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Abstract: The objective of this paper is to develop a new wheel-rail contact model, which is suitable for considering the effect of
wheelset bending deformation on wheel-rail contact behavior at high speeds. Dummies of the two half rigid wheelset are intro-
duced to describe the spacial positions of the wheels of the deformed wheelset. In modeling the flexible wheelset, the first two
wheelset bending modes are considered. Based on the modal synthesis method, these mode values of the wheelset axle are used to
solve the motion equations of the flexible wheelset axle modeled as an Euler-Bernoulli beam. The wheel is assumed to be rigid and
always perpendicular to the deformed axle at the wheel centre. In the vehicle model, two bogies and one car body are modeled as
lumped masses. Spring-damper elements are adopted to model the primary and secondary suspension systems. The ballasted track
is modeled as a triple layer discrete elastic supported model. Two high-speed vehicle-track models, one considering rigid wheelset
models and the other considering flexible wheelset models, are used to analyze the differences of the numerical results of the two
models in both frequency and time domains. In the simulation, a random high-speed railway track irregularity is used as wheel-rail
excitations. Wheel-rail forces are calculated and analyzed in the time and frequency domains. The results clarify that this new
contact model can characterize very well the influence of the first two bending modes of the wheelset on contact behavior.

Key words: High-speed railway vehicle, Wheel-rail contact behavior, Rigid wheelset, Flexible wheelset, Modal analysis, Random
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1 Introduction out-of-roundness (OOR) generate high-frequency
components of the dynamic wheel-rail contact forces

High_speed railways are Currently popular that contribute signiﬁcantly to the total wheel-rail

globally. However, there are some problems including
passenger riding comfort, noise pollution, and even
operational safety (Jin et al., 2013). Rail corrugation,
rail welding irregularity, wheel burning, and wheel
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contact forces (Nielsen et al., 2003), and reduce the
life of the components of track and vehicle, such as
wheels, rails, and fasteners. Rail grinding and wheel
re-profiling are the most common measures that have
been proved to be effective in controlling rail irregu-
larities and wheel OOR. However, these measures
lead to notably high maintenance costs. A lot of
measurements at the sites and coupling vehicle-
track dynamics modeling have been carried out to
investigate the mechanism and development of these
phenomena. In the vehicle-track dynamics modeling,
a rigid multi-body system is often adopted to simulate
railway vehicles, based on several commercial codes
available for the low-frequency domain, such as
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GENSYS, NUCARS, SIMPACK, and VAMPIRE.
These computer programs are generally used to
analyze railway vehicle dynamics responses at fre-
quencies below 20 Hz, where the influence of rigid
motions of the vehicle on wheel-rail contact forces is
dominant (Nielsen et al., 2005). To analyze the vehi-
cle dynamic responses at mid- and high-frequencies,
the vehicle structural flexibility should be taken into
account in the modeling. It is obvious that wheelset
structural flexibility has an influence on wheel-rail
contact behaviors at mid- and high-frequencies. Dif-
ferent flexible wheelset models have been set up due
to various motivations in the past (Chaar, 2007).

The methods applied to modeling flexible
wheelset can be summarized as three major categories
(Chaar, 2007). The first is a lumped model developed
in a simple and convenient way, in which a wheelset
is divided into several parts interconnected with
springs and dampers. This model can describe the
bending and torsional motions of the wheelset with
only a few degrees of freedom, which could not be
applied to studying wear phenomena on wheel treads
or rails (Popp et al., 1999). The second is a continuous
model developed by Szolc (1998a; 1998b), in which
the wheelset axle was modeled as a beam, and two
wheels and brake discs were modeled as rigid rings
attached to the axle through a massless, elastically
isotropic membrane. The model can characterize the
wheelset dynamic behavior in the frequency range of
30-300 Hz. In the model proposed by Popp et al.
(2003), the wheelset axle was considered as a 1D
continuum, having the properties of a bar, a torsional
rod, and a Rayleigh beam. The wheel was considered
as a 2D continuum, having the properties of a disc and
a Kirchhoff plate. The third was developed based on
finite element method (FEM), which simulates
wheelset flexibility more realistically than the first
two categories of model. The wheelset modes and
corresponding natural frequencies were obtained
through the modal analysis of the finite element (FE)
model by using the commercial software, and they
were input into the simulation by means of the
commercial codes (SIMPACK, NEWEUL) (Meinders
and Meinker, 2003) or some non-commercial multi-
body dynamic system codes. The non-commercial
code developed by Fayos et al. (2007) and Baeza et
al. (2008; 2011) introduced the Eulerian coordinate
system to replace the Lagrangian coordinate system

in the flexible wheelset modeling. In this way it is
convenient to obtain the motion of fixed physical
nodes, and consider the inertial effect due to wheelset
rotation. Relying on current computing power, it is
feasible to use FEM to consider the effect of flexible
wheelset in modeling a railway vehicle coupling with
a track.

