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Abstract:    The objective of this paper is to develop a new wheel-rail contact model, which is suitable for considering the effect of 
wheelset bending deformation on wheel-rail contact behavior at high speeds. Dummies of the two half rigid wheelset are intro-
duced to describe the spacial positions of the wheels of the deformed wheelset. In modeling the flexible wheelset, the first two 
wheelset bending modes are considered. Based on the modal synthesis method, these mode values of the wheelset axle are used to 
solve the motion equations of the flexible wheelset axle modeled as an Euler-Bernoulli beam. The wheel is assumed to be rigid and 
always perpendicular to the deformed axle at the wheel centre. In the vehicle model, two bogies and one car body are modeled as 
lumped masses. Spring-damper elements are adopted to model the primary and secondary suspension systems. The ballasted track 
is modeled as a triple layer discrete elastic supported model. Two high-speed vehicle-track models, one considering rigid wheelset 
models and the other considering flexible wheelset models, are used to analyze the differences of the numerical results of the two 
models in both frequency and time domains. In the simulation, a random high-speed railway track irregularity is used as wheel-rail 
excitations. Wheel-rail forces are calculated and analyzed in the time and frequency domains. The results clarify that this new 
contact model can characterize very well the influence of the first two bending modes of the wheelset on contact behavior. 
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1  Introduction 
 
High-speed railways are currently popular 

globally. However, there are some problems including 
passenger riding comfort, noise pollution, and even 
operational safety (Jin et al., 2013). Rail corrugation, 
rail welding irregularity, wheel burning, and wheel 

out-of-roundness (OOR) generate high-frequency 
components of the dynamic wheel-rail contact forces 
that contribute significantly to the total wheel-rail 
contact forces (Nielsen et al., 2003), and reduce the 
life of the components of track and vehicle, such as 
wheels, rails, and fasteners. Rail grinding and wheel 
re-profiling are the most common measures that have 
been proved to be effective in controlling rail irregu-
larities and wheel OOR. However, these measures 
lead to notably high maintenance costs. A lot of 
measurements at the sites and coupling vehicle- 
track dynamics modeling have been carried out to 
investigate the mechanism and development of these 
phenomena. In the vehicle-track dynamics modeling, 
a rigid multi-body system is often adopted to simulate 
railway vehicles, based on several commercial codes 
available for the low-frequency domain, such as 
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GENSYS, NUCARS, SIMPACK, and VAMPIRE. 
These computer programs are generally used to  
analyze railway vehicle dynamics responses at fre-
quencies below 20 Hz, where the influence of rigid 
motions of the vehicle on wheel-rail contact forces is 
dominant (Nielsen et al., 2005). To analyze the vehi-
cle dynamic responses at mid- and high-frequencies, 
the vehicle structural flexibility should be taken into 
account in the modeling. It is obvious that wheelset 
structural flexibility has an influence on wheel-rail 
contact behaviors at mid- and high-frequencies. Dif-
ferent flexible wheelset models have been set up due 
to various motivations in the past (Chaar, 2007).  

The methods applied to modeling flexible 
wheelset can be summarized as three major categories 
(Chaar, 2007). The first is a lumped model developed 
in a simple and convenient way, in which a wheelset 
is divided into several parts interconnected with 
springs and dampers. This model can describe the 
bending and torsional motions of the wheelset with 
only a few degrees of freedom, which could not be 
applied to studying wear phenomena on wheel treads 
or rails (Popp et al., 1999). The second is a continuous 
model developed by Szolc (1998a; 1998b), in which 
the wheelset axle was modeled as a beam, and two 
wheels and brake discs were modeled as rigid rings 
attached to the axle through a massless, elastically 
isotropic membrane. The model can characterize the 
wheelset dynamic behavior in the frequency range of 
30–300 Hz. In the model proposed by Popp et al. 
(2003), the wheelset axle was considered as a 1D 
continuum, having the properties of a bar, a torsional 
rod, and a Rayleigh beam. The wheel was considered 
as a 2D continuum, having the properties of a disc and 
a Kirchhoff plate. The third was developed based on 
finite element method (FEM), which simulates 
wheelset flexibility more realistically than the first 
two categories of model. The wheelset modes and 
corresponding natural frequencies were obtained 
through the modal analysis of the finite element (FE) 
model by using the commercial software, and they 
were input into the simulation by means of the 
commercial codes (SIMPACK, NEWEUL) (Meinders 
and Meinker, 2003) or some non-commercial multi- 
body dynamic system codes. The non-commercial 
code developed by Fayos et al. (2007) and Baeza et 
al. (2008; 2011) introduced the Eulerian coordinate 
system to replace the Lagrangian coordinate system 

in the flexible wheelset modeling. In this way it is 
convenient to obtain the motion of fixed physical 
nodes, and consider the inertial effect due to wheelset 
rotation. Relying on current computing power, it is 
feasible to use FEM to consider the effect of flexible 
wheelset in modeling a railway vehicle coupling with 
a track. 

