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Abstract:    Accurate and reliable short-term prediction of ship motions offers improvements in both safety and control quality 
in ship motion sensitive maritime operations. Inspired by the satisfactory nonlinear learning capability of a support vector re-
gression (SVR) model and the strong non-stationary processing ability of empirical mode decomposition (EMD), this paper 
develops a hybrid autoregressive (AR)-EMD-SVR model for the short-term forecast of nonlinear and non-stationary ship motion. 
The proposed hybrid model is designed by coupling the SVR model with an AR-EMD technique, which employs an AR model 
in ends extension. In addition to the AR-EMD-SVR model, the linear AR model, non-linear SVR model, and hybrid EMD-AR 
model are also studied for comparison by using ship motion time series obtained from model testing in a towing tank. Prediction 
results suggest that the non-stationary difficulty in the SVR model is overcome by using the AR-EMD technique, and better 
predictions are obtained by the proposed AR-EMD-SVR model than other models. 
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1  Introduction 
 

Ship motions occur due to ocean environmental 
disturbances, such as sea waves, wind, and ocean 
current. They are dangerous to ship related maritime 
operations like ship-borne helicopter recovery, float 
over, launch and recovery of submarines, and cargo 
transfer between ships, especially in harsh sea condi-
tions. The short-term forecast of the ship motions 5 
to 10 s ahead of time may be very useful for such 
offshore operations for both operational safety and 
efficiency. Prediction information can help to pro-

vide motion compensation, which may prevent the 
crash of cargo in cargo transfer, improve the firing 
accuracy of ship-borne weapon systems (Khan et al., 
2006; Ra and Whang, 2006) and performance of the 
motion control systems. In addition, motion predic-
tions are employed to extend operational limits by 
forecasting quiescent periods where the ship motions 
are within acceptable limits for performing a desired 
maritime task. Conventional prediction approaches 
employ statistical data to assess whether a task can 
be executed. This may result in an outcome where an 
operation is never executed, whereas quiescent peri-
ods do exist (Riola et al., 2011). 

Short-term prediction of ship motion has been 
widely explored for its application values in practical 
engineering over past decades. A large number of 
forecast models have been developed. According to 
the theoretical differences among various methods, 
short-term prediction models may be classified into 
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three types: hydrodynamic-based, classic time series, 
and nonlinear and intelligent learning related predic-
tion models (Huang et al., 2014). Essentially, classic 
time series prediction and nonlinear and intelligent 
learning related prediction models are both statistical 
approaches.  

Early efforts in short-term prediction were de-
rived from ship hydrodynamics. Hydrodynamic-based 
prediction consists of a convolution-based approach 
and a state-space-based Kalman filter approach.  

The convolution-based predictor (Kaplan and 
Sargent, 1965) is developed using wave height meas-
urements at the bow serving as input data. The meas-
ured wave heights are then convoluted with the ship 
response kernel function to obtain the motion estima-
tion in the coming seconds. Accurate response func-
tions and wave inputs are required. However, the ship 
response kernel functions are derived under the con-
sumption of linear hydrodynamic theory while wave 
excitation (Chakrabarti, 1989) and loads are nonline-
ar (Hirdaris et al., 2014). Furthermore, uncertainties 
modeling should also be considered in convolution-
based predictor due to their significant influences on 
ship response. Effects that the uncertainties in wave 
spectra and ship response kernel functions have on 
the short-term ship motions and loads were exam-
ined by Guedes Soares (1990; 1991) and Chakrabarti 
(1989). Papanikolaou et al. (2014) addressed the im-
portance of understanding and integrating uncertain-
ties in assessing ship wave-induced loads and opera-
tions. Hirdaris (2014) summarized the uncertainty 
modeling for ships as well as offshore structures. 

The Kalman filter is another hydrodynamic-
based prediction method. Triantafyllou and Athans 
(1981), Triantafyllou and Bodson (1982), and Tri-
antafyllou et al. (1983) presented a Kalman filtering 
technique for predicting ship motions based on a 
precise state-space model. Numerical results on a 
DD-963 destroyer suggested the feasibility of apply-
ing the Kalman filter in short-term prediction. In ad-
dition, its prediction precision greatly depended on 
the ocean wave frequency and the noise. For exam-
ple, 5 s predictions of pitch can be reached without a 
noise condition, while for a noise condition, the pre-
diction horizon is then reduced to 2–3 s. Apart from 
being noise sensitive, the Kalman filter is difficult to 
apply because of two further shortcomings. One is 
that accurate state-space equations and noise statis-

tics are necessary in implementing the Kalman filter. 
These are hard to obtain in practical engineering situ-
ations. The other is the very large computational ef-
fort required (Yang, 2013) to derive the ship hydro-
dynamic coefficients from the state-space equations, 
resulting in difficulty in real time implementation. 