Regarding the wheel-rail contact treatment in
considering flexible wheelset influence, wheel-rail
rolling contact condition is simplified based on dif-
ferent prior assumptions, especially in the detection of
wheel-rail contact points. This is the prerequisite for
the calculation of wheel-rail creepages and contact
forces. Baeza et al. (2011) neglected the effect of the
high-frequency deformation and the deviation of a
rotating flexible wheelset rolling over a flexible track
model on the wheel-rail contact point in the investi-
gation into the effect of the rotating flexible wheelset
on rail corrugation. Through the detailed calculation
Kaiser and Popp (2006) found that the contact point
was in the location where the wheel and the rail had
positive penetration maxima, and the penetration
direction was orthogonal to the common tangent
plane of the wheel and the rail before their defor-
mations. A linear wheel-rail contact model was pro-
posed and used to carry out the detection of wheel-rail
contact point and the contact zone’s normal direction
(Andersson and Abrahamsson, 2002). In the detec-
tion, the functions were created using a first-order
Taylor expansion around a reference state described
by a group of parameters which represent a configu-
ration, in which the train was in static equilibrium and
the wheel and the track were free from geometric
imperfections. The advantage of this approach is that
the contact position and orientation in each time step
can be calculated by interpolation replacing itera-
tions, which results in a low computational cost. But
the approach is only suitable for the case that the
effect of all the parameters is very small on the con-
tact point position and the contact patch orientation
around the references is in static equilibrium. The
wheel-rail contact point position and the contact patch
orientation greatly depend on parameters, such as the
curvatures of wheel and rail. In (Torstensson et al.,
2012; Torstensson and Nielsen, 2011), the contact
point detection was done before the simulation and
used in the subsequent time integration analysis in the
form of look-up table. The commercial software
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GENSYS allows for such calculations using the
pre-processor KPF (from Swedish contact point
function). In the KPF, the location and orientation of
the contact patch were assumed to be dependent only
on the relative displacement in the lateral direction
between the wheelset and the rails, and hence the
influence of the wheelset yaw angle was not taken
into account. In some other papers detailed discus-
sions on the wheel-rail contact model were omitted.
In this study, the wheel-rail contact model consider-
ing the effect of wheelset flexibility (Zhong et al.,
2013; 2014) is further improved and the new contact
model is suitable for the analysis on the effect of the
local higher-frequency deformation of the wheels on
the wheel-rail contact behavior.

2 Vehicle-track coupling dynamic system

A flexible wheelset model (to be illustrated in
Section 2.1) and a suitable wheel-rail contact model
(to be discussed in Section 2.2) are integrated into the
vehicle-track coupling dynamic system model. All
parts of the vehicle system, except for its four wheel-
sets, are considered as rigid bodies. The primary and
secondary suspension systems of the vehicle are
modeled with spring-damper elements. A triple layer
model of discrete elastic support is adopted to simulate
the ballasted track. The rails are modeled as Timo-
shenko beams. The sleepers are modeled as rigid
bodies and the ballast model consists of discrete
equivalent masses. The equivalent spring-damper
elements are used as the connections between the rails
and the sleepers, the sleepers and the equivalent ballast
bodies, and the ballast bodies and the roadbed. Fig. 1
shows the vehicle-track coupling dynamic system
model. The equations of motion of each component of
the vehicle excluding wheelsets and the track are il-
lustrated in detail in (Xiao et al., 2007; 2008; 2010).
The parameters and their values describing the dy-
namic models are given in Appendix A.

2.1 Flexible wheelset model

The wheelset structural flexibility is considered
by modeling the wheelset axle as an Euler-Bernoulli
beam in two planes, one perpendicular to the track
centerline and the other parallel to the track level. The
crossing effect of the bending deformations in the two

planes is ignored. In the first two bending modes
obtained using the modal analysis of the FE model
of a wheelset, two wheels have little deformation
(Fig. 2), and their frequencies are in the available
frequency range (0-500 Hz) of an Euler-Bernoulli
beam model. Therefore, two wheels can be treated as
rigid bodies in this study.
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Fig. 2 The first two bending modes obtained using FE
model

There are two force systems acting on the
wheelset, one is the wheel-rail contact forces and the
other is the forces of the primary suspension system
(Fig. 3).

In Fig. 3, Og and Og are the left and right points
on the axle, respectively, where the primary suspen-
sion force systems are applied. Ocyp and Ocgr are the
left and right contact points of wheel-rail, respec-
tively. O indicates the origin of the coordinate system
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O-XYZ that is a coordinate system with a translational
motion along the tangent track centerline at opera-
tional speed. If the speed is constant, this coordinate
system is an inertial coordinate system, and therefore
regarded as an absolute coordinate system (geodetic
coordinate system).

To analyze the axle’s deformation, the force
systems from wheel-rail interaction acting on the left
and right wheel treads are translated to the nominal
circle centers Op and Og, respectively, and extra
moments are produced in the procedure of translating
contact forces. Thus, the force systems acting on the
axle in the two planes are obtained in Fig. 4.

Fig. 3 Force analysis diagram of the flexible wheelset
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Fig. 4 Force analysis diagram in the plane O-YZ (a) and
in the O-XY plane (b)

The notations of the variables and symbols are
defined in Table 1. The subscript p denotes the pri-
mary suspension, the subscripts x, y, and z denote X-,

Y-, and Z-direction, respectively, and A denotes the
axle.

The differential equation for the flexural vibra-
tion of an Euler-Bernoulli beam (the axle) in the plane
O-YZ is written as

4 2
EI a uZ(y’t)+pAa uz(y’t)

oot or* (1
oM, (y,1)
0.(».1) PR
where
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The force analysis diagram of the two wheels
including the D’Alembert forces is shown in Fig. 5,
based on which differential equations of motion of the
two wheels are written as
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Fig. 5 Force analysis diagram of the two wheels
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Note that the lateral accelerations of the wheels
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Qz(yst): FpLzﬁ(y_pr)

are assumed to be the same as the wheelset axle so 2

there is no relative motion between wheels and axle.

M@ r)x obtained through Egs.(4) and (5) into
Egs. (2) and (3), respectively, we can obtain:

0
+ myg _erLz —my, a?”z(waﬂt)jﬁ(y_wa)

Substituting the expressions of Farr) and 2

0
+|myg _erRz —my, a?uz(wavt)Jé‘(y_wa)

+ Fr:6(V = Yor )s

Table 1 The notations of the variables

Variable Explanation
Uplz, UpR= Z-direction components of the displacements of the nodes where the left and right primary suspen-
sion forces are applied on the axle, respectively
UpLy, UpRy Y-direction components of the displacements of the nodes where the left and right primary suspen-
sion forces are applied on the axle, respectively
UpLy> UpRy X-direction components of the displacements of the nodes where the left and right primary suspen-

L

F pLx> K pLy» F pLz
F pRx> F PRy» F pRz
Fave Favys FaL:
Fare Farys Far:
Mar, Mar:
Marxs Mar:

E

1,
I

t

1(0,0), 1,(0,)
0.(.0), 0:(,0)
M.(y,0), M(y,0)
my,

g
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=

ALy ARy

Jw

Ay, Oy

a2, OR;

u’(y,0), u'x(y,1)
YwL> Ywr

Firi Fyntys Fynz
Fyre, Fuys Fumz
O, Or

Oy1, Oyr
Oy-XyLYwrZyL,
Owr-XurYurZuwr
Gzko G4

Grks G

W

N

U4(), U'a(v)
Uu(0), U'(v)

sion forces are applied on the axle, respectively
Length of the wheelset axle

X-, Y-, and Z-direction components of the primary suspension forces on the left sides of a wheelset
X-, Y-, and Z-direction components of the primary suspension forces on the right sides of a wheelset
X-, Y-, and Z-direction components of the forces between the left wheel and the axle of a wheelset
X-, Y-, and Z-direction components of the forces between the right wheel and the axle of a wheelset
X- and Z-direction components of the moments between the left wheel and the axle of a wheelset
X- and Z-direction components of the moments between the right wheel and the axle of a wheelset
Young’s modulus

Cross-sectional area moment of inertia about the X axis

Cross-sectional area moment of inertia about the Z axis

Time

X- and Z-direction components of the displacements of the nodes on the axle at time ¢, respectively
X- and Z-direction components of the forces on the axle at time ¢, respectively

X- and Z-direction components of the moments on the axle at time ¢, respectively

Mass of a wheel

Gravity acceleration

Z-direction components of the accelerations of the left and right wheels, respectively
X-direction components of the accelerations of the left and right wheels, respectively

Mass moment of inertia about the diameter of the wheel

X-direction components of the angular acceleration of the left and right wheels, respectively
Z-direction components of the angular acceleration of the left and right wheels, respectively
The first derivative of u.(y, £), u,(y, f) with respect to y, respectively

y coordinates of the joints of the left and right wheels and the axle, respectively

X-, Y-, and Z-direction components of the left wheel-rail contact forces, respectively

X-, Y-, and Z-direction components of the right wheel-rail contact forces, respectively

Left and right wheel-rail contact point, respectively

Centers of the nominal circles of the left and right wheels, respectively

Body coordinate systems attached to the left and right wheels, respectively

The kth generalized coordinate and the Ath generalized acceleration coordinate in the plane O-YZ
The kth generalized coordinate and the kth generalized acceleration coordinate in the plane O-XY
The kth circular frequency

Considered number of the modes

The kth mode function of the axle in the O-YZ plane and its first derivative with respect to y

The kth mode function of the axle in the O-XY plane and its first derivative with respect to y
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Consider a solution of Eq. (8) in the form:

u, (y,t)=U_(y)sin(wt + o). (10)

Using the calculus of variation (Qiu et al., 2009), the
modal function satisfies:

my = pAULU )y
my (U )V ) + U (0 U (1))
+ 44 (UL UL () + U 0 U5 () = G5

(11)
L !/ "
k,,j:jo EI(ULU%)dy = 05, (12)
EIXJ U, UL dy
+ 4 (U U () + UL (i U ()
+Jw(Uzj(wa)U;i(wa)+U (U (wa)) i 1]’
(13)

where J;; is the Kronecker delta. For i=j, Eq. (11) can
be written as

L
m =I PAULy +m, (U2 () + U2 ()

(14)
+J, (U5 0u) + UL () =1

To obtain the mode shape functions with the
wheelset axle modeled as a uniform Euler-Bernoulli
beam carrying two particles (wheels), the segment of
the beam from the left end to the first particle is re-
ferred to as the first portion, in between the two par-
ticles as the second portion and from the second par-
ticle to the right end as the third portion. The beam
mode shape will be the superposition of the mode
shapes of the three portions. The derivation of the
mode shape functions is presented in Appendix B.
The first three modes have the frequencies of fi=
111 Hz, f,=245Hz, and f;=547 Hz, respectively.
These mode shape functions are normalized so as to
satisfy Eq. (14), as shown in Fig. 6. The third mode is
not in the frequency range of 0—500 Hz where the
Euler-Bernoulli beam is available to analyze the sys-
tem. Hence, the effect of the first two modes on dy-
namic responses is conducted in this study.
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<* 0.000
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Length (m)

Fig. 6 The first three bending mode shapes of the wheelset

According to the modal analysis, we let the so-
lution of Eq. (8) have the form:

Uziqzi' (15)

Il
M=

Substituting Eq. (15) into Eq. (8), the differen-
tial equation can be written as
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Multiplying both sides of Eq. (16) by U,; and

integrating over the domain 0<y<L, we can obtain:

N
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Using the orthogonality of the modal shape
function as expressed in Egs. (11) and (13), Eq. (17)
can be written as

N
g [@76, = (U5 0V )
Uz’j wr)U% (Pur )) -Jy (Uzj VW UZ (Vr)
Uzj VU2 (Vur ))J (18)
£ 6 = (U0 )UL ()
UL )V (i) = (U ) U ()
HU (U5 0 | =1

—_

where
L
Wl_;‘ = Jo Uszody
= (mwg WrLz )Uzl (wa) + FpLzUz] (pr)
+ (mwg WrRz )Uz] (yWR ) + FpRzUzj (pr )
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+(—Fyttpr. + Fopttg UL (V)
+(—Furyter: = Furatiery U2 (Vyr)
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Eq. (18) can be expressed as

G +@q,—J, i{qﬂ« (UL )V (0)
+U z'j VUL (Ver)
+ U (W)U () + U (0 U5 ) |
. [ Uy (u)UL (0u0) + Uy 0 UL ()
FU UL 00 + U U ) | =

(20)

Eq. (20) can be written in the matrix form:

Ml':éjzj:|+M2|:qu]:|:VVl_j:|’ 21

where
(Mll)(i,j) = (MZI)(i,j)
==Jy [U;j VUL () + UL 0y UL ()
U, Gw UL () + U, Pwr UL (Var )J )
My=1, My=|o}]l,
M, =M, +M,,, M,=M, +M,.