Regarding the wheel-rail contact treatment in 
considering flexible wheelset influence, wheel-rail 
rolling contact condition is simplified based on dif-
ferent prior assumptions, especially in the detection of 
wheel-rail contact points. This is the prerequisite for 
the calculation of wheel-rail creepages and contact 
forces. Baeza et al. (2011) neglected the effect of the 
high-frequency deformation and the deviation of a 
rotating flexible wheelset rolling over a flexible track 
model on the wheel-rail contact point in the investi-
gation into the effect of the rotating flexible wheelset 
on rail corrugation. Through the detailed calculation 
Kaiser and Popp (2006) found that the contact point 
was in the location where the wheel and the rail had 
positive penetration maxima, and the penetration 
direction was orthogonal to the common tangent 
plane of the wheel and the rail before their defor-
mations. A linear wheel-rail contact model was pro-
posed and used to carry out the detection of wheel-rail 
contact point and the contact zone’s normal direction 
(Andersson and Abrahamsson, 2002). In the detec-
tion, the functions were created using a first-order 
Taylor expansion around a reference state described 
by a group of parameters which represent a configu-
ration, in which the train was in static equilibrium and 
the wheel and the track were free from geometric 
imperfections. The advantage of this approach is that 
the contact position and orientation in each time step 
can be calculated by interpolation replacing itera-
tions, which results in a low computational cost. But 
the approach is only suitable for the case that the 
effect of all the parameters is very small on the con-
tact point position and the contact patch orientation 
around the references is in static equilibrium. The 
wheel-rail contact point position and the contact patch 
orientation greatly depend on parameters, such as the 
curvatures of wheel and rail. In (Torstensson et al., 
2012; Torstensson and Nielsen, 2011), the contact 
point detection was done before the simulation and 
used in the subsequent time integration analysis in the 
form of look-up table. The commercial software 
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GENSYS allows for such calculations using the 
pre-processor KPF (from Swedish contact point 
function). In the KPF, the location and orientation of 
the contact patch were assumed to be dependent only 
on the relative displacement in the lateral direction 
between the wheelset and the rails, and hence the 
influence of the wheelset yaw angle was not taken 
into account. In some other papers detailed discus-
sions on the wheel-rail contact model were omitted. 
In this study, the wheel-rail contact model consider-
ing the effect of wheelset flexibility (Zhong et al., 
2013; 2014) is further improved and the new contact 
model is suitable for the analysis on the effect of the 
local higher-frequency deformation of the wheels on 
the wheel-rail contact behavior.  

 
 

2  Vehicle-track coupling dynamic system 
 
A flexible wheelset model (to be illustrated in 

Section 2.1) and a suitable wheel-rail contact model 
(to be discussed in Section 2.2) are integrated into the 
vehicle-track coupling dynamic system model. All 
parts of the vehicle system, except for its four wheel-
sets, are considered as rigid bodies. The primary and 
secondary suspension systems of the vehicle are 
modeled with spring-damper elements. A triple layer 
model of discrete elastic support is adopted to simulate 
the ballasted track. The rails are modeled as Timo-
shenko beams. The sleepers are modeled as rigid 
bodies and the ballast model consists of discrete 
equivalent masses. The equivalent spring-damper 
elements are used as the connections between the rails 
and the sleepers, the sleepers and the equivalent ballast 
bodies, and the ballast bodies and the roadbed. Fig. 1 
shows the vehicle-track coupling dynamic system 
model. The equations of motion of each component of 
the vehicle excluding wheelsets and the track are il-
lustrated in detail in (Xiao et al., 2007; 2008; 2010). 
The parameters and their values describing the dy-
namic models are given in Appendix A. 

2.1  Flexible wheelset model 

The wheelset structural flexibility is considered 
by modeling the wheelset axle as an Euler-Bernoulli 
beam in two planes, one perpendicular to the track 
centerline and the other parallel to the track level. The 
crossing effect of the bending deformations in the two 

planes is ignored. In the first two bending modes 
obtained using the modal analysis of the FE model  
of a wheelset, two wheels have little deformation 
(Fig. 2), and their frequencies are in the available 
frequency range (0–500 Hz) of an Euler-Bernoulli 
beam model. Therefore, two wheels can be treated as 
rigid bodies in this study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are two force systems acting on the 

wheelset, one is the wheel-rail contact forces and the 
other is the forces of the primary suspension system 
(Fig. 3). 

In Fig. 3, OfL and OfR are the left and right points 
on the axle, respectively, where the primary suspen-
sion force systems are applied. OCL and OCR are the 
left and right contact points of wheel-rail, respec-
tively. O indicates the origin of the coordinate system 

Fig. 2  The first two bending modes obtained using FE 
model 

Fig. 1  Vehicle-track coupling model (elevation)
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O-XYZ that is a coordinate system with a translational 
motion along the tangent track centerline at opera-
tional speed. If the speed is constant, this coordinate 
system is an inertial coordinate system, and therefore 
regarded as an absolute coordinate system (geodetic 
coordinate system).  