Hydrodynamic-based prediction models are in 
essence linear methods and hence applicable for 
small amplitude wave-induced ship motions. Their 
performance depends on how exactly the linear hy-
drodynamic coefficients are worked out. Modeling 
uncertainties should be taken into consideration. 
These models fail to model ship motions where fluid 
structure interactions are strong, e.g., the influence of 
hydro-elasticity is significant (Hirdaris and Temarel, 
2009), as nonlinear hydrodynamic coefficients are 
required in such a case.  

Hydrodynamic-based prediction models have 
introduced linear assumptions, boundary conditions, 
simplification of nonlinear wave-wave interaction, 
etc. Whereas, there are no such prior restrictions in 
statistical prediction models as they do not explain 
physical processes taking place for generating ship 
motions. Comparatively, statistical models show 
advantages including relatively simple modeling and 
a small requirement of computer memory and time. 
If exact input-output values are continuously known, 
time series models can be identified using known 
input-output values based on learning processes. In 
the present work, statistical time series models that 
are usually applied in ship motion forecasting are 
divided into two categories. They are the classic time 
series and nonlinear and intelligent learning related 
models.  

Time series analysis provides a possible solu-
tion only requiring the time history of the ship mo-
tions or the ocean waves while modeling (Yumori, 
1981). Classic time series prediction models that are 
frequently used include autoregressive (AR) and au-
toregressive moving average (ARMA) models. In 
addition to short-term prediction, classic time series 
models (AR, ARMA) have also been extensively 
applied in other disciplines of engineering (Sakellar-
iou and Fassois, 2006; Lee and Jun, 2010). Practical 
limitations of requiring accurate state-space and 
noise estimation in the Kalman filter and precise re-
sponse kernel function in the convolution predictor 
are avoided. The linear and stationary AR prediction 
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model is mostly employed for advantages such as 
less computational complexity and memory demands, 
and being convenient for real-time realization 
(Zhang and Chu, 2005). Order determination and 
parameters estimation for AR model have been 
widely studied. However, predictions of a single AR 
model in harsh condition and large forecast lead 
times fail to satisfy expectations. To further improve 
the prediction performance, Yumori (1981) devel-
oped a novel ARMA model based on a leading indi-
cator method using a statistical way that finds a time 
domain model which best fits an input wave sensor 
time history to the ship response time history. It 
showed good predictions of phase and amplitude for 
2 to 4 s in advance. When the prediction lead time 
reaches 8 s, predictions fail to capture the amplitude 
of the target. Moreover, satisfactory prediction is 
only obtained if it could sense waves at a distance 
from the ship, which is not always available in a 
practical situation. Despite its high efficiency and 
adaptive nature, prediction results produced by the 
classic time series models (AR, ARMA) are far from 
the expected in harsh sea conditions. As the ship mo-
tions and ocean waves are always non-stationary, it 
conflicts with the stationary assumption of classic 
time series models. 

To overcome the nonlinearity hidden in real-life 
ship motions, nonlinear and intelligent learning re-
lated prediction models have been extensively stud-
ied. Zhou and Zhao (1996) proposed a nonlinear au-
toregressive (NAR) model by applying orthogonali-
zation technique. Results indicated that the NAR 
model gave better prediction accuracy than the AR 
model. But it is still limited in nonlinear ship motion 
forecasting, as explicit relationships for the data sets 
at hand have to be hypothesized with little 
knowledge of the underlying law to construct the 
NAR model. 

In contrast to model-based nonlinear methods 
(e.g., NAR), intelligent learning related prediction 
models like artificial neural networks (ANN), back-
propagation (BP) networks, and wavelet neural net-
works (WNN) are more capable of performing non-
linear modeling without a priori knowledge of the 
relationships between input and output variables. 
Hence, they are more general and flexible modeling 
tools in this context. Investigations into this applica-
tion of ANN methods were conducted by Khan et al. 

(2004; 2005; 2006) where it was seen that ANN 
models produced excellent predictions and were able 
to predict ship motions satisfactorily for up to 7 s. To 
deal with chaos characteristic in the ship motion, a 
prediction method based on the chaotic time series 
theory and radial basis function (RBF) ANN model 
was implemented by Gu et al. (2013). Simulation 
results revealed that the proposed model was able to 
predict ship motion acceptably for up to 10 s. Re-
cently, Zhang and Liu (2014) constructed WNN with 
delayed system information for on-line ship dynam-
ics prediction. Sensitivity analysis is employed to 
determine the inputs to the WNN and improve the 
generalization ability. Simulation results of ship mo-
tion prediction using measured data demonstrate the 
feasibility. However, prediction results of pitch, roll, 
and heave motions were not given.  