(22)

The explicit integral method illustrated in (Zhai,
2007) is used to obtain the vector [q'zj] of each ac-

celeration coordinate.
For the vibration in the plane YOJX, the differen-

tial equation expressed with respect to [c'jxy] can be

written as

+aydy —J,, i{qi (UL () )
+U. ;g VU (Vyr)
+ Uy UL () + Uy G U5 ) |
+4,[ Uy )0 0u0) + Uy )03 ()
Uy U3 () + Uy G U ) ]} = 5

(23)

The derivation of Eq. (23) is similar to that of
Eq. (20) and omitted here. Eq. (23) can be expressed
in matrix form:

M [y ]+ M3 [, )= ] @4

where
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(M) = (M)
==J, (U_),g Ve )Usi () + U (0 W3 (Vr )
+U (U () + Uy 005 () ) (25)
My =1, My =[o} |1,
M =M+ M, M = M3+ MY

2.2 Wheel-rail contact model

As mentioned in Section 2.1, the main concern in
this work is the wheelset axle bending. The wheels are
assumed to be rigid and their nominal rolling circles
are always perpendicular to the deformed wheelset
axle at their interference fit surfaces. Fig. 7 shows that
the flexible wheelset moves from its initial reference
state (Oy(t))) to its #, status (O,(t;)), which is de-
scribed in the plane of O-YZ. O; is the center of the
un-deformed wheelset at ¢, and O, is the center of the
deformed wheelset at any time ¢. 0,0, is the dis-
placement vector of the wheelset center due to its
rigid motion, and ¢g; is the roll angle due to the

wheelset rigid motion. The auxiliary line, 4, A4y, is
the central line of the un-deformed wheelset axle,
Al A, is obtained by moving 4’ A4y from Oy(¢;) to
Ox(ty), and A’ 4 is obtained through rotating A 4y
by @ri. 4. A; is actually the central line of the rigid

wheelset axle at #,. Fig. 7 shows that the wheels are
assumed to be rigid and always perpendicular to the
deformed axle line at their connections at any time #,.

Un-deformed wheelset Nominal rolling

X
ow)| v
= / 7 a————— -A
: 'Z
Nominal'rolling
circle LY
Aj ) —.—. — . A = . — 4
Z =700 W &
L=
A2 Deformed wheelset

Nominal rolling
circle

Nominal rolling
circle

Fig. 7 A flexible wheelset moving from its initial reference
state (0,(t;)) to its any status (O,(7)) in the plane of O-YZ

To clearly describe the new wheel-rail contact
model, the dummies of the two rigid half wheelsets,
as shown in Fig. 8, are employed to describe wheel-
rail rolling contact behavior affected by the wheelset
bending. The two dummies are indicated by DWL and
DWR, respectively, and the wheels of the DWL and
the DWR are assumed to overlap the left and right
wheels of the flexible wheelset, respectively, all the
time, namely, the motion of the assumed rigid wheels
of the flexible wheelset can be described by the DWL
and the DWR (Fig. 8). ¢r. is the roll angle of the right
wheel due to the bending deformation of the flexible
wheelset. It is exactly the included angle between the

line 47 A; and the axle line of the right wheel or the
wheel of the DWR.

[
V)
€\
P D '
(DW L\ Oq(t2) O
é\ "‘-.‘.A\Nominal rolling
\’\ \ circle

J

Fig. 8 The relationship between the two rigid half-
wheelset dummies and the flexible wheelset

It is not difficult to calculate the wheel-rail
contact geometry considering the effect of the flexible
deformation of the wheelset or the local high-
frequency deformations of the wheels if the spatial
positions of the DWL and the DWR are determined.
Determining the spatial positions of the DWL and the
DWR involves calculating their motion parameters,
such as the lateral displacements of the centers of the
wheels of the DWL and the DWR, indicated by ypwL
and ypwr, respectively, the vertical displacements,
zpwrand zpwr, the roll angles, gowr and dpwr, and the
yaw angles, wpwr and wpwr. These parameters are
key to calculating the contact geometry of the flexible
wheelset in rolling contact with a pair of rails by using
this new wheel-rail contact model. This will now be
demonstrated in detail.
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Fig. 8 describes the motion of the DWL and the
DWR influenced by the wheelset bending and its rigid
motion in the O-YZ plane only. After the rigid
wheelset moves with the center displacement of 0,0,
and the rolling angle of ¢g; in the O-YZ plane of the
global reference, O-XYZ, its center position O(¢)

reaches the position Oi(f) and A’ A, reaches (or

becomes) A/ A; . Note that the vector 0,0, and the

roll angle ¢g; around axis X are described in the O-YZ
plane. The dash-dot line 4] 4 is through point Ox(t,)

and parallel to 447 . From Fig. 6, it is obvious that
the rolling angle of the DWR caused by the wheelset
rigid motion is just ¢r;, and that caused by the
wheelset bending deformation is ¢@ra, so the total
rolling angle of the DWR is @gpwr=¢r1T¢@ro, as shown
in Fig. 6.
In addition, the displacement of the DWR is the
vector O;0sr, which could be written as
0,0;; =00, +0,0. (26)
In Fig. 8, the vector 0,4, is parallel to O;rA;
with the same length /y. [y is actually the distance
between the center of the wheel nominal circle and
the center of the un-deformed wheelset. The vector
0,03y is parallel to A, A,, with the same length. Thus,
0,05R can be written as

00, =0,0,+A4A4,=00,+(0,4,-0,4,). (27)