To analyze the axle’s deformation, the force 
systems from wheel-rail interaction acting on the left 
and right wheel treads are translated to the nominal 
circle centers OL and OR, respectively, and extra 
moments are produced in the procedure of translating 
contact forces. Thus, the force systems acting on the 
axle in the two planes are obtained in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The notations of the variables and symbols are 

defined in Table 1. The subscript p denotes the pri-
mary suspension, the subscripts x, y, and z denote X-, 

Y-, and Z-direction, respectively, and A denotes the 
axle.  

The differential equation for the flexural vibra-
tion of an Euler-Bernoulli beam (the axle) in the plane 
O-YZ is written as 
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The force analysis diagram of the two wheels 

including the D’Alembert forces is shown in Fig. 5, 
based on which differential equations of motion of the 
two wheels are written as 
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 Fig. 5  Force analysis diagram of the two wheels 
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Fig. 4  Force analysis diagram in the plane O-YZ (a) and 
in the O-XY plane (b) 
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Fig. 3  Force analysis diagram of the flexible wheelset
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Note that the lateral accelerations of the wheels 
are assumed to be the same as the wheelset axle so 
there is no relative motion between wheels and axle. 

Substituting the expressions of FA(L,R)z and 
MA(L,R)x obtained through Eqs. (4) and (5) into 
Eqs. (2) and (3), respectively, we can obtain: 
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Table 1  The notations of the variables

Variable Explanation 

upLz, upRz Z-direction components of the displacements of the nodes where the left and right primary suspen-
sion forces are applied on the axle, respectively 

upLy, upRy Y-direction components of the displacements of the nodes where the left and right primary suspen-
sion forces are applied on the axle, respectively 

upLx, upRx X-direction components of the displacements of the nodes where the left and right primary suspen-
sion forces are applied on the axle, respectively 

L  Length of the wheelset axle 

FpLx, FpLy, FpLz   X-, Y-, and Z-direction components of the primary suspension forces on the left sides of a wheelset 

FpRx, FpRy, FpRz X-, Y-, and Z-direction components of the primary suspension forces on the right sides of a wheelset 

FALx, FALy, FALz   X-, Y-, and Z-direction components of the forces between the left wheel and the axle of a wheelset 

FARx, FARy, FARz   X-, Y-, and Z-direction components of the forces between the right wheel and the axle of a wheelset 

MALx,  MALz X- and Z-direction components of the moments between the left wheel and the axle of a wheelset 

MARx,  MARz X- and Z-direction components of the moments between the right wheel and the axle of a wheelset 

E  Young’s modulus 

Ix Cross-sectional area moment of inertia about the X axis  

Iz Cross-sectional area moment of inertia about the Z axis  

t Time 

uz(y,t), ux(y,t) X- and Z-direction components of the displacements of the nodes on the axle at time t, respectively

Qz(y,t), Qx(y,t) X- and Z-direction components of the forces on the axle at time t, respectively 

Mz(y,t), Mx(y,t) X- and Z-direction components of the moments on the axle at time t, respectively 

mw  Mass of a wheel 

g Gravity acceleration 

aLz, aRz Z-direction components of the accelerations of the left and right wheels, respectively 

aLx, aRx X-direction components of the accelerations of the left and right wheels, respectively 

Jw Mass moment of inertia about the diameter of the wheel 

αLx, αRx X-direction components of the angular acceleration of the left and right wheels, respectively 

αLz, αRz Z-direction components of the angular acceleration of the left and right wheels, respectively 

u′z(y,t), u′x(y,t) The first derivative of uz(y, t), ux(y, t) with respect to y, respectively 

ywL, ywR y coordinates of the joints of the left and right wheels and the axle, respectively  

FwrLx, FwrLy, FwrLz  X-, Y-, and Z-direction components of the left wheel-rail contact forces, respectively 

FwrRx, FwrRy, FwrRz  X-, Y-, and Z-direction components of the right wheel-rail contact forces, respectively 

OcL, OcR Left and right wheel-rail contact point, respectively 

OwL, OwR Centers of the nominal circles of the left and right wheels, respectively 

OwL-XwLYwLZwL,  
OwR-XwRYwRZwR 

Body coordinate systems attached to the left and right wheels, respectively 

qzk, zkq  The kth generalized coordinate and the kth generalized acceleration coordinate in the plane O-YZ 

qxk, xkq  The kth generalized coordinate and the kth generalized acceleration coordinate in the plane O-XY 

ωk The kth circular frequency 

N Considered number of the modes 

Uzk(y), U′zk(y) The kth mode function of the axle in the O-YZ plane and its first derivative with respect to y 

