-based software is in-
cluded. However, we must not forget the importance 
of the designer experience, whose common sense is 
imperative to decide, ultimately, any proposed com-
puter design. 

The latest increase in heuristic optimization 
techniques is linked to artificial intelligence procedures. 
These approximate techniques are adequate for opti-
mizing realistic structures because they provide good 
solutions at a reasonable computational cost. Much 
research has been conducted with regard to heuristic 

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) 

ISSN 1673-565X (Print); ISSN 1862-1775 (Online) 

www.zju.edu.cn/jzus; www.springerlink.com 

E-mail: jzus@zju.edu.cn 

 
‡ Corresponding author 
* Project supported by the Spanish Ministry of Science and Innovation 
(No. BIA2011-23602), and the European Community with the Euro-
pean Regional Development Fund (FEDER), Spain 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012 



Martinez-Martin et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2012 13(6):420-432 
 

421

methods, such as genetic algorithms (GAs) (Holland, 
1975), simulated annealing (SA) (Kirkpatrick et al., 
1983; Cerny, 1985), ant colony optimization (Dorigo 
et al., 1996), particle swarm optimization (Kennedy 
and Eberhart, 1995; Zhang et al., 2008), and harmony 
search optimization (Lee and Geem, 2004), inter alia. 
Heuristic optimization and other artificial intelligence 
procedures have been used with favorable outcome in 
different areas of structural engineering (Yepes and 
Medina, 2006; Ponz-Tienda et al., 2012). Cohn and 
Dinovitzer (1994) conducted an extensive state-of- 
the-art study of the practical use of optimization in 
structural engineering. They brought out the gap 
between theoretical research and the practical appli-
cations, adding that mathematical optimization 
represents a high degree of complexity for the struc-
tural engineer and noting that most studies focused on 
steel structures, whereas only few dealt with concrete 
structures. The application of heuristic optimization 
to reinforced concrete (RC) structures began to ap-
pear in the late 1990s (Balling and Yao, 1997; Coello 
et al., 1997). From then on, many studies based on 
evolutionary programming have been applied for 
optimizing structural concrete problems, especially 
GAs. Recently, other evolutionary algorithms have 
been developed for structural optimization, such as 
particle swarm optimization, ant colony optimization 
and harmony search (Kaveh and Talatahari, 2009; 
Khajehzadeh et al., 2011). Kicinger et al. (2005) 
provided a review of evolutionary programming and 
structural design, while our research group has re-
cently reported on non-evolutionary techniques for 
the CAD optimization of walls (Yepes et al., 2008), 
frame bridges (Perea et al., 2008), building frames 
(Paya-Zaforteza et al., 2009), bridge piers (Martinez 
et al., 2010), prestressed concrete precast pedestrian 
bridges (Marti and Gonzalez-Vidosa, 2010), and road 
vaults (Carbonell et al., 2011). A review of 
multi-objective applications in structural engineering 
can be found in (Paya et al., 2008). 

The rectangular hollow section piers which are 
the object of this study are mainly used with heights 
of more than 20 m, and they are regarded as the most 
functional solution for the intermediate supports of 
viaducts. The external perimeter is usually embel-
lished with relieves for decorative purposes (Fig. 1). 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2 shows the parts of this pier: the foundation 

that is either a shallow footing or can include deep 
piles, the main hollow shaft and the top part that car-
ries loads from the reactions of the pair of bridge 
bearings. The pier is built usually in stages of ap-
proximately 5 m in height. The footing foundation is 
designed in order to distribute the load on the sup-
porting soil, whose dimensions depend on the per-
missible ground stress. Otherwise, pile foundation is 
required when ground strength is deficient. The main 
parameters that affect pier design are the pier height 
as well as the vertical and horizontal loads trans-
ferred from the deck and the permissible ground 
stress. 
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Martinez et al. (2010) explored the single- 
objective cost optimization of this type of RC struc-
ture. In contrast, this paper concentrates on the fully 
multi-objective, hybrid-based SA optimization. The 
following methods consist of an evaluation computer 
module in which cross-section dimensions, materials 
and steel reinforcement are taken as discrete variables. 
This module computes the three objectives consid-
ered, i.e., the cost, the reinforcing steel congestion 
and the embedded CO2 functions. Then, the module 
verifies whether a solution complies with all the ap-
plicable limit states. Multi-objective random search, 
local search and hybrid-based SA algorithms are then 
used to search the solution space. 