Though the above nonlinear and intelligent 
models perform better in data fitting, their applica-
tions in real engineering problem are still constrained 
because of disadvantages, such as high computation-
al cost, the need for substantial samples, being non-
adaptive in model identification, and so forth. Fur-
thermore, the existence of non-stationarity in ship 
motions also limits the prediction models in practical 
implementation. Although intelligent learning related 
prediction models may perform well in handling 
nonlinearity, they may not be capable in modeling 
non-stationary data if pre-processing of the input is 
not performed (Cannas et al., 2006; Deka and Chan-
dra, 2012), especially for a long forecast horizon. In 
fact, modeling a nonlinear and non-stationary data 
set using a single nonlinear model is very difficult 
since there are too many possible patterns hidden in 
the data. A single nonlinear model may not be gen-
eral enough to capture all important features. 

As a result, enhanced approaches are necessary. 
Hybrid models that combine pre-techniques with 
single prediction models become variable alterna-
tives for more effective modeling. Wavelet-based 
models were presented for non-stationary time series 
forecasting as a wavelet technique is effective in 
handling non-stationarity (Ozger, 2010; Deka and 
Chandra, 2012). However, wavelet-based hybrid 
models still have limitations in nonlinear and non-
stationary time series forecasting because of the line-
arity restriction of the wavelet transform. As a con-
sequence, it may not be suitable for nonlinear data 
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(Huang and Wu, 2008). However, empirical mode 
decomposition (EMD) technique is capable of pro-
cessing nonlinear and non-stationary time series. 
Therefore, it has been popularly employed in devel-
oping hybrid models for various time series predic-
tions (Castro-Neto et al., 2009; Fan and Tang, 2013; 
Cheng and Wei, 2014; Wang et al., 2015). Hou and 
Qi (2011) developed an EMD based on a radial basis 
function neural network (EMD-RBFNN) model to 
handle the nonlinearity and non-stationarity in ship 
motions. However, a sufficiently large sample is still 
required for training the RBFNN model. However, a 
support vector regression (SVR) model requires a 
relatively small sample size with strong ability in 
learning nonlinear time series. Zhou and Shi (2013) 
presented an EMD based least mean square support 
vector machines (EMD-LSSVM) for prediction. But 
the performance of the EMD-LSSVM in forecasting 
nonlinear and non-stationary ship motions was not 
further studied or compared with other models. Also, 
the end effects in EMD processing which greatly 
affect the prediction results (Xiong et al., 2014) had 
not been addressed. In this paper, an improved AR-
EMD-SVR model is proposed, where the AR model 
is employed in ends processing to eliminate the in-
fluences of end effects on prediction accuracy. Per-
formance of the enhanced model is further examined 
by comparative studies with AR, SVR, and EMD-
AR models using experimental ship motion data. 

This paper first introduces the theoretical back-
ground of the AR model, EMD technique, and the 
SVR model and its enhanced model. Then numerical 
results and comparisons are presented and discussed.  

 
 

2  Theoretical formulations for the AR model 
and AR-EMD technique 

2.1  AR prediction model 

Time series analysis theory assumes that rela-
tions exist among the variables of the time sequence. 
As a result, the present variable is able to be repre-
sented by the previous in time. Of which, the AR 
model is the most used in time series forecasting be-
cause of its convenience in real-time model identifi-
cation, high adaptive nature, and better frequency 
resolution (Zhang and Chu, 2005). For a given time 
series {x(t), t=1, 2, …, n}, the AR model is formulat-
ed as  

x(t)=φ1x(t−1)+φ2x(t−2)+…+φpx(t−p)+a(t), 
t=1, 2, …, n,                            (1) 

 

where p is the model order, {φ1, φ2, …, φp} are pa-
rameters of the AR model, which are unknown. {a(t), 
t=1, 2, …, n} is zero-mean white noise. Identifica-
tion of the AR model as shown in Eq. (1) concerns 
the selection of model order p and corresponding 
parameters {φ1, φ2, …, φp}, which can be found in 
many papers (Yang, 2013). 

Various algorithms have been developed for the 
estimation of model parameters. In this study, the 
Levinson-Durbin (L-D) algorithm is employed in 
parameter estimation. With the given ship motion 
sequence xi (i=1, 2, …, n) and model order p, L-D 
algorithm can be summarized in Table 1 (Huang et 
al., 2015). The least mean square algorithm suffers 
from convergence speed and an eigenvalue spread 
problem (Myllylä, 2001), and the use of the recursive 
least square algorithm introduces memory intensive 
and numerically-unstable problems (Douglas, 1996). 
In addition, the determination of the forgetting factor 
is not always adaptive.  