Uxk(y), U′xk(y) The kth mode function of the axle in the O-XY plane and its first derivative with respect to y 
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Consider a solution of Eq. (8) in the form: 
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Using the calculus of variation (Qiu et al., 2009), the 
modal function satisfies: 
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where δij is the Kronecker delta. For i=j, Eq. (11) can 
be written as 
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To obtain the mode shape functions with the 

wheelset axle modeled as a uniform Euler-Bernoulli 
beam carrying two particles (wheels), the segment of 
the beam from the left end to the first particle is re-
ferred to as the first portion, in between the two par-
ticles as the second portion and from the second par-
ticle to the right end as the third portion. The beam 
mode shape will be the superposition of the mode 
shapes of the three portions. The derivation of the 
mode shape functions is presented in Appendix B. 
The first three modes have the frequencies of f1= 
111 Hz, f2=245 Hz, and f3=547 Hz, respectively. 
These mode shape functions are normalized so as to 
satisfy Eq. (14), as shown in Fig. 6. The third mode is 
not in the frequency range of 0–500 Hz where the 
Euler-Bernoulli beam is available to analyze the sys-
tem. Hence, the effect of the first two modes on dy-
namic responses is conducted in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to the modal analysis, we let the so-

lution of Eq. (8) have the form: 
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Substituting Eq. (15) into Eq.  (8), the differen-

tial equation can be written as 
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Fig. 6  The first three bending mode shapes of the wheelset
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Multiplying both sides of Eq. (16) by zjU  and 

integrating over the domain 0<y<L, we can obtain: 
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Using the orthogonality of the modal shape 

function as expressed in Eqs. (11) and (13), Eq. (17) 
can be written as 
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Eq. (18) can be expressed as 
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Eq. (20) can be written in the matrix form: 
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The explicit integral method illustrated in (Zhai, 

2007) is used to obtain the vector zjq    of each ac-

celeration coordinate. 
For the vibration in the plane YOX, the differen-

tial equation expressed with respect to xyq    can be 

written as  
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The derivation of Eq. (23) is similar to that of 

Eq. (20) and omitted here. Eq. (23) can be expressed 
in matrix form: 

 

1 2 1 ,xoy xoy xoy
xj xj jq q W          M M            (24) 

 
where 
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2.2  Wheel-rail contact model 

As mentioned in Section 2.1, the main concern in 
this work is the wheelset axle bending. The wheels are 
assumed to be rigid and their nominal rolling circles 
are always perpendicular to the deformed wheelset 
axle at their interference fit surfaces. Fig. 7 shows that 
the flexible wheelset moves from its initial reference 
state (O1(t1)) to its t2 status (O2(t2)), which is de-
scribed in the plane of O-YZ. O1 is the center of the 
un-deformed wheelset at t1, and O2 is the center of the 
deformed wheelset at any time t. O1O2 is the dis-
placement vector of the wheelset center due to its 
rigid motion, and R1 is the roll angle due to the 

wheelset rigid motion. The auxiliary line, 0 0
L R ,A A  is 

the central line of the un-deformed wheelset axle, 
1 1
L RA A  is obtained by moving 0 0

L RA A  from O1(t1) to 

O2(t2), and 2 2
L RA A  is obtained through rotating 1 1

L RA A  

by R1. 
2 2
L RA A  is actually the central line of the rigid 

wheelset axle at t2. Fig. 7 shows that the wheels are 
assumed to be rigid and always perpendicular to the 
deformed axle line at their connections at any time t2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To clearly describe the new wheel-rail contact 
model, the dummies of the two rigid half wheelsets, 
as shown in Fig. 8, are employed to describe wheel- 
rail rolling contact behavior affected by the wheelset 
bending. The two dummies are indicated by DWL and 
DWR, respectively, and the wheels of the DWL and 
the DWR are assumed to overlap the left and right 
wheels of the flexible wheelset, respectively, all the 
time, namely, the motion of the assumed rigid wheels 
of the flexible wheelset can be described by the DWL 
and the DWR (Fig. 8). R2 is the roll angle of the right 
wheel due to the bending deformation of the flexible 
wheelset. It is exactly the included angle between the 

line 2 2
L RA A  and the axle line of the right wheel or the 

wheel of the DWR.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is not difficult to calculate the wheel-rail 

contact geometry considering the effect of the flexible 
deformation of the wheelset or the local high- 
frequency deformations of the wheels if the spatial 
positions of the DWL and the DWR are determined. 
Determining the spatial positions of the DWL and the 
DWR involves calculating their motion parameters, 
such as the lateral displacements of the centers of the 
wheels of the DWL and the DWR, indicated by yDWL 
and yDWR, respectively, the vertical displacements, 
zDWL and zDWR, the roll angles, DWL and DWR, and the 
yaw angles, ψDWL and ψDWR. These parameters are 
key to calculating the contact geometry of the flexible 
wheelset in rolling contact with a pair of rails by using 
this new wheel-rail contact model. This will now be 
demonstrated in detail. 