 
 

2  Optimization problem definition 

2.1  Cost function 

Typically, in optimizing an RC structure, the 
objective is to minimize the cost of the structure and 
defined as 

 

1 2
1,

( , ,..., ),i i n
i r

C p m x x x


                 (1) 

 
where pi is the unit price, mi is the measurement of the 
unit in which the construction of the pier is split, and r 
is the total number of construction units. The cost 
function includes the price of materials (concrete and 
steel) and the formwork. The basic prices considered 
were taken from the BEDEC PR/CPT ITEC database 
(Catalonia Institute of Construction Technology, 2009) 
and are given in Tables 1–3. Note that a total of 56 
concrete mixes are considered for the cost and the 
embedded CO2 emissions. Concrete mix design takes 
into account the strength, the water/cement ratio and 
the slump. The slump is the number of centimeters 
that a conical frustum mix of concrete descends once 
the mould is removed. It is measured by an interna-
tional test that is explained in (Neville, 1981). The 
concrete qualities can vary between the HA-25 and 
the HA-50 considered by the Spanish Concrete Code 
(Ministerio de Fomento, 2008), for example, 
HA-25(1) is the concrete type number 1 with 25 MPa 
of compressive cylinder strength at 28 d. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Basic unit prices and embedded kg CO2

Unit Cost (€) kg CO2 
1 kg of steel of column (B500S) 1.09 2.82 

1 kg of steel of foundation (B500S) 1.07 2.82 

1 m2 of foundation formwork 18.19 14.55 

1 m2 of exterior wall formwork 48.19 12.68 

1 m2 of interior wall formwork 49.50 12.68 

1 m3 of column concrete placing 
(labour+pump) 

26.03 31.00 

1 m3 of column concrete placing 
(labour+bucket) 

27.34 – 

1 m3 of footing concrete placing 
(labour+bucket) 

12.74 – 

1 m3 of earth removal 9.42 20.81 

1 m3 of earth fill-in 4.81 – 

Table 2  Basic prices and kg CO2 for concrete class 25 
and 30 mixes 

Unit (m3)
Water/ 
Cement

Cement 
(kg) 

Slump 
Cost 
(€) 

kg CO2

HA-25(1) 0.65 250 Medium 70.79 224.34

HA-25(2) 0.60 275 Medium 72.78 244.94

HA-25(3) 0.60 300 Medium 73.93 265.28

HA-25(4) 0.60 325 Medium 75.49 285.62

HA-25(5) 0.60 350 Medium 76.63 305.97

HA-25(6) 0.65 250 Low 69.40 224.34

HA-25(7) 0.60 275 Low 71.35 244.94

HA-25(8) 0.60 300 Low 72.48 265.28

HA-25(9) 0.60 325 Low 74.01 285.62

HA-25(10) 0.60 350 Low 75.12 305.97

HA-30(1) 0.65 250 Medium 73.62 224.34

HA-30(2) 0.60 275 Medium 75.69 244.94

HA-30(3) 0.60 300 Medium 76.89 265.28

HA-30(4) 0.60 325 Medium 78.51 285.62

HA-30(5) 0.60 350 Medium 79.69 305.97

HA-30(6) 0.55 300 Medium 79.66 265.60

HA-30(7) 0.50 300 Medium 79.85 265.91

HA-30(8) 0.50 325 Medium 82.75 286.30

HA-30(9) 0.65 250 Low 72.18 224.34

HA-30(10) 0.60 275 Low 74.20 244.94

HA-30(11) 0.60 300 Low 75.38 265.28

HA-30(12) 0.60 325 Low 76.97 285.62

HA-30(13) 0.60 350 Low 78.13 305.97

HA-30(14) 0.55 300 Low 78.10 265.60

HA-30(15) 0.50 300 Low 78.29 265.91

HA-30(16) 0.50 325 Low 81.13 286.30
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2.2  Reinforcing steel congestion function 

Apart from the cost function, two other objective 
functions are considered. The economy of cast-in- 
place RC structures depends largely on decisions 
made early in advance in regards to framing dimen-
sions, repetition and clearness of formwork. To this 
end, the first additional function is based on the 
number of bars of the structure, which was originally 
proposed by Koumousis et al. (1996). It may be ar-
gued that optimization based only on cost often re-
sults in structures whose constructability is poorly 
treated, since results tend to arrangements with too 
many different diameters and narrowly spaced small 
diameter bars. In this sense, the number of bars is 

regarded as an indicator of reinforcing steel conges-
tion, for fewer bars imply larger diameters with 
greater spacing. Moreover, fewer bars imply fewer 
execution errors, less complex quality controls and 
faster construction processes. The present study ca-
ters to constructability by using practical reinforce-
ment arrangements and ensuring that bar spacing 
satisfies minimum distances in the code of practice. 
The second objective function is the total number of 
bars in the structure, Nb, i.e., 

 

b B CL CT F
Column Foundation

( ) ,N n n n n             (2) 

 

where nB, nCL and nCT are the number of bars on the 
top block, the number of longitudinal bars in the 
hollow column, and the number of transverse bars in 
the hollow column, respectively, and nF is the number 
of bars in the foundation. 