 
 
 
 
 
 
 
 
 
 
 
 
 
There are several available methods to specify 

model orders, such as Akaike information criterion 
(AIC), Bayesian information criterion (BIC), and 
final prediction error criterion (FPE). The BIC crite-
rion is applied for model order selection in this study. 
The BIC value of general AR(p) is defined as 

 
2BIC( ) lg ( 1)(lg ) / ,p p N N              (2) 

 

where σ2 is the covariance. Model order p0 that leads 
to the minimum BIC value is chosen as the optimal 
order. 

Table 1  Summary of Levinson-Durbin algorithm 

Compute:   Autocorrelation function rk (k=0, 1, …, p); 

Initialization:   ρk=r1/r0; φ1,1=ρ1; σk
2=r0(1−ρ1

2);  

Main iteration:  Do for  k=2, 3, …, p, 

2
, 1 1

1

;
k

k k i k k i k
i

r r    


   
 

  

φk,k=ρk;  φi,k=φi,k−φk−i,k−1ρk (i=1, 2, …, k−1);  

σk
2=σk

2(1−ρk
2); 

ρk: reflection coefficient; rk: autocorrelation function for a lag k; 
φi,k: the kth order model parameter; σk: covariance with respect to 
order p 
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Once the prediction model as presented in 
Eq. (1) is determined, a k-step-ahead adaptive 
predictor can be presented as 
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     (3) 

 
where ˆ( )x t k  is the prediction value of k steps  

advancing.  

2.2  EMD technique using AR model in ends  
processing  

Decomposition is critical in signal processing. 
Complex signals are frequently decomposed into 
several simple components. Then, information con-
tained in each component would be analyzed to re-
duce the complexity and enhance interpretability. 
Conventionally, Fourier transform and wavelet analy-
sis are the approaches adopted most often. However, 
it is well known that Fourier transform fails to ex-
tract the frequency information from non-stationary 
signals. Although effective in handling non-
stationarity, wavelet analysis suffers from its non-
adaptive nature as it applies the same type of basis 
functions to the entire range of data. Similarly, wave-
let analysis also represents a signal by a linear com-
bination of wavelet basis functions. Its decomposi-
tion results for nonlinear data can be misleading 
(Huang and Wu, 2008; Kim et al., 2012). Therefore, 
a set of basis functions that reflects the time-varying 
property of a signal is required. 

A data-driven technique known as EMD has 
been proposed by Huang et al. (1998), which is 
powerful and adaptive in analyzing nonlinear and 
non-stationary data sets. It provides an effective ap-
proach for decomposing a signal into a collection of 
so-called intrinsic mode functions (IMFs), which can 
be treated as empirical basis functions. An IMF re-
sulting from the EMD procedure should satisfy two 
conditions: (1) the number of extremas and the num-
ber of zero-crossings should be equal or differ by 

one, and (2) the local average should be zero, i.e., the 
mean of the upper envelope defined by the local 
maxima and the lower envelope defined by the local 
minima is zero (Huang et al., 1998). 

Algorithms of EMD for decomposing a given 
sequence x(t) are summarized as follows: 

(1) Identify the local extrema. 
(2) Generate the upper envelope u(t) and the 

lower envelope l(t) via the spline interpolation 
among all local maxima and local minima, respec-
tively. Then, the mean envelope is obtained: m(t)= 
[l(t)+u(t)]/2. 

(3) Subtract m(t) from the signal x(t) to obtain 
the IMF candidate: h(t)=x(t)−m(t). 

(4) Verify whether h(t) satisfies the conditions 
for IMFs, do step (1) to step (4) until h(t) is an IMF. 

(5) Get the nth IMF component imfn(t)=h(t) (af-
ter n shifting processes) and the corresponding resi-
due r(t)=x(t)−h(t). 

(6) Repeat the whole algorithm with r(t) ob-
tained in step (5) until the residue is a monotonic 
function. 