Fig. 7  A flexible wheelset moving from its initial reference 
state (O1(t1)) to its any status (O2(t)) in the plane of O-YZ 
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Fig. 8 describes the motion of the DWL and the 
DWR influenced by the wheelset bending and its rigid 
motion in the O-YZ plane only. After the rigid 
wheelset moves with the center displacement of O1O2 
and the rolling angle of R1 in the O-YZ plane of the 
global reference, O-XYZ, its center position O1(t1) 

reaches the position O2(t2) and 0 0
L RA A  reaches (or 

becomes) 2 2
L RA A . Note that the vector O1O2 and the 

roll angle R1 around axis X are described in the O-YZ 

plane. The dash-dot line 1 1
L RA A  is through point O2(t2) 

and parallel to 0 0
L RA A . From Fig. 6, it is obvious that 

the rolling angle of the DWR caused by the wheelset 
rigid motion is just R1, and that caused by the 
wheelset bending deformation is R2, so the total 
rolling angle of the DWR is DWR=R1+R2, as shown 
in Fig. 6.  

In addition, the displacement of the DWR is the 
vector O1O3R, which could be written as 

 

1 3R 1 2 2 3R . O O O O O O                      (26) 

 
In Fig. 8, the vector O2A1 is parallel to O3RA2 

with the same length l0. l0 is actually the distance 
between the center of the wheel nominal circle and 
the center of the un-deformed wheelset. The vector 
O2O3R is parallel to A1A2, with the same length. Thus, 
O1O3R can be written as 

 

 1 3R 1 2 1 2 1 2 2 2 2 1 .    O O O O A A O O O A O A   (27) 

 
Moreover, the vector O2A1 is described by  

{x1  y1  z1}[i  j  k]T in O-XYZ, and can be obtained by 
rotating the vector {0  l0  0}[i  j  k]T (coinciding with 

the line 1 1
L RA A ) about the X-axis by DWR. O2A1 is 

written as 
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(28) 

The curve L RB B  (Fig. 6) is the deformed axle 

center line of the wheelset, which does not consider 

the influence of the rotation caused by the wheelset 
rigid motion. The point BR is the center of the right 

nominal circle. The axle center line (2 2O A ) of the 

deformed wheelset, can be obtained by rotating 


L RB B  about the X-axis by R1. According to the 

definition of the curve L RB B , the vector O2BR is 

defined as 
 

T T
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i i
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        (29) 

 

where {Δx2  Δy2  Δz2}[i  j  k]T is the displacement 
vector of the center of the right nominal circle due to 
the axle bending. Then the vector O2A2 is defined as 
{x3  y3  z3}[i  j  k]T, and can be written as 

 
T T
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i i
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 (30) 
 

which is obtained according to the relationship be-

tween 2 2O A  and 2 R ,O B  or 2 2O A  obtained by rotat-

ing 2 RO B  by R1. The wheelset center displacement 

vector O1O2 is defined as {x0  y0  z0}[i  j  k]T. 
Substituting Eqs. (28) and (30) and the expres-

sion of O1O2 into Eq. (27), the vector O1O3R can be 
written as 
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Similarly, when considering the wheelset bend-

ing deformation in the plane O-XY, the vector O1O3R 
should be given as 
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where ψR1 and ψR2 are the yaw angles caused by the 
rigid motion and the bending deformation in the plane 
O-XY, respectively.  

ψDWR=ψR1+ψR2 is the total yaw angle of the 
DWR. Similarly, the position of the DWL can be 
obtained. When the positions of the two dummies are 
known at t2, the wheel-rail contact geometry can be 
calculated. Then the positions of the wheel-rail con-
tact points are easily found and the wheel-rail contact 
forces can be calculated. The normal wheel-rail con-
tact forces are calculated by the Hertzian nonlinear 
contact spring model, and the tangent contact forces 
and spin moments are calculated by means of the 
model by Shen et al. (1983). Compared with the 
conventional wheel-rail contact model (Wang, 1984; 
Zhai, 2007), this new wheel-rail contact model can 
characterize the independent high-frequency defor-
mations of the two wheels of the flexible wheelset 
more conveniently.  

 
 

3  Results and discussion 
 
When a vehicle is running on an ideal track, it is 

only excited by sleepers. Note that the “flexible” 
wheelset model used in this section denotes the model 
considering the first two bending modes. The dy-
namic system with flexible wheelset models is used in 
the simulation on an ideal track at the speed of 
300 km/h. Figs. 9a and 9b show the vertical forces in 
the frequency domain in steady and unsteady stages, 
respectively. In the unsteady stage, the peaks appear 
not only at a set of harmonic frequencies nfs (n=1, 2, 
3, …) produced by passing sleeper but also at fb1, 
while the influence of the second bending mode is 

small since there is no peak at fb2. In the steady stage, 
the contribution of the component at fb1 is weakened 
and only the peaks at nfs (n=1, 2, 3, …) remain. These 
results are reasonable because when a system comes 
to a steady stage, its responses only contain the 
component at the excitation frequency. 