Moreover, the vector 0,A; is described by
{x1 y1 z1}[i j k)" in O-XYZ, and can be obtained by
rotating the vector {0 I, O}[i j k]" (coinciding with
the line A{A}L) about the X-axis by dpwr. 024, is

written as

OZAl:{‘xl N z,}[i J k]T

T

0] |1 0 0 i
=y |0 cos(By +ér,)  sin(dy, + ) || J |-

0) |0 —sin(dy, +¢,) cos(dy, +.) || k
(28)

The curve B, B, (Fig. 6) is the deformed axle

center line of the wheelset, which does not consider

the influence of the rotation caused by the wheelset
rigid motion. The point By is the center of the right

nominal circle. The axle center line (0,4, ) of the
deformed wheelset, can be obtained by rotating
B, B, about the X-axis by ¢r;. According to the

definition of the curve B, B, , the vector O,By is

defined as
x)'[i Ax, 'Ti
0,B, =1y, J =14y, +1, Jjl, (29)
z, k Az, k

where {Ax, Ay, Az}[i j k]' is the displacement
vector of the center of the right nominal circle due to
the axle bending. Then the vector 0,4, is defined as
{x3 y3 z3}[i j k]", and can be written as

T T

x| i x| |1 0 0 i

0,4, =qy5¢ | J|=1y2 |0 cosdy  singy || j|,
z,] |k z,] |0 —sing,, cosd, || k

(30)

which is obtained according to the relationship be-

tween 0,4, and O,B;, or 0,4, obtained by rotat-

ing @FR by ¢ri1. The wheelset center displacement
vector 0,0, is defined as {xo yo zo}[i j k]'.

Substituting Eqs. (28) and (30) and the expres-
sion of 0,0; into Eq. (27), the vector O,05r can be
written as

T T T

X, Ax, 0 i
00, =|3yy¢ t3A, +1l, 0 M, =<1, ¢ M, || j|,
z, Az, 0 k
1 0 0
M, =|0 cosg, sing, |, (€29)
0 -—singy, cosdy,
0 0
M,=|0 cos(dy +P,) sin(dy, +de,) |-

(=]

—sin(dy, + ¢r,)  cos(dy, + bry)

Similarly, when considering the wheelset bend-
ing deformation in the plane O-X7, the vector 0,05
should be given as
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T T T

X, Ax, 0 i
00y =\ Yo H A, +lp MM, =L » MM, | j|,
Z, Az, 0 k
[ cosy,, siny, 0
M, =| —siny,, cosyy, 01, (32)
0 0 1

[ cos(Wp, +Wro) SNy, +p,) O
M, =| —sin(yy, +¥y,) Cos(Wy +V¥p,) O,
0 0 1

where ygr; and g, are the yaw angles caused by the
rigid motion and the bending deformation in the plane
O-XY, respectively.

Wpwr=WRr1TWr2 1S the total yaw angle of the
DWR. Similarly, the position of the DWL can be
obtained. When the positions of the two dummies are
known at #,, the wheel-rail contact geometry can be
calculated. Then the positions of the wheel-rail con-
tact points are easily found and the wheel-rail contact
forces can be calculated. The normal wheel-rail con-
tact forces are calculated by the Hertzian nonlinear
contact spring model, and the tangent contact forces
and spin moments are calculated by means of the
model by Shen et al. (1983). Compared with the
conventional wheel-rail contact model (Wang, 1984;
Zhai, 2007), this new wheel-rail contact model can
characterize the independent high-frequency defor-
mations of the two wheels of the flexible wheelset
more conveniently.

3 Results and discussion

When a vehicle is running on an ideal track, it is
only excited by sleepers. Note that the “flexible”
wheelset model used in this section denotes the model
considering the first two bending modes. The dy-
namic system with flexible wheelset models is used in
the simulation on an ideal track at the speed of
300 km/h. Figs. 9a and 9b show the vertical forces in
the frequency domain in steady and unsteady stages,
respectively. In the unsteady stage, the peaks appear
not only at a set of harmonic frequencies nf; (n=1, 2,
3, ...) produced by passing sleeper but also at fp,
while the influence of the second bending mode is

small since there is no peak at f;,. In the steady stage,
the contribution of the component at f,; is weakened
and only the peaks at nf; (n=1, 2, 3, ...) remain. These
results are reasonable because when a system comes
to a steady stage, its responses only contain the
component at the excitation frequency.

Based on a large range of site measurements, the
components of roughness on rails mostly appear in
the range of 1-20 m. The natural frequencies of the
first two bending modes are below 250 Hz, meaning
the available frequency of this model is limited.
Therefore, the components of the random irregularity
on the rails are mainly in the frequency range of
0-150 Hz at the speed of 300 km/h. Fig. 10a presents
the local section of 900-950 m in the time domain,
and Fig. 10b shows the irregularity in the frequency
domain. Note that the results below are from the
steady stage.
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(@)

Vertical contact forc
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Fig. 9 The vertical contact force in steady (a) and un-
steady (b) stages
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Fig. 10 Random irregularity in the time domain (a) and
frequency domain (b)
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Figs. 11 and 12 show the wheel-rail contact
forces acting on the rigid and flexible wheelsets in the
time and frequency domains, respectively. As shown
in Fig. 11a, the average of the oscillation of the lateral
contact force acting on the flexible model is a little
smaller than that on the rigid wheelset model, and the
shapes of the oscillation are different. As shown in
Fig. 11b, the vertical contact forces acting on the two
models oscillate around a similar average, while their
shapes are different. These differences are caused by
the wheelset flexibility.

In the frequency domain, the distributions of the
components contained in both the lateral and vertical
contact forces are in the excitation frequency range of
the random irregularity. A peak at frequency 2f; ap-
pears in Figs. 11a and 11b. The contribution of the
component at frequency f; is overwhelmed by the
effect of the irregularity. In addition, the uniform
distribution in 0-150 Hz of the irregularity results in
the non-uniform distribution of contact forces. As
shown in Figs. 12a and 12b, the components in 80—
150 Hz are higher than those in 0—80 Hz. This shows
that under this present irregularity, this dynamic

0.824 -

Flexible

0.820

o
©
=
=)

0.832

contact force (kN)

900 910 920 930 940 950
Distance (m)

(a)

system is more sensitive to the excitation in 80—
150 Hz than to those in 0-80 Hz.