By implementing these algorithms, the decom-
position procedure of a signal is expressed as  

 

1

imf( ) ( ) ( ).
n

i
i

x t t r t


                         (4) 

 
In practice, one of the essential questions in 

EMD is boundary effects processing. Researchers 
have proposed techniques for processing the bounda-
ry effects, such as the characteristic wave extending 
method (Huang et al., 1998), a ratio extension meth-
od (Wu and Riemenschneider, 2010), and the mirror 
image extending method (Zhao and Huang, 2001). 
Among the various approaches, the symmetric ex-
tending method is the most popular when imple-
menting EMD processing. However, extended re-
sults by using symmetric extension method and non-
predictive methods are far from satisfactory as great 
differences always exist between the extended and 
real extrema. Despite the fact that EMD-based pre-
diction models have already been extensively re-
searched in substantial papers and generally proved 
to be an effective way for improving prediction per-
formance of various models (Yu et al., 2008; Fan et 
al., 2013), the influence of end effects on prediction 
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results (Xiong et al., 2014; Huang et al., 2015) is 
rarely properly established.  

In this study, the AR model as presented in Sec-
tion 2.1 is applied in boundary effects processing. An 
analytical signal comprised of three sine functions in 
Eq. (5) is studied as an example to compare the per-
formance of EMD-SVR models using the symmetric 
extension method and AR-based extension method.  

 
1.5sin(0.628 ) sin 5sin(1.5 ).y t t t              (5) 

 
Fig. 1 presents the extension results of the AR 

prediction model and the symmetric extension meth-
od, from which it is seen that the AR prediction 
model provides reasonable and satisfactory extension 
results, while the exterma produced by the symmet-
ric extension method fail to match the true ones.  

 
 
 
 
 
 
 
 
 
 
 
 
Results presented in Fig. 2 further highlight that 

considerable reduction of the end effects on predic-
tion accuracy has been made by employing the AR 
model in boundary processing instead of the sym-
metric extension method. 

 
 
 
 
 
 
 
 
 
 
 
 
 

3  SVR and AR-EMD-SVR prediction models 

3.1  Formulation descriptions of SVR model 

Support vector machine (SVM) theory is a sta-
tistical learning theory-based method with a strong 
capacity to handle nonlinear problems. Its basic idea 
is to map the nonlinear data into high dimension fea-
ture space using a nonlinear mapping function, 
where linear techniques are available (Zhou and Shi, 
2013). SVR is a nonlinear prediction model that is 
based on SVM theory. It has been widely applied in 
short-term prediction problems, such as traffic flow 
forecasting (Castro-Neto et al., 2009) and electric 
load forecasting (Fan et al., 2013). Descriptions of 
identification algorithms for the SVR model can be 
found in (Castro-Neto et al., 2009; Fan and Tang, 
2013; Huo et al., 2014).  

Given a training data set of N points {(xi, yi), 
i=1, 2, …, N} with input data xiRN and output data 
yiR, then, according to SVM theory, a linear 
regression function can be presented as  

 
T( ) ( ) ,y b x w Φ x  , b w Z R                   (6) 

 
in a feature space Z, where w is a vector in Z, and the 
input space RN is mapped into feature space Z 
through the corresponding mapping function Φ(x). 
Eq. (6) in the feature space is usually designated as 
an SVR model and applied to estimate the unknown 
nonlinear function, where the parameters w and b 
need to be selected. 

As is well known, the SVM method aims to 
minimize the empirical risk and overall fitting errors. 
The regression problem is equivalent to the optimi-
zation problem as  

 

T 2
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where C is a regularization constant and ei is the es-
timation error. 

To solve the optimization problem, the Lagran-
gian function L can be given as 

 

1
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N

i i i i
i

L J a b e yb


     wΦ xw e a w e  (8) 

Fig. 1  Boundary extension results using AR prediction 
model and symmetric extension approach 
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where a=[a1, a2, …, aN] represents the Lagrangian 
multipliers. 

Then, Karush-Kuhn-Tucker (KKT) conditions 
for identifying the SVR model can be summarized as 
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          (9) 

 
The linear equation system (9) can be further 

written as 
 

1
1

1 00
,N NN C

b

     
     

    

a yQ I e

e
               (10) 

 
where yN=[y1, y2, …, yN]T, e1=[1, 1, …, 1]T, aN=[a1, 
a2, …, aN]T, I is an identity matrix, QN=(Φ(xi), 
Φ(xj))=k(xi, xj), i, j=1, 2, …, N, and k(xi, xj) is a  
kernel function that satisfies the Mercer theorem.  
In the present study, the RBF with a width of β is 
chosen:  
 

2 2
2( ) exp( ), 0., || || /i j i jk    x x x x     (11) 

 
The parameters of b and a for SVR model can 

be reached by solving linear equation system in 
Eq. (10), and the regression is rewritten as 

 

1

( ) ( ) .,
N

i
i

i jy a k b


 x x x                    (12) 

 

3.2  Hybridization process of AR-EMD-SVR pre-
diction model 

Time series of ship motions are kinds of com-
plicated nonlinear and non-stationary signals, which 
consist of components with different characteristics. 
Despite being capable of handling nonlinearity, the 
SVR model fails to handle non-stationarity for short-
term problems (Fan and Tang, 2013). A combination 

of AR-EMD and the SVR model provides an effec-
tive way to improve the prediction accuracy for non-
linear and non-stationary time series. 