Based on a large range of site measurements, the 
components of roughness on rails mostly appear in 
the range of 1–20 m. The natural frequencies of the 
first two bending modes are below 250 Hz, meaning 
the available frequency of this model is limited. 
Therefore, the components of the random irregularity 
on the rails are mainly in the frequency range of 
0–150 Hz at the speed of 300 km/h. Fig. 10a presents 
the local section of 900–950 m in the time domain, 
and Fig. 10b shows the irregularity in the frequency 
domain. Note that the results below are from the 
steady stage. 
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Figs. 11 and 12 show the wheel-rail contact 
forces acting on the rigid and flexible wheelsets in the 
time and frequency domains, respectively. As shown 
in Fig. 11a, the average of the oscillation of the lateral 
contact force acting on the flexible model is a little 
smaller than that on the rigid wheelset model, and the 
shapes of the oscillation are different. As shown in 
Fig. 11b, the vertical contact forces acting on the two 
models oscillate around a similar average, while their 
shapes are different. These differences are caused by 
the wheelset flexibility. 

In the frequency domain, the distributions of the 
components contained in both the lateral and vertical 
contact forces are in the excitation frequency range of 
the random irregularity. A peak at frequency 2fs ap-
pears in Figs. 11a and 11b. The contribution of the 
component at frequency fs is overwhelmed by the 
effect of the irregularity. In addition, the uniform 
distribution in 0–150 Hz of the irregularity results in 
the non-uniform distribution of contact forces. As 
shown in Figs. 12a and 12b, the components in 80– 
150 Hz are higher than those in 0–80 Hz. This shows 
that under this present irregularity, this dynamic 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

system is more sensitive to the excitation in 80– 
150 Hz than to those in 0–80 Hz.  

In the frequency domain, the component at fb1 of 
the lateral contact force acting on the flexible model is 
a little larger than that on the rigid model, as marked 
using the arrow in Fig. 12a. This shows that the first 
bending mode is excited, and the availability of the 
model to characterize the wheelset bending is proved. 
However, there is no evident difference at fb1 for ver-
tical contact forces acting on the two models. This 
shows that the wheelset bending deformation has a 
stronger effect on the lateral contact force than on the 
vertical contact force.  

The wheel-rail contact force is affected by the 
position of the lateral contact points. Figs. 13a and 
13b show the oscillations of the contact points in 
lateral direction described in the body coordinate 
system attached to the rail cross-section in the time 
and frequency domains, respectively. The average of 
the magnitudes of oscillation of the contact points on 
the flexible model in the time domain is larger than 
that on the rigid model. This is caused by the wheelset 
bending. Moreover, it can weaken the relative  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11  Lateral contact forces (a) and vertical contact forces (b) in the time domain 
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movement between rail and wheel caused by the ir-
regularity. Therefore, it is one cause of the smaller 
average of the lateral contact force acting on the 
flexible model (Fig. 11a). As shown in Fig. 13b, the 
difference of the components between the two models 
at fb1 is evident. This explains the difference in the 
time domain (Fig. 13a) and again shows the effec-
tiveness of the proposed model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Conclusions 
 
In this study a new wheel-rail contact model is 

integrated into the high-speed vehicle-track coupling 
dynamics system model, which takes into account the 
effect of wheelset structural flexibility. Based on the 
new vehicle-track model the effect of the first two 
bending modes of the wheelset on wheel-rail contact 
behavior is analyzed under the random irregularity in 
a frequency range of 0–150 Hz. The numerical results 
of the rigid wheelset model and the flexible wheelset 
model are compared in detail. The following conclu-
sions can be drawn from the results: 

1. The present vehicle-track model considering 
flexible wheelsets can very well characterize the ef-
fect of the flexible wheelset on wheel-rail dynamic 
behavior.  

2. Under the excitation, the shapes of the oscil-
lations of the wheel-rail contact forces and contact 
points for the new and conventional vehicle-track 
models are different. The difference is caused by the 
excited first bending mode of the wheelset.  

For future work, the first improvement to be 
considered is to model a wheelset using the FEM or 
the Timoshenko beam theory to broaden the model’s 
available frequency range. This could allow it to help 
investigate the mechanisms behind the generation and 
development of wheel-rail wear and noise. 
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中文概要： 
 
本文题目：轮对前 2 阶弯曲模态对动力学行为的影响 

Effect of the first two wheelset bending modes on wheel-rail contact behavior 
研究目的：扩展动力学模型的分析频域，建立能考虑轮对柔性的车辆轨道耦合动力学系统模型，为研究轮

轨磨耗的形成和发展以及轮轨噪声的来源提供基础。 
创新要点：利用欧拉梁横向弯曲模型，建立轮轴在垂直于轨道平面和平行于轨道平面内的弯曲振动模型；

建立考虑轮轴弯曲的轮对模型与轮轨接触模块之间的耦合关系，进而研究轮轨接触行为受轮轴

弯曲变形的影响。 
研究方法：1. 把轮轴模拟为欧拉梁，左右车轮模拟为固结于轮轴上的质量块；2. 假设左右车轮始终垂直于

轮轴，引入虚拟的两个半边刚性轮对模型，建立轮轨接触模型和柔性轮对耦合的关系；3. 基于

多刚体车辆-轨道耦合动力学模型，利用以上柔性轮对模型和此耦合关系，建立考虑轮轴柔性

的车辆-轨道耦合动力学模型。 
重要结论：1. 建立的刚柔耦合的车辆-轨道耦合动力学模型能够有效地描述轮轴弯曲对轮轨接触行为的

影响；2. 在 0–150 Hz 的随机不平顺激励下，多刚体模型和考虑轮对柔性的模型受到的轮轨

力和轮轨接触点轨迹不同；这主要是由第 1 阶弯曲模态被激发导致。 
关键词组：高速铁路车辆；轮轨接触行为；刚性轮对；柔性轮对；模态分析；随机轨道不平顺 
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Appendix A 
 