In the frequency domain, the component at f,; of
the lateral contact force acting on the flexible model is
a little larger than that on the rigid model, as marked
using the arrow in Fig. 12a. This shows that the first
bending mode is excited, and the availability of the
model to characterize the wheelset bending is proved.
However, there is no evident difference at f;,; for ver-
tical contact forces acting on the two models. This
shows that the wheelset bending deformation has a
stronger effect on the lateral contact force than on the
vertical contact force.

The wheel-rail contact force is affected by the
position of the lateral contact points. Figs. 13a and
13b show the oscillations of the contact points in
lateral direction described in the body coordinate
system attached to the rail cross-section in the time
and frequency domains, respectively. The average of
the magnitudes of oscillation of the contact points on
the flexible model in the time domain is larger than
that on the rigid model. This is caused by the wheelset
bending. Moreover, it can weaken the relative
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Fig. 11 Lateral contact forces (a) and vertical contact forces (b) in the time domain

(a)

Lateral contact force (kN)

10° —— Flexible
---- Rigid
10* . . . . .
0 50 100 150 200 250 300

Frequency (Hz)

10*
Flexible (b)

10°L ~~ Rigd
z
=
[0}
o
S
3
s
c
o
o
T
S
€
)
>

10*2 L L L L L

0 50 100 150 200 250 300

Frequency (Hz)

Fig. 12 Lateral contact forces (a) and vertical contact forces (b) in the frequency domain



Zhong et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2014 15(12):984-1001 995

movement between rail and wheel caused by the ir-
regularity. Therefore, it is one cause of the smaller
average of the lateral contact force acting on the
flexible model (Fig. 11a). As shown in Fig. 13b, the
difference of the components between the two models
at f; is evident. This explains the difference in the
time domain (Fig. 13a) and again shows the effec-
tiveness of the proposed model.
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Y coordinates of the contact points (mm)
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Fig. 13 Oscillation of contact points in lateral direction in
the time domain (a) and frequency domain (b)

4 Conclusions

In this study a new wheel-rail contact model is
integrated into the high-speed vehicle-track coupling
dynamics system model, which takes into account the
effect of wheelset structural flexibility. Based on the
new vehicle-track model the effect of the first two
bending modes of the wheelset on wheel-rail contact
behavior is analyzed under the random irregularity in
a frequency range of 0—150 Hz. The numerical results
of the rigid wheelset model and the flexible wheelset
model are compared in detail. The following conclu-
sions can be drawn from the results:

1. The present vehicle-track model considering
flexible wheelsets can very well characterize the ef-
fect of the flexible wheelset on wheel-rail dynamic
behavior.

2. Under the excitation, the shapes of the oscil-
lations of the wheel-rail contact forces and contact
points for the new and conventional vehicle-track
models are different. The difference is caused by the
excited first bending mode of the wheelset.

For future work, the first improvement to be
considered is to model a wheelset using the FEM or
the Timoshenko beam theory to broaden the model’s
available frequency range. This could allow it to help
investigate the mechanisms behind the generation and
development of wheel-rail wear and noise.
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Appendix A

The vehicle notations and track parameters are given in Table Al.

Table A1 The vehicle notations and track parameters

Physical parameter Value Notation

M, (kg) 3.38x10* Car body mass

My; (kg) 2.4x10° The ith bogie mass

M, (kg) 1.85x10° The ith wheelset mass

Ciy (N-s/m) 2.0x10* Equivalent lateral damping of the secondary suspension (considering
damping of lateral shock absorber joint)

Ky (N/m) 1.813%10’ Equivalent lateral stiffness of the secondary suspension (considering
stiffness of lateral shock absorber joint and lateral stiffness of air spring)

Cy, (N-s/m) 4.0x10* Equivalent vertical damping of the secondary suspension (considering
vertical damping of air spring)

K, (N/m) 2.99x10° Equivalent vertical stiffness of the secondary suspension (considering
vertical stiffness of air spring)

Cgy (N's/m) 0 Equivalent lateral damping of the primary suspension

Ky (N/m) 6.47x10° Equivalent lateral stiffness of the primary suspension (considering the
lateral stiffness locating node of the axle-box rotary arm)

Cr, (N"s/m) 1.5x10* Equivalent vertical damping of the primary suspension (considering
damping of vertical shock absorber joint)

K;, (N/m) 6.076x10° Equivalent vertical stiffness of the primary suspension (considering stiff-
ness of vertical shock absorber joint and steel spring)

M, (kg/m) 60.64 Rail mass per unit length

M; (kg) 349 Mass of sleeper

M, (kg) 466 Mass of ballast element

L (m) 0.6 Sleeper bay

E (N/m?) 2.06x10" Young’s modulus

Koii (N/m) 2.0x107 Lateral stiffness of the ith pad

Cori (N/m) 5%x10* Lateral damping of the ith pad

K,y; (N/m) 4.0x10’ Vertical stiffness of the ith pad

Covi (N/m) 5x10* Vertical damping of the ith pad

Koy ry (N/m) 8.0x107 Vertical stiffness between sleeper and the ith ballast element

Covryi (N-s/m) 1x10° Vertical damping between sleeper and the ith ballast element

K, (N/m) 7.8x107 Vertical stiffness between the ith ballast elements on the left and right

Cy (Ns/m) 8x10* Vertical damping between the ith ballast elements on the left and right

Ky ryi (N/m) 6.5%107 Vertical stiffness between road bed and the ith ballast element

Crryi (N/m) 3.1x10* Vertical damping between road bed and the ith ballast element

Appendix B

The axle is modeled as a uniform Euler-
Bernoulli beam carrying two particles (wheels). The
segment of the beam from the left end to the first
particle is referred to as the first portion, in between
the two particles as the second portion and from the
second particle to the right end as the third portion.
The beam mode shape will be the superposition of the
mode shapes of the three portions. The mode shape of

each portion has four constants of integration, i.e., a
total of 12 for the three portions. It is necessary to
satisfy: the boundary conditions; continuity of de-
flection and continuity of slope at the two ‘locations’;
and compatibility of bending moments and compati-
bility of forces acting on the two particles.