The implementation procedure for ship motion 
prediction using hybrid AR-EMD-SVR model com-
prises three steps, which are illustrated by a 
flowchart as shown in Fig. 3. In the first step, ship 
motion time series is decomposed into two simple 
and meaningful IMFs and a residual through EMD 
processing. In the second step, prediction of decom-
posed components is preformed individually with the 
SVR model. In the final step, the predictions are ag-
gregated to attain the final forecast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Results and discussion 
 
This section focuses on the prediction perfor-

mance of the proposed AR-EMD-SVR model. Com-
parison studies among the AR-EMD-SVR model, 
AR model, SVR model, and EMD-AR model have 
been conducted using ship motion time series from 
model testing in a towing tank.  

4.1  Brief description of ship motion data from 
model testing 

4.1.1  Heave and pitch motion of a large container 
ship 

Model testing based ship motion time series of a 
large container ship moving at a speed of 24 knots in 
heading waves with the condition of sea state 5 are 
used in the simulation (Fig. 4). The length, beam, 
and draft are 304 m, 35 m, and 10 m, respectively. 

Fig. 3  Flowchart of the hybrid AR-EMD-SVR prediction
model 
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Ship motion status (heave, pitch) was sampled at 
50 Hz in model testing and down-sampled to two 
points per second when the simulation was  
implemented. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.2 Brief analysis of the non-stationary and 
nonlinear nature in ship motion 

Conventionally, a time series, {x(t)}, is station-
ary in the board sense, if, for all t, 

 

2

1 2 2 1

[ ( )] ,

[ ( )

co

] ,

[ ( ) ( )] ( ),

nstant

xx

E x t

E x t

E x t x t R t t

  

 
 

                  (13) 

 
where E[ ] is the expected value defined as the en-
semble average of the quantity, and Rxx is the covari-
ance function (Brockwell and Davis, 1991).  

In brief, for stationary time series, the expected 
values and covariance corresponding to specified 
time delay should not vary with time. As shown in 
Fig. 5, it can be seen that the expected value E[x(t)] 
and covariance with time delay of 10 steps 
E[x(t)x(t+10)] are approximately equal to zero. 

Based on the definition of a stationary process, 
quantitative methods of consecutive statistics are 
used to analyze the stationarity of the ship motions in 
Fig. 4. Moreover, a recurrence plot, a direct and ef-
fective graphical approach for reflecting the evolu-
tion tendency and potential periodicity of a dynamic 
system (Eckmann et al., 1987), is also applied in 

stationarity analysis. Recurrence plot lattices of sta-
tionary time series should subject to uniform distri-
bution. However, the plot lattices of the non-
stationary time series must be non-uniform. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 gives the covariance function and the ex-

pected values of heave and pitch motions. Obvious 
time dependent variations of the statistic for heave 
and pitch motions are suggested, indicating the exist-
ence of non-stationarity in the experimental ship mo-
tion data. 
 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 

 

This observation is further demonstrated by the 
recurrence plots in Fig. 7. The non-uniform distribu-
tion nature is easily found. This indicates that the 
given ship motions for prediction simulation study 

Fig. 6  Covariance functions and expected values of heave
motion (a) and pitch motion (b) 
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Fig. 4  Heave (a) and pitch (b) time history of a large con-
tainer ship from model testing 
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are non-stationary. Due to the non-stationarity, the 
intra-wave frequency modulation, designated as an 
indicator for nonlinearity (Huang et al., 1998; 2009), 
also exists in the motion data. Therefore, the heave 
and pitch motions in Fig. 4 are non-stationary and 
nonlinear.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

4.2  Evaluation of prediction accuracy 

For forecasting accuracy evaluation, prediction 
results are studied by (1) comparing time histories of 
the above models’ forecasts with actual ship motions, 
(2) computing the correlation coefficient (r) and the 
root mean square error (RMSE) as shown in Eqs. (14) 
and (15), and (3) drawing scatter diagrams of predic-
tion results and corresponding measured ship  
motions. 
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where ˆtx  is the forecast results with a mean value of 

mˆ ,x  xt is the measured ship motions, xm is the mean 

value of xt, and n represents the testing times. 

4.3  Prediction results, comparison, and analysis 

A sliding data window with the size of 500 
points is used to construct the prediction models, and 
1000 points are employed for testing.  