The vehicle notations and track parameters are given in Table A1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix B 
 

The axle is modeled as a uniform Euler- 
Bernoulli beam carrying two particles (wheels). The 
segment of the beam from the left end to the first 
particle is referred to as the first portion, in between 
the two particles as the second portion and from the 
second particle to the right end as the third portion. 
The beam mode shape will be the superposition of the 
mode shapes of the three portions. The mode shape of 

each portion has four constants of integration, i.e., a 
total of 12 for the three portions. It is necessary to 
satisfy: the boundary conditions; continuity of de-
flection and continuity of slope at the two ‘locations’; 
and compatibility of bending moments and compati-
bility of forces acting on the two particles. 

Here we take the calculation of the mode shape 
functions in the plane O-YZ as an example. Fig. B1 
shows a uniform Euler-Bernoulli beam O1O3 of 
flexural rigidity EIx, and length (R1+R2+R3)L carrying 

Table A1  The vehicle notations and track parameters 

Physical parameter Value Notation 
Mc (kg) 3.38×104 Car body mass 

Mbi (kg) 2.4×103 The ith bogie mass 

Mwi (kg) 1.85×103 The ith wheelset mass 

Cty (N·s/m) 2.0×104 Equivalent lateral damping of the secondary suspension (considering 
damping of lateral shock absorber joint) 

Kty (N/m) 1.813×107 Equivalent lateral stiffness of the secondary suspension (considering 
stiffness of lateral shock absorber joint and lateral stiffness of air spring)

Ctz (N·s/m) 4.0×104 Equivalent vertical damping of the secondary suspension (considering 
vertical damping of air spring) 

Ktz (N/m) 2.99×105 Equivalent vertical stiffness of the secondary suspension (considering 
vertical stiffness of air spring) 

Cfy (N·s/m) 0 Equivalent lateral damping of the primary suspension 

Kfy (N/m) 6.47×106 Equivalent lateral stiffness of the primary suspension (considering the 
lateral stiffness locating node of the axle-box rotary arm) 

Cfz (N·s/m) 1.5×104 Equivalent vertical damping of the primary suspension (considering 
damping of vertical shock absorber joint) 

Kfz (N/m) 6.076×106 Equivalent vertical stiffness of the primary suspension (considering stiff-
ness of vertical shock absorber joint and steel spring) 

Mr (kg/m) 60.64 Rail mass per unit length 

Ms (kg) 349 Mass of sleeper 

Mb (kg) 466 Mass of ballast element 

Ls (m) 0.6 Sleeper bay 

E (N/m2) 2.06×1011 Young’s modulus 

KpLi (N/m) 2.0×107 Lateral stiffness of the ith pad 

CpLi (N/m) 5×104 Lateral damping of the ith pad 

KpVi (N/m) 4.0×107 Vertical stiffness of the ith pad 

CpVi (N/m) 5×104 Vertical damping of the ith pad 

Kbv(L,R)i (N/m) 8.0×107 Vertical stiffness between sleeper and the ith ballast element 

Cbv(L,R)i (N·s/m) 1×105 Vertical damping between sleeper and the ith ballast element 

Kw (N/m) 7.8×107 Vertical stiffness between the ith ballast elements on the left and right  

Cw (N·s/m) 8×104 Vertical damping between the ith ballast elements on the left and right 

Kfv(L,R)i (N/m) 6.5×107 Vertical stiffness between road bed and the ith ballast element 

Cfv(L,R)i (N/m) 3.1×104 Vertical damping between road bed and the ith ballast element 
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the first particle of mass mw at axial coordinate R1L 
from O1 and the second particle of mass mw at axial 
coordinate R3L from O3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To write the equations of transverse vibrations of 

the system, three coordinate systems are chosen with 
origin at O1, O2, and O3. The choice of these coordi-
nate systems has some algebraic advantages. In the 
text, the subscripts k=1, 2, and 3 refer to the first 
portion, the second portion, and the third portion of 
the beam, respectively. For free vibration of the beam 
at frequency, if the amplitude of vibration of the beam 
is Uzk(yk) at axial coordinate yk (in the range 0<yk 
<RkL), then based on the Euler-Bernoulli bending 
theory, the bending moment Mxk(yk), the shearing 
force Qzk(yk), and the mode shape differential equa-
tion for the three portions are 
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To express these equations in dimensionless 
form, one defines the dimensionless axial coordinate 
Yk, amplitude Zk(Yk), operator Dn, dimensionless 
bending moment Mxk(Yk), shearing force Qzk(Yk), and 
a dimensionless natural frequency Ω as follows: 
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Therefore, Eq. (B1) can be expressed in the di-