2.3  CO2 objective function 

The CO2 objective function quantifies the total 
amount of carbon dioxide emissions resulting from 
the use of materials which involves emissions at dif-
ferent stages of production, transportation, and 
placement. As a general rule, the higher the cost, the 
lower its sustainability. Different structural alterna-
tives may be assessed and compared from an envi-
ronmental viewpoint. The present study proposes a 
CO2-environmental function to analyze bridge piers 
which is expressed as follows: 

 

1 2
1,

( , ,..., ),i i n
i r

E e m x x x


                       (3) 

 

where ei is the CO2 unit emission from the bridge pier 
material. The values of ei for concrete, steel and 
formwork in the present study were obtained from the 
BEDEC database (Catalonia Institute of Construction 
Technology, 2009) and are specified in Tables 1–3. 
The bounds and scope of CO2 emissions modeling 
include (1) the extraction of raw materials, (2) the 
transportation of raw materials to the factory, (3) the 
processing, manufacturing and fabrication of prod-
ucts and machinery, and (4) the emissions equipment 
involved in the construction processes in order to 
execute the structural work units. Despite the impor-
tance of transporting materials to the construction site, 
neither the use/maintenance nor the removal/disposal 

Table 3  Basic prices and kg CO2 for concrete class 35, 
40 and 45 mixes 

Unit (m3) 
Water/ 
Cement 

Cement 
(kg) 

Slump 
Cost 
(€) 

kg CO2

HA-35(1) 0.65 250 Medium 76.45 224.34

HA-35(2) 0.60 275 Medium 78.60 244.94

HA-35(3) 0.60 300 Medium 79.85 265.28

HA-35(4) 0.60 325 Medium 81.53 285.62

HA-35(5) 0.60 350 Medium 82.76 305.97

HA-35(6) 0.55 300 Medium 82.80 265.60

HA-35(7) 0.50 300 Medium 82.92 265.91

HA-35(8) 0.50 325 Medium 85.93 286.30

HA-35(9) 0.45 350 Medium 88.72 307.06

HA-35(10) 0.65 250 Low 74.95 224.34

HA-35(11) 0.60 275 Low 77.06 244.94

HA-35(12) 0.60 300 Low 78.28 265.28

HA-35(13) 0.60 325 Low 79.93 285.62

HA-35(14) 0.60 350 Low 81.13 305.97

HA-35(15) 0.55 300 Low 81.20 265.60

HA-35(16) 0.50 300 Low 81.30 265.91

HA-35(17) 0.50 325 Low 84.25 286.30

HA-35(18) 0.45 350 Low 86.98 307.06

HA-40(1) 0.50 300 Medium 85.99 265.91

HA-40(2) 0.50 325 Medium 89.12 286.30

HA-40(3) 0.45 350 Medium 92.00 307.06

HA-40(4) 0.50 300 Low 84.31 265.91

HA-40(5) 0.50 325 Low 87.37 286.30

HA-40(6) 0.45 350 Low 90.20 307.06

HA-45(1) 0.50 300 Medium 89.07 265.91

HA-45(2) 0.50 325 Medium 92.30 286.30

HA-45(3) 0.45 350 Medium 92.00 307.06

HA-45(4) 0.50 300 Low 87.32 265.91

HA-45(5) 0.50 325 Low 90.49 286.30

HA-45(6) 0.45 350 Low 93.42 307.06
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phases for long-lived RC structures are considered in 
the BEDEC database, which are highly dependent in 
all case studies. 

2.4  Problem definition 

The proposed framework for the optimization of 
concrete structures involves a fully multi-objective 
optimization of the cost, the reinforcing steel con-
gestion and the embedded CO2 emissions of the 
structure. Note that multi-objective optimization 
techniques can deal with many objectives at the same 
time and this study will work with the three objective 
functions together. In these terms, this multi-objective 
optimization aims to minimize the objective functions 
f1, f2 and f3 of Eqs. (4)–(6) while satisfying the con-
straints of Eq. (7). 

 

1 1 2( , ,..., ),nC f x x x                           (4) 

b 2 1 2( , ,..., ),nN f x x x                          (5) 

3 1 2( , ,... ),nE f x x x                             (6) 

1 2( , ,..., ) 0.j ng x x x                             (7) 

 

Note that the objective function f1 in Eq. (4) is the 
cost of the structure expressed as the sum of unit prices 
multiplied by the measurements of construction units 
(Section 2.1). In addition, f2 and f3 are the second and 
third objective functions, i.e., specific measurements 
of the reinforcing steel congestion of the structure 
(Section 2.2) and the embedded CO2 emissions (Sec-
tion 2.3). For nontrivial multi-objective problems, 
there is no solution that simultaneously minimizes all 
objective functions since the objective functions are 
in conflict. This leads to the concept of Pareto opti-
mality (Deb, 2001). A solution is said to belong to the 
Pareto set when there is no other solution overshad-
owing it in the graph f1 vs. f2 or f3. A set of inequality 
constraints gj in Eq. (7) are all the serviceability limit 
states (SLSs) and ultimate limit states (ULSs) that the 
structure must be satisfied, as well as the geometry 
and constructability constraints of the problem (Sec-
tion 2.5). The design variables are described together 
with the parameters of the problem as the design 
representation space (Section 2.6). 