Figs. 8 and 9 present the 10-lead-step predicted 
time histories of heave and pitch motions by models 
of SVR, AR, EMD-AR, and AR-EMD-SVR. It is 
immediately obvious that predictions of the nonline-
ar SVR model provide the lowest level of agreement 
with both the measured heave and the pitch motions. 
Spatial and temporal offsets generally exist relative 
to the targets, especially the spatial offsets, which are 
rather large in the troughs and peaks. Comparatively,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7  Recurrence plots of the model testing ship mo-
tions: (a) heave motion; (b) pitch motion 
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predictions of the linear AR model show smaller 
spatial and temporal deviations relative to the target. 
Nevertheless, deviations between the predictions and 
observations are still out of the expected range. Nei-
ther the single AR nor the SVR model produces rea-
sonable predictions, as spatial offsets and temporal 
shifts generally exist and are seen to become larger 
as the non-stationarity increases from a comparison 
between Figs. 8 and 9. 

In contrast, as the 10-lead-step forecasts sug-
gested, EMD hybrid models predict far better than 
the single AR and SVR models. Not only are, for the 
most part, the peaks and troughs reasonably captured, 
but the short-term fluctuations in the ship motions 
are also reproduced remarkably well. Predictions in 
Figs. 8 and 9, in spite of minor spatial offset in local 
positions, display a fidelity to the measurements that 
is certainly acceptable for most practical applications. 
The AR-EMD-SVR model is superior to the EMD-
AR model in that it captures the ship motions more 
precisely in the troughs and peaks. 

The observations are further confirmed by the 
corresponding scatter diagrams given in Figs. 10 and 
11, which are related to the heave and pitch motions, 
respectively. The relevant correlation coefficient r,  
a widely accepted measure of the degree of linear 
association between the target and the realized out-
come of a prediction model, of each diagram is also 
provided. Note that in Fig. 10 the magnitudes of the 
correlation coefficients respect to scatter diagrams of 
AR, EMD-AR, SVR, and AR-EMD-SVR models are 
0.75, 0.93, 0.80, and 0.97, and in Fig. 11 they are 
0.91, 0.93, 0.90, and 0.95, respectively. Which are 
highly consistent with the observations from Figs. 8 
and 9.  

The poor performance of AR model in predict-
ing non-stationary and nonlinear ship motions essen-
tially results from its stationary and linear theoretical 
assumptions. On the other side, the unexpected pre-
dictions by SVR model provide evidence that the 
method is non-stationary limited, which agrees with 
the conclusion given by Fan et al. (2012). 

Further comparison between the predictions 
given by Figs. 8–11 shows that the SVR model 
results in large prediction errors, indicating that the 
stationary nonlinear model is more sensitive to the 
non-stationarity than the linear model. This is 

probably because the prediction errors resulting from 
the nonlinear model are themselves nonlinear. 

As shown in Figs. 8–11, substantial improve-
ments in short-term predictions of nonlinear and 
non-stationary ship motions are obtained by using 
the AR-EMD coupled models. This demonstrates 
that non-stationarity brings obvious negative effects 
into the predictions. It is also clear that the AR-
EMD technique is an effective way to improve the 
prediction performance of single AR and SVR mod-
els, as it is capable of handling nonlinear and non-
stationary data. From Figs. 8–11 we can see that, the 
AR-EMD-SVR model matches the target better and 
produces higher prediction accuracy. The compari-
son of the EMD-AR and AR-EMD-SVR models 
highlights the difficulty of the former model. Even 
though AR-EMD can help handle the non-
stationarity, EMD-AR model still suffers a “non-
linear” difficulty stemming from the linear assump-
tion of the AR model. The AR-EMD-SVR model 
shows a superior performance in forecasting non-
stationary and non-linear ship motion, where the 
non-stationarity and nonlinearity processing capabili-
ties are inherited from the AR-EMD technique and 
the SVR model, respectively. 

To learn the ensemble prediction behaviors of 
the above mentioned four models, short-term fore-
casts were made of ship motions with lead times 
varying from 1 s to 10 s. For comparison among the 
above prediction models and to understand the evo-
lutionary process of error measures with respect to 
lead times, forecast errors of RMSE and r are repre-
sented graphically in Figs. 12 and 13 (p.573). 