Here we take the calculation of the mode shape
functions in the plane O-YZ as an example. Fig. Bl
shows a uniform Euler-Bernoulli beam 0,05 of
flexural rigidity E1,, and length (R,+R,+R3)L carrying
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the first particle of mass m,, at axial coordinate R;L
from O; and the second particle of mass m,, at axial
coordinate R;L from Os.

0, Ou Our 0;
gt g =
W @ ---
[ R I R 5T,
Y z Y z Z3 Y
| RL | R,L | RL |

Fig. B1 Coordinate systems attached to the three sections
of the wheelset axle
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QR |\ QO0) QR | Qu(RiL)
m, U, (Rl) m, U, (R])

Fig. B2 Wheel diagrams including D’ Alembert forces

To write the equations of transverse vibrations of
the system, three coordinate systems are chosen with
origin at O, O,, and Os. The choice of these coordi-
nate systems has some algebraic advantages. In the
text, the subscripts £/=1, 2, and 3 refer to the first
portion, the second portion, and the third portion of
the beam, respectively. For free vibration of the beam
at frequency, if the amplitude of vibration of the beam
is Uu(yy) at axial coordinate y; (in the range 0<yy
<RiL), then based on the Euler-Bernoulli bending
theory, the bending moment M(yx), the shearing
force Q.i(yr), and the mode shape differential equa-
tion for the three portions are

d*U
Mxk(yk):E]x zkz(yk)’
Lk
U
0. () =—E1, 9= 00) (B1)
dJ/k

d4Uzk (yk )

El
dyy

X

— pA&*U 4 (y,) =0.

To express these equations in dimensionless
form, one defines the dimensionless axial coordinate
Y., amplitude Zy(Y;), operator D", dimensionless
bending moment M,(Y}), shearing force Q.x(Y;), and
a dimensionless natural frequency Q2 as follows:

Vi Ua )
v, =2k, z,)="2 2,
k L k( k) L
" M, ()L
D=9 =M OO (B2)
dr” El,
Qk(yk)L2 2 _ pAd’L! 4
y)== 2 r PO
0. (¥) El. Al

Therefore, Eq. (B1) can be expressed in the di-
mensionless form:

My (%)= D*Z, (%)),

0., (1) =-D’Z (%),
D*Z,(Y) = 2°Z,(Y;) =0.

(B3)

Consider the solution of the previous equation as

Z(Y) = Gy sin(aly) + Gy, cos(al)) (B4)
+ C,5 sinh(aY, ) + C,, cosh(al)).
There are 12 unknown constants Cy; (i=1, 2, 3, 4)
for the three segments.
For free vibration the D’Alembert force and

moment acting on the left wheel is mWa)ZUZ1 (RL)
and J, U, (R,L), respectively (Fig. B2). Continu-
ity of deflection and continuity of slope at O, to-
gether with compatibility of bending moments and

compatibility of forces acting on the left wheel results
in

Uzl (RIL) = U22 (0)7
dU_(RL) dU_,(0)
dJ/1 dJ’2
M (RL)=M_(0)+J,0°U (RL),
0., (RL)=0.,(0)+m,w’U_ (R L).

b

(BS)

The D’ Alembert force and moment acting on the
left wheel is m,@’U.,(R,L) and J,oU.,(R,L),

respectively. Continuity of deflection and continuity
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of slope at Oyr together with compatibility of bending
moments and compatibility of forces acting on the
right wheel results in

UZZ (RZL) = Uz3 (R3L)a
dU.,(R,L) _ dU.y(R,L)
dy, dy; , (B6)

M, (R)L) =M 5(RsL) + J,@’Ul,(R,L),
2
QzZ (R2L) = _Qz3 (RSL) + mwa) UzZ (RZL)

Note that Eq. (B6) takes into account the contra
directions of the axial coordinates y;, and y;. Egs. (BYS)
and (B6) in dimensionless form are

Z (Rl) =27, (0),
DZ, (Rl) =DZ, (0), )

D?Z,(R) =D*Z,(0) + JWQz DZ,(R)), (B7)
DZ(R) =D, (0) " 2 Z,(R).

Zz (Rz) = Z3 (R3 ),

DZz (Rz) = _DZ3 (R3 ), X

DZ,(R,) =D Z,(R)+ 22 DZ,(R,),  (BS)

a

m
D3Zz (Rz) = _D3Z3 (R3) _m_w-szz (Rz )

a

For the free boundary condition at the left end of
the first portion and the right end of the third portion,
the coefficients of the dimensionless mode shape
functions satisfy

G =C;,Cy =0y, G =G5, Gy, =Gy (B9)

Then one can write the dimensionless mode
shape functions of the first and third portions as

Z,(Y)=Cy (sin(aYk) + sinh(aYk))
+Cy; (cos(aYy) + cosh(aYy))
=B, B, () + BV, (Y),
k=1,3.

(B10)

Substituting Egs. (B10) and (B4) into Egs. (B7),
we can obtain:

B R(R)+ BuVi(R)=Cyy +Cyy,
B, DE(R)+ B,DV(R)=a(C,, +Cy),
_Qz
B,(D’ P(R)— DE(R))
m, [’
2

f DV (R) =@ (~Cpy +Coy ),

El

+ B, (D*V (R, )—J

m
By(D'R(R)+ " 2R (R)

a

m.
+By(D KR+ QW (R) =’ (-Cyy + Cy).

a

(B11)

Then one can write the dimensionless mode
shape function of the second portions as

Z,(,)= B, B(Y,)+ B,V, (1), (B12)
where
P,(Y,) = By sin(aY,) + By, cos(aYy)
+ Py sinh(aY,) + P, cosh(al,), (B13)

V,(Y,) =V, sin(aY,) +V,, cos(at,)

+ ¥V, sinh(aY,) +V,, cosh(al,).