2.5  Problem constraints 

Eq. (4) represents the entire limit states in which, 
when exceeded, it may be considered that the struc-

ture does not accomplish one of the functions that has 
been designed. The structural constraints for bridge 
piers have been fully discussed in a previous study 
(Martinez et al., 2010). The column must comply 
with the ULSs for buckling, shear and fatigue, and the 
SLS for cracking. The ULS for buckling requires the 
greatest amount of computing time. Reinforcing steel 
is checked against flexure, shear, cracking and fatigue. 
The SLS verification of the footing involves checking 
whether the ground has sufficient bearing resistance 
to bear to the actions. It is assumed that the stresses 
under the footing are linearly distributed. A triangular 
distribution is used in the case of lifting and a trape-
zoidal block otherwise. As an additional check, the 
minimum amount of steel reinforcement due to flex-
ural, shear and geometry is verified as prescribed by 
the Spanish Concrete Code (Ministerio de Fomento, 
2008). 

Apart from the explicit restrictions, such as 
structural constraints, the problem includes implicit 
constraints regarding the geometry, the materials and 
the constructability of solutions. Inter alia, these im-
plicit constraints contain the choice of a hollow sec-
tion, the set of bar diameters, the reinforcement setup, 
the maximum and minimum thickness values of the 
walls, etc. 

2.6  Design variables and parameters 

The design variables x1, x2, …, xn can be varied 
without restriction to define a solution, whilst the 
parameters are all the magnitudes taken as fixed data. 
The number of column building stages determines the 
number of design variables. This study considers six 
column stages as shown in Fig. 2. The total number of 
variables in the present study is 110, which differs 
from a previous model where the number of variables 
was 95 (Martinez et al., 2010). The differences be-
tween them are due mainly to the present treatment of 
concrete mixes for the required computation of em-
bedded CO2 emissions. All variables are discrete in 
the present model. 

The total number of variables for the column is 
91, where the first 24 variables define the sequence of 
concrete materials. There are four variables for each 
of the six column stages in Fig. 2, which are the 
compressive concrete strength, the water/cement ratio, 
the mass of cement of the mix and the slump. The 
only constraint of these variables is that the  
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compressive strength has to reduce with height, i.e., 
the compressive strength of a column stage has been 
always equal or lower than that in the stage below. 
Concrete strength can vary from 25 to 45 MPa in 
steps of 5 MPa, the water/cement ratio can vary from 
0.45 to 0.65 in steps of 0.05, and the cement content 
can vary from 250 to 350 kg/m3 in steps of 25 kg/m3. 
Placing of concrete has two options: pumping of 
concrete with a medium slump and placing with a 
bucket with a low slump. All feasible combinations of 
strength and concrete mix are detailed in Tables 2 and 
3. The next 10 variables define the front and lateral 
wall thickness of the five hollow sections in Fig. 2. 
Additionally, the remaining 57 variables define the 
reinforcing steel. The first two variables for the steel 
define the steel inner and outer covers, which are 
constant for the whole height of the pier. The longi-
tudinal reinforcing steel is defined by 40 variables. 
The bar diameters and the number of the bars deter-
mine the longitudinal reinforcing set up, which is in 
the inner and outer faces of the lateral and frontal 
sides of the five hollow sections of the pier. Nominal 
bar diameters considered are 12, 16, 20, 25 and 32 
mm and spacing varies from 0.10 to 0.30 m in steps of 
0.02 m. As in construction practice, the reinforcement 
steel can only be reduced in height. The last 15 vari-
ables have been designed at the ULS of failure due to 
shear stresses. The tables of reinforcement include bar 
diameters and spacing, so all the ULSs and SLSs can 
be checked in detail. 

The footing is defined with 19 variables. The 
first five ones are geometrical and define the total 
depth of the footing, the rectangular footing and the 
plinth plan dimensions. The depth of the footing 
measures between 1.00 and 4.00 m in steps of 0.10 m, 
and the plan dimensions of the footing vary between 
8.00 and 15.00 m in steps of 0.25 m. The depth of the 
plinth is equal to half the total depth of the footing, 
whereas the plan dimensions of the plinth range from 
4.00 to 15.00 m in steps of 0.25 m. Three variables 
characterize the grade of concrete, the cement content 
and the water/cement ratio in the dosage. Lastly, the 
11 remaining variables determine the cover and the 
footing and plinth reinforcement. 

The main parameters can be grouped as geo-
metrical, ground properties, design actions, partial 
safety factors and durability requirements. As men-
tioned above, the pier height is 23.97 m, the frontal 

side of the cross-section of the pier is 4.84 m, and the 
lateral dimension is fixed at 2.60 m as in the built pier. 
The actions considered together with the main pa-
rameters are summarized in Table 4. These parame-
ters are kept constant for the calibration of the algo-
rithms described in Section 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3  Multi-objective optimization procedures 

 
The five multi-objective heuristic search meth-

ods are the random search (RS), the descent local 
search (DLS) and three versions of the SA method. 
Additionally, a single-objective version of the SA 
algorithm is also considered to assess the quality of 
the Pareto results when compared to single-objective 
results. Note that the RS has no intelligence on how 
to approach the optimal point or on how to construct 
the Pareto front in the case of multi-objective opti-
mization. However, it was included since it allows 
an estimation of the correlation of the objective 
functions. 

3.1  Multi-objective random search 

The first multi-objective method used is the 
random search, which consists of generating solutions 
by random choice of the optimization problem  

Table 4  Basic parameters of geometry and actions of 
the pier 

Parameter Value 

Transverse dimension of the pier (m) 4.84  

Longitudinal dimension of the pier (m) 2.60 

Height of pier (m) 23.97 

Height of top end block (m) 3.00 

Height of formwork stage (m) 5.00 

Number of bearings 2 

Spacing of bearings (m) 3.60 

Transverse dimension of bearing  (m) 1.20 

Longitudinal dimension of bearing (m) 1.20  

Earth fill density (kN/m3) 20.00  

Permissible ground stress (kN/m2) 500.00  

Maximum load SLS of reactions R1, R2 (kN) 15445, 14241 

Maximum torque SLS of reactions R1, R2 (kN) 15690, 11442 

Minimum load SLS of reactions R1, R2 (kN) 11724, 11708

Bearing deformation force (kN) 725.25  
Braking horizontal force (kN) 262.12  
Wind horizontal force (kN) 1503.77  
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variables. The objective functions of each random 
solution are evaluated as well as the structural con-
straints to check whether the solution is feasible or not. 
This direct-search and iterative algorithm has no intel-
ligence, but it is worth looking at the solution space and 
to estimate the proportion of feasible solutions from 
the total number of generated solutions. Additionally, 
the multi-objective RS allows a first estimation of the 
Pareto fronts and also allows for estimating the corre-
lation of different objective functions. Furthermore, 
providing random initial solutions is useful as the 
starting point of other heuristics. Results for 50 000 
feasible iterations will be presented in Section 4. 

3.2  Multi-objective descent local search 

The multi-objective DLS is a hill climbing 
search, iterative and trajectory method that starts with 
a random solution, and then modifies this solution by 
an appropriate move mechanism. Here, a mutation 
operator from GAs was chosen as the moving 
mechanism, based on a small random perturbation to 
the values of some of the variables that define the 
current solution. The present algorithm changes at 
random 21 variables for the column and five for the 
footing, which is about 25% of the total number of 
variables. Changes are one position up or down the 
current value of each of the variables. Single- 
objective DLS accepts a candidate new solution when 
it fulfills the structural constraints and improves the 
objective function. In the present analysis, there are 
three objective functions and the analysis searches the 
Pareto 3D surface of the multi-objective problem. 
Therefore, there are three possible cases for any new 
trial solutions that satisfy the structural constraints. 
The first case is that the new candidate solution is 
dominated by any of the solutions in the Pareto sur-
face, which implies that this candidate solution is 
ignored. The second case occurs when the candidate 
solution overshadows one or several of the solutions 
in the Pareto surface, which implies that the new 
candidate solution replaces those overshadowed so-
lutions in the Pareto surface. The third possibility is 
that it neither overshadows solutions of the Pareto 
surface nor it is overshadowed, which implies that the 
candidate solution is inserted in the Pareto surface. 
The algorithm is run a number of times to generate 
different solutions. Each run starts with a random 
solution and lasts 10 000 acceptances or 1000 itera-

tions without improvement. The Pareto surface is 
updated after each run. The algorithm stops after 10 
runs without improvement of the Pareto surface with 
a maximum of 1000 runs. 

3.3  Single-objective hybrid SA algorithm with 
mutation operator 

The single-objective SA was independently de-
scribed by Kirkpatrick et al. (1983) and Cerny (1985) 
and is the basis of the multi-objective optimization 
algorithm of Section 3.4. Annealing is a physical 
process often performed to relax the system to a state 
with minimum free energy. Based on the annealing 
process in statistical mechanics, SA simulates the 
process endured by wrongly positioned atoms in a 
metal when is heated and then slowly cooled under 
controlled conditions. At high temperatures, the at-
oms move freely with respect to one another. Never-
theless, if the mass is cooled slowly, thermal mobility 
is lost. SA applies a stochastic acceptance criterion to 
accept new solutions according to the expression 
exp(−Δf/T), where Δf is the deterioration in the opti-
mization function and T is the temperature (a positive 
control parameter). The new current solution is ac-
cepted when a random number uniformly distributed 
in the interval (0, 1) is smaller than exp(−Δf/T). A 
predefined number of iterations, called Markov 
chains, are allowed while keeping the temperature 
fixed. The temperature is lowered very slightly ac-
cording to a cooling schedule, in this way SA is ca-
pable of surpassing local optima at high-medium 
temperatures and gradually converges as the tem-
perature reduces to zero. SA requires selecting the 
initial temperature, the length of the Markov chains 
and the cooling scheme, which can have a significant 
impact on the effectiveness of the algorithm. The 
initial temperature considered is given as 
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where po is the initial probability and nv is the number 
of solutions that worsen the objective function. 

From another standpoint, GAs are adaptive 
search procedures based on the process of natural 
evolution, which explore the search space using a 
population of solutions and operators such as selection, 
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crossover and mutation (Holland, 1975). In general, 
GA produces diversified solutions but shows poor 
convergence properties, which may not be able to 
explore the whole solution space without a fitting 
neighborhood structure. Some studies (Wong, 2001; 
Soke and Bingul, 2006) implemented a hybrid 
methodology in order to combine the synergy be-
tween the GA and SA and obtained hopeful results. 
The idea is to employ SA with a neighborhood move 
based on the GA mutation operator (Wu et al., 2009). 

The method in this study is a hybrid SA algo-
rithm with a mutation operator (SAMO), which starts 
with a random solution. After several experiments, 
the mutation proposed was a random variation of 25% 
of the variables. Mutation was based on a small ran-
dom perturbation to the values of some of the vari-
ables that define the current solution. These small 
random variations were selected to avoid a totally 
random search in the solution space, and they are 
justified for practical and constructive processes. The 
subset of solutions that worsen the objective function 
has nv solutions, which are used to compute their 
average f in Eq. (8). The value of the initial prob-
ability (po) was adjusted to 0.7 in order to obtain high 
initial temperatures that improve the exploration part 
of the algorithm. The length of the Markov chains was 
2000 iterations. Regarding the cooling scheme, a 
geometrical decrease was considered with a coeffi-
cient of 0.95. The procedure reduces the temperature 
when the number of iterations achieves the Markov 
chain length or when the number of acceptances is 
larger than 10% of the chain length. The stop criterion 
requires that the temperature is lower than the initial 
temperature divided by 1 000 000 and there are no 
acceptances in the whole Markov chain. 

3.4  Multi-objective hybrid SA algorithm with 
mutation operator 

The first multi-objective SA algorithm was 
proposed by Serafini (1992). More recent develop-
ments of the method were undertaken by Suppapit-
narm et al. (2000). A good overview of multi- 
objective SA approaches can be found in (Bandyop-
adhyay et al., 2008). Three different multi-objective 
algorithms based on a hybrid SA algorithm with a 
mutation operator (MOSAMO) are developed for the 
present study, namely MOSAMO1, MOSAMO2 and 
MOSAMO3. These algorithms differ in the initial 

temperature and the probabilistic transition rule. 
Similar to the single-objective SAMO, the cooling 
scheme follows a geometrical decrease with a coef-
ficient of 0.95. Further, the procedure reduces the 
temperature when the number of iterations achieves 
the Markov chain length of 2000, or when the number 
of acceptances is larger than 10% of the chain length. 
The stop criterion requires that the temperature is 
lower than the initial temperature divided by 
1 000 000, and there are no acceptances in the whole 
Markov chain. The algorithm is run a number of times. 
The algorithm stops after 10 runs without improve-
ment of the Pareto surface with a maximum of 1000 
runs. This stop criterion led to 322 runs for 
MOSAMO1, 455 for MOSAMO2 and 255 for 
MOSAMO3. Fig. 3 shows a flowchart of the simu-
lated process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The initial temperature for MOSAMO1 is given 
as 
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where pok is the initial probability and nvk is the 
number of solutions that worsen the kth objective 
function. 

Start 
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Number of iterations=Markov chain
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Fig. 3  Flowchart of the simulated process
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Note that the initial temperature is different for 
each of the three objective functions. As for the  
single-objective SAMO, the algorithm starts with a 
random solution. The procedure then generates a 
mutation consisting of a random variation of 25% of 
the variables. The subset of solutions that worsen the 
different objective function has nvk solutions, which 
are used to compute their average fk in Eq. (9). pok is 
taken as 0.7 for the three objective functions to have 
high initial temperatures. Smaller values would 
shorten the search but restrict too much the accep-
tance conditions in the initial stages of the search. 
Larger values would unnecessarily delay the search. 

The probability transition rule considered for 
MOSAMO1 is given as 
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A candidate solution will be accepted when a 

random number between 0 and 1 is smaller than the 
probability given by Eq. (10). The value of m is equal 
to the three objective functions considered. 

The initial temperature considered for 
MOSAMO2 is  
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where k is the weight of the kth objective function 
under the Suppapitnarm et al. (2000) criteria, and rj is 
random number between 0 and 1. The sum of the 
three k is equal to 1. k weights can be interpreted as 
a common initial transition probability for all objec-
tive functions. For each annealing process, a set of k 
is randomly generated to perform a multidirectional 
search along the Pareto frontier. 

The probability transition rule considered for 
MOSAMO2 is  
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Similar to MOSAMO1, a candidate solution will 
be accepted when a random number between 0 and 1 
is smaller than the probability given by Eq. (13). 

MOSAMO3 has an initial temperature common 
to the three objective functions: 
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The values in Eq. (14) are as those explained for 

MOSAMO1 and MOSAMO2 algorithms. Finally, the 
probability transition rule considered for MOSAMO3 
is  
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4  Numerical experimental results 

 
The algorithms were programmed in Fortran 

Compaq Visual Professional Edition 6.6.0. Computer 
runs were performed using a conventional PC com-
puter with an Intel Corel 2 CPU of 3.00 GHz and  
2 GB of RAM. Firstly, a random search was per-
formed with 50 000 iterations to study relations be-
tween the three objective functions, which lasted 
73 750 s. The percentages of feasible solutions for the 
column and the footing are 0.13% and 0.12%, re-
spectively. This means that only about one in a thou-
sand randomly generated solutions are feasible. Fig. 4 
depicts the relation between cost and the number of 
bars. The low correlation factor of R2=0.3421 indi-
cates that the functions are quite independent.  
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Similarly, Fig. 5 shows the relation between cost 
and CO2 emissions. In this case, the correlation factor 
of R2=0.9921 is high and indicates an almost linear 
relation between the two objective functions. 

 
 
 
 
 
 
 
 
 
 
 
 
Thirdly, Fig. 6 depicts the relation between the 

number of bars and CO2 emissions. Again, the low 
correlation factor of R2=0.3347 indicates that the 
functions are quite independent. 
 
 
 
 
 
 
 
 
 
 
 
 

 
The average computer times required for DLS, 

SAMO, MOSAMO1, MOSAMO2 and MOSAMO3 
algorithms were 329, 1656, 335, 1456 and 787 s, 
respectively. Tables 5–7 summarize the main nu-
merical results for all the algorithms used, where 
Table 5 is for the best cost solutions, Table 6 for the 
best CO2 emissions, and Table 7 for the best number 
of bars solutions. These values show the extreme 
values of the Pareto surface. 

Table 5 indicates that the MOSAMO2 solution of 
C=88 186.27 euros is only 0.01% higher that the best 
single-objective SAMO solution of C=88 177.38 euros. 
Moreover, DLS, MOSAMO1 and MOSAMO3 solu-
tions are 0.23%, 1.11% and 0.2% higher than the 
SAMO solution, respectively. Similarly, Table 6 indi-

cates that the MOSAMO2 solution of CO2=149 030.33 
kg CO2 is only 0.2% higher than the best single-  
objective SAMO solution of CO2=148 736.77 kg CO2. 
Otherwise, DLS, MOSAMO1 and MOSAMO3 solu-
tions are 0.46%, 0.76% and 0.64% higher than the SA 
solution, respectively. Finally, Table 7 indicates that the 
MOSAMO2 solution of Nb=1628 is as good as the 
single-objective solution. The cost of this MOSAMO2 
solution is C=99 385.74 euros, which is 12.71% more 
than the best cost SAMO solution with a reduction of 
66.83% in the number of bars. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 shows a projection of the Pareto surface 

on the plane Nb-kg CO2. Similarly, Fig. 8 shows a 
projection of the Pareto surface on the plane Nb-cost. 
These two figures include results for the  
DLS, MOSAMO1, MOSAMO2 and MOSAMO3  
algorithms. 

Table 5  Summary of best cost algorithm results

Algorithm Cost (€) kg CO2 Nb 

RS 99 105.63 182 542.62 2958

DLS 88 382.37 150 781.38 2970

MOSAMO1 89 159.37 152 644.91 2886

MOSAMO2 88 186.27 150 389.83 2853

MOSAMO3 88 534.00 151 148.52 3082

SAMO 88 177.38 150 161.50 2716

Table 6  Summary of best kg CO2 algorithm results

Algorithm Cost (€) kgCO2 Nb 

RS 99 105.63 182 542.62 2958 
DLS 89 278.78 149 426.61 2830 
MOSAMO1 89 566.13 149 868.19 2636 
MOSAMO2 89 342.74 149 030.33 2792 
MOSAMO3 90 081.89 149 691.92 2760 
SAMO 89 440.99 148 736.77 2679 

Table 7  Summary of best Nb algorithm results

Algorithm Cost (€) kgCO2 Nb 

RS 104 628.33 190 049.45 2409 
DLS 102 185.00 190 176.39 1628 
MOSAMO1 103 448.81 190 176.25 1693 
MOSAMO2 99 385.74 184 292.53 1628 
MOSAMO3 98 005.38 180 864.38 1679 
SAMO 106 340.39 203 508.20 1628 

Fig. 6  RS number of bars vs. kg CO2
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The best algorithms for the Pareto front 

Nb-kgCO2 in Fig. 7 are the DLS and the MOSAMO2. 
Regarding the Pareto front Nb-cost, the best algo-
rithms are DLS, MOSAMO1 and MOSAMO2 for 
low cost solutions and the DLS, MOSAMO2 and 
MOSAMO3 for high cost solutions. In general terms, 
it appears that the algorithm MOSAMO2 is the best 
algorithm regarding the definition of Pareto fronts, 
although the running times are about three times lar-
ger than those for algorithms MOSAMO1 and 
MOSAMO3. Note that the cost-kg CO2 front is not 
relevant because of the functional relation between 
the two objective functions. 

Figs. 9–11 show the bottom-section of the pier 
for the MOSAMO2 best cost, best Nb and best CO2 
solutions, respectively. 

Finally, Fig. 12 shows the bottom section of the 
best Pareto distance solution. This is the solution that 
minimizes the distance of the Pareto surface to the 
Pareto utopia, which is the point with function coor-
dinates equal to the minimum values obtained for the 
three objective functions. The cost of this solution is 
88 186 euros, the amount of CO2 is 149 030 kg and the 
number of bars is 2609. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 8  Pareto front number of bars vs. cost
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5  Conclusions 
 
Five multi-objective algorithms for the design of 

rectangular hollow section piers are described, i.e., RS, 
DLS, MOSAMO1, MOSAMO2 and MOSAMO3. The 
three versions of the multi-objective SA proposed 
differ in the formulation of the initial temperature and 
the probability transition rule to accept worsening 
solutions. Three objective functions were considered, 
namely the cost, the number of bars in the structure 
and the amount of embedded CO2 emissions. First, a 
random search was executed to study the correlation 
of the three objective functions. It was concluded that 
the relation between cost and embedded CO2 was 
almost functional. Conversely, it was observed that 
the correlation of the number of bars with either the 
cost or the embedded CO2 was very low. The com-
parison between the results indicates that best DLS 
and MOSAMO1-MOSAMO2-MOSAMO3 results 
are close to SAMO single-objective results. This 
leads to the conclusion that the multi-objective algo-
rithms are well calibrated and accurate. Although 
both the DLS and the three MOSAMO Pareto results 
were satisfactory, it is worth noting that the best 
Pareto front results were obtained with the algorithm 
MOSAMO2, which includes weights αk for the initial 
temperature and the transition rule. These weights 
selectively stimulate the search in the direction of any 
of the three objective functions. Note that the algo-
rithm restarts until no improvement in the Pareto front 
is detected in 10 runs, so the use of weights improves 
the quality of the solutions. In addition, this paper 
includes in the objective functions the variables that 
account for concrete mixing. This allows the predic-
tion of the optimum solution together with the con-
crete mix and the procedure for concrete placing. The 
study gives a new state-of-the-art heuristic for the 
multi-objective optimized design of RC structures. 
The RS-DLS-MOSAMO sequence is applied suc-
cessfully to the detailed design of a 110-design vari-
ables bridge pier of 23.97 m in height. This study 
corroborates that the economic optimization has a 
high correlation to the embedded CO2 optimization in 
the economic and technological context in which the 
piers are designed. In addition, this paper stresses that 
the reinforcing steel congestion objective and the 
cost/environmental objective are antagonist objec-
tives, i.e., that constructability has cost and environ-

mental consequences. This is shown thanks to a de-
tailed model that includes bar diameters and spacing 
in the design variables. Results lead to detailed 
drawings of the solutions. 
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