mensionless form: 
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Consider the solution of the previous equation as 
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There are 12 unknown constants Cki (i=1, 2, 3, 4) 

for the three segments. 
For free vibration the D’Alembert force and 

moment acting on the left wheel is 2
w 1 1( )zm U R L  

and 2
w 1 1( ),zJ U R L   respectively (Fig. B2). Continu-

ity of deflection and continuity of slope at OwL to-
gether with compatibility of bending moments and 
compatibility of forces acting on the left wheel results 
in 
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The D’Alembert force and moment acting on the 

left wheel is 2
w 2 2( )zm U R L  and 2

w 2 2( ),zJ U R L   

respectively. Continuity of deflection and continuity 

Fig. B1  Coordinate systems attached to the three sections
of the wheelset axle 
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of slope at OwR together with compatibility of bending 
moments and compatibility of forces acting on the 
right wheel results in 
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Note that Eq. (B6) takes into account the contra 

directions of the axial coordinates y2 and y3. Eqs. (B5) 
and (B6) in dimensionless form are 
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For the free boundary condition at the left end of 

the first portion and the right end of the third portion, 
the coefficients of the dimensionless mode shape 
functions satisfy 

 

11 13 12 14 31 33 32 34, , , .C C C C C C C C         (B9) 

 
Then one can write the dimensionless mode 

shape functions of the first and third portions as 
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Substituting Eqs. (B10) and (B4) into Eqs. (B7), 

we can obtain: 

11 1 1 12 1 1 22 24
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2

2 w
11 1 1 1 12

a
2

2 2w
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(B11) 
 

Then one can write the dimensionless mode 
shape function of the second portions as 

 

2 2 11 2 2 12 2 2( ) ( ) ( ),Z Y B P Y B V Y             (B12) 

where 
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      (B13) 

 

The coefficients of sin(αY2), cos(αY2), sinh(αY2), 
and cosh(αY2) in Eq. (B4) (when k=2) correspond to 
those in the expression obtained by substituting 
Eq. (B13) into Eq. (B12), so we can obtain 

 

2 11 2 12 2 , 1, 2, 3, 4.i i iC B P B V i           (B14) 

 
The coefficients of B11 and B12 in Eq. (B14) 

correspond to those in the expression by simplifying 
Eq. (B11), so we can obtain: 
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So far the mode shape functions of the second 

and third portions have four unknown constants in 
total. These four unknown constants can be calculated 
using Eq. (B8). The first two equations of Eq. (B8) 
can be written as 
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One considers 
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Using the last two equations of Eq. (B8), we can 

obtain: 
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(B20) 
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Using the matrix form of Eq. (B20), one can 

obtain 
 

11 12
11 22 12 21

21 22

0.
E E

E E E E
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 
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         (B22) 

 
Eq. (B22) is the frequency equation, which is a 

transcendental equation. By using an iterative pro-
cedure based on linear interpolation, the first three 
natural frequencies are f1=111 Hz, f2=245 Hz, and 
f3=547 Hz, respectively.  

The calculation of the coefficients of the three 
mode shape functions are demonstrated in detail in 
the following. 

The dimensionless mode shape functions can be 
written as 

 

11 12( ) ( ) ( ), 1, 2, 3.k k k k k kZ Y B P Y B V Y k     (B23) 

 
One may set the deflection of the first particle to 

be A and without loss of generality one may choose 
A=1, hence 
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From the above equation and Eq. (B20), one can 

obtain the following equations: 
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Subsequently, substituting the last equations into 
Eq. (B23) (assuming k=1) one can obtain the dimen-
sionless mode shape function of the first portion 

1 1 1 1( ) (0 ).Z Y Y R   Substituting Eq. (B25) into 

Eq. (B23) (assuming k=3) one can obtain the dimen-
sionless mode shape function of the third portion  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 3 3 3( ) (0 ).Z Y Y R   By inserting Eqs. (B15) and 

(B16) into Eq. (B4) (assuming k=2) one can obtain 
the dimensionless mode shape function of the second 

portion 2 2 2 2( ) (0 ).Z Y Y R   

Hence, the coefficient of the three mode shape 
functions can be calculated in Table B1. 
 
 
 
 
 
 
 
 
 
 
 

Table B1  Coefficients of the three modes 

Mode C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34 
1st −8.25 6.67 −8.25 6.67 −11.61 −3.91 −4.16 4.91 −8.25 6.67 −8.25 6.67
2nd 2.13 −1.81 2.13 −1.81 1.03 3.53 2.66 −2.53 −2.13 1.81 −2.13 1.81
3rd 1.02 −0.99 1.02 −0.99 −1.40 3.55 2.53 −2.55 1.02 −0.99 1.02 −0.99

  1st mode: f=111 Hz, α=4.01; 2nd mode: f=245 Hz, α=5.96; 3rd mode: f=547 Hz, α=8.89 