It appears from Figs. 12 and 13 that the fore-
casting accuracy of each model decreases as the pre-
dicted lead time increases. Taking AR-EMD-SVR as 
an example, in heave prediction, as the lead time 
varies from 1 s to 10 s, the value of RMSE increases 
from 0.01 m to 0.13 m while the corresponding cor-
relation coefficient decreasing from 1.00 to 0.90. 
Comparison among prediction errors of AR, SVR, 
EMD-AR, and AR-EMD-SVR models lead to a 
more comprehensive validation that AR-EMD is 
effective in improving the accuracy of the AR and 
SVR models, and that the proposed AR-EMD-SVR 
model performs best in both heave and pitch  
predictions. 
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Fig. 11  Scatter diagram of predicted and corresponding measured pitch motion (10 lead steps) 
(a) AR model; (b) EMD-AR model; (c) SVR model; (d) AR-EMD-SVR model 
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Fig. 10  Scatter diagram of predicted and corresponding measured heave motion (10 lead steps) 
(a) AR model; (b) EMD-AR model; (c) SVR model; (d) AR-EMD-SVR model 
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Further comparison of the prediction errors of 
AR, EMD-AR, and SVR models reveals how the 
nonlinearity and non-stationarity impact on predic-
tions as the lead time increases. It may be seen from 
the RMSE as shown in Figs. 12 and 13 that the SVR 
model is likely to produce better predictions than 
both AR and its EMD hybridized model when the 
prediction lead time is smaller than a certain bound. 
In the present case, the bound is 5 s for heave motion 
and 4 s for pitch motion. However, once the lead 
times exceed the bounds, the SVR model leads to 
overall higher prediction errors than the AR and 
EMD-AR models. The two observations indicate that 
the nonlinearity results in dominant effects on the 
predictions if the lead time less than a certain bound, 
whereas the non-stationarity shows a weak impact on 
the predictions. When the lead time surpasses the 
above mentioned bounds, the non-stationarity pro-
duces a stronger negative effect on the short-term 
predictions than the nonlinearity. Therefore, neither 
the nonlinear SVR nor the enhanced AR model 
shows limitation in predicting non-linear and non-
stationary ship motions. As the results given in 
Figs 12 and 13, this difficulty has been well over-
come by the proposed AR-EMD-SVR model. 

 
 

5  Conclusions 
 
In this paper, a hybrid AR-EMD-SVR model 

has been developed for short-term prediction of non-
linear and non-stationary ship motions. The SVR 
model is coupled with an EMD technique using the 
AR model in boundary processing. An analytical 
signal is employed to examine the improvement of 
the AR model in boundary extension compared to 
the conventional symmetric extension method. Com-
parisons show that AR model-based boundary exten-
sion method leads to more reasonable extension re-
sults for EMD and provides better prediction accura-
cy. Research on performance of the proposed AR-
EMD-SVR model compared to AR, SVR, and EMD-
AR models was conducted applying ship motion data 
from model testing. Results suggest that AR-EMD is 
able to handle the non-stationarity in ship motions 
whereas conventional AR and SVR suffer difficulty. 
Comparative analysis of AR, SVR, EMD-AR, and 

Fig. 13  Accuracy comparison of pitch prediction 
(a) RMSE; (b) Correlation coefficient 
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Fig. 12  Accuracy comparison of heave prediction 
(a) RMSE; (b) Correlation coefficient 
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AR-EMD-SVR models highlights the superiority of 
the proposed method providing forecasts. 
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中文概要 
 

题 目：用于非线性非平稳船舶运动极短期预报的一种

复合自回归经验模态分解支持向量机回归模型 

目 的：基于支持向量机回归（SVR）模型在非线时间序

列的预测能力及经验模态分解（EMD）方法在

处理非线性非平稳性的优势，提出一种复合自

回归经验模态分解支持向量机回归（AR-EMD-

SVR）模型，提高非线性非平稳船舶运动极短期

预报精度。 

创新点：1. 研究非线性非平稳船舶运动的极短期预报问

题，提出一种复合的预报方法；2. 基于不同层

次的预报模型和模型试验数据，分析非线性非

平稳性对极短期预报精度的影响。 

方 法：1. 在 SVR 模型中引入基于自回归（AR）预报端

点延拓的 EMD 方法，形成复合的 AR-EMD-

SVR 预报模型；2. 基于集装箱船模水池试验运

动数据将 AR-EMD-SVR 模型与 AR、SVR 和

EMD-AR 三种模型进行比较，分析非线性非平

稳性对极短期预报的影响以及不同模型的预报

性能。 

结 论：1. AR-EMD 方法能够有效的克服非平稳对极短

期预报模型（AR 和 SVR）在精度上所带来的不

良影响；2. 基于船模试验数据的预报结果表

明：相较于 AR、SVR 和 EMD-AR 三种预报模

型，基于 AR-EMD-SVR 模型的非线性非平稳船

舶运动极短期预报结果具有更高的精度。 

关键词：非线性非平稳船舶运动；极短期预报；经验模

态分解；支持向量机回归模型；自回归模型 

 