The coefficients of sin(aY>), cos(aY), sinh(al?),
and cosh(aY,) in Eq. (B4) (when £=2) correspond to
those in the expression obtained by substituting
Eq. (B13) into Eq. (B12), so we can obtain

Cy; =B By + By, 1=1,2,3,4. (B14)

The coefficients of Bj; and By, in Eq. (B14)
correspond to those in the expression by simplifying
Eq. (B11), so we can obtain:

DP(R)+"™ *DP(R
DR(R) 1(R) " 1(R)
By = 5 - 3 ’
o 2a
D’B(R)+ "™ Q’DR(R)
DP(R) m,
b = 20 2a° ’
I (B15)
D’R(R)-"*">-DR(R)
P _R®) m, L’
27 202 ’
J
B(R)-""""-DR(R,)
» =Pl(R1)+ m, [
24 2 2a2 H



1000

m
DV (R) DV (R)+ "DV (R)
I/21: 1\’ a3 ,
2a 2a
m
DV(R) DV (R)+ > "DV (R)
Va3 = 21 . 2a3 ’
o (04
J 0> (B16)
VR D (R)~"*"5-DVi(R)
V= - az >
2 2a ,
) D¥,(R) - DH(R)
Vi ==+ 5
2 2o

So far the mode shape functions of the second
and third portions have four unknown constants in
total. These four unknown constants can be calculated
using Eq. (B8). The first two equations of Eq. (B8)
can be written as

B\ Py (Ry) + BV, (Ry)
= B3| B (Ry) + B3, V5 (Ry), (B17)
B, \DP(R,) + B;,DV,(R,)
=—B; DB (R;) — By, DV;(Ry).
One considers
By, =B\ By + B, By,
B18
By, = B \V3, + B, V5, (BI)
where
P DV3(R;) P, (Ry) +V5(Ry)DER (R,)
DV, (Ry) Py (Ry) V5 (R;)DPy(Ry)
_ DVA(Ry)V5(Ry) +V5(Ry)DV, (R,)
3= ,
DV, (R)P(R)~V(RIDR(R) " 1o

__DbnA (R3)F(R,y) + B(R;)DR (R,)
N DIV(Ry)P(Ry) ~ V5 (Ry)DP(Ry)’
:_DP3(R3)V2(R2)+P3(R3)DV2(R2)‘
2 DV(Ry)P(Ry) V3 (Ry)DP(Ry)

Using the last two equations of Eq. (BS), we can
obtain:

{BllEll +B,E, =0, - {En Elz}{Bn}:O
B\\E,, + Bj,Ey, =0, Ey,  Ey ||B; ’

(B20)
where
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J, 2
2
N’

— P \D*P(Ry) ~Vy DV (Ry),
2

E, =D’P(R,)~ DP,(R,)

J, L2
E, = D2V2 (Ry)— 2 DV, (R,)

~ PyD*B(Ry) - Vi, DV (R ),
Ey =D*By(Ry) + 2 Q*P,(R,)
m

(B21)

a
+ B D’ P (Ry) + V3 DV (Ry),
Ey = DBVz(Rz) +nn/i_wng2(R2)

a
+ PyDPB(Ry) + V3, DV3(Ry).

Using the matrix form of Eq. (B20), one can

obtain
|:E1 1 E12 :|
Ey Ey

Eq. (B22) is the frequency equation, which is a
transcendental equation. By using an iterative pro-
cedure based on linear interpolation, the first three
natural frequencies are fj=111 Hz, £,=245 Hz, and
=547 Hz, respectively.

The calculation of the coefficients of the three
mode shape functions are demonstrated in detail in
the following.

The dimensionless mode shape functions can be
written as

=E\E,, -E,E), =0. (B22)

Z,(Y) =B, F.(Y)+ B,V (Y,), k=12,3. (B23)

One may set the deflection of the first particle to
be 4 and without loss of generality one may choose
A=1, hence

A=1=Z,(R)=B,B(R)+ B, (R). (B24)

From the above equation and Eq. (B20), one can
obtain the following equations:

AE,,
B, = ’
R(Rl )Elz _VI(RI)EII (st)
-AE,,
By,

Pl (R1 )E12 - V1 (R1 )Ell .
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Subsequently, substituting the last equations into 7. (¥;) (0<Y; <R;). By inserting Egs. (B15) and

Eq. (B23) (assuming £=1) one can obtain the dimen- (B16) into Eq. (B4) (assuming k=2) one can obtain
sionless mode shape function of the first portion  the dimensionless mode shape function of the second
Z,(Y)(0<Y, <R). Substituting Eq. (B25) into portion Z,(Y,) (0<Y, <R,).

Eq. (B23) (assuming k=3) one can obtain the dimen- Hence, the coefficient of the three mode shape
sionless mode shape function of the third portion  functions can be calculated in Table B1.

Table B1 Coefficients of the three modes

Mode Cyy Cp Cis Ciy Cy Cy Cy Cy Cs Cs Cs3 Cyy
Ist —8.25 6.67 —8.25 6.67 -—11.61 -391 -4.16 491 —-8.25 6.67 —8.25 6.67
2nd 2.13 -1.81 213 -1.81 1.03 3.53 2.66 -253 -2.13 .81 -2.13 1.81
3rd 1.02  -0.99 1.02  -0.99 -1.40 3.55 2.53 -2.55 1.02  -0.99 1.02  —0.99

Ist mode: /=111 Hz, a=4.01; 2nd mode: /=245 Hz, 0=5.96; 3rd mode: /=547 Hz, 0=8.89



