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Abstract:    We describe an investigation of the dynamic behavior of a hydraulically driven crane with a freely suspended payload 
during luffing and slewing motions. To simplify the task, the two movements are considered separately. Taking into account only 
one motion at a time, the crane is regarded as a three-link kinematic chain with revolute joints. The forward dynamics problem is 
solved for a crane with three rotational degrees of freedom, two of which describe the load swinging. In both the cases studied, the 
links are driven by a torque applied via a hydraulic drive, i.e., a linear actuator for the luffing case and a rack and pinion mechanism 
for the slewing motion. To compose the set of differential equations for the forward dynamics problem, a method based on a 
general Newton-Euler algorithm is used. From these simulations the time histories of various parameters, namely the swinging 
angles, hydraulic pressures, and joint forces, are determined. The results obtained via simulations are confirmed experimentally 
and a good agreement between the two outputs is observed. The results also show that a hydraulic drive system using fast opening 
flow direction control valves increases the load swing and imposes extensive inertial forces and problems of fatigue and reliability. 
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1  Introduction 
 

Hydraulically driven cranes are materials- 
handling equipment used in many areas where com-
pact devices are needed to manipulate heavy loads, 
typically in automobile, railroad, or sea transport. 
Dynamical modeling of hydraulic cranes is essential 
for their designers because of the need to reduce 
manufacturing costs and to gain better insight over the 
behavior of the designed mechanical system. An ad-
equate dynamic model and accurate model parame-
ters are necessary prerequisites for a proper design as 
well as fatigue strength and reliability predictions 
when dynamically loaded structures are considered 
(Troha et al., 2015). Such a model has to treat a crane 

as a multibody system and to take into account the 
dynamical properties of the driving mechanisms. This 
increases the complexities of both the models and the 
numerical problems during the integration of the 
equations of motion. 

In many cases, these installations feature artic-
ulated booms with three to five degrees of freedom, 
which additionally increase the flexibility and allow 
payloads to be moved in limited, closed volumes. 
Attachment of the payload to the boom can be either 
fixed by some kind of a gripper, or it may be sus-
pended from a gripping device by cables if no par-
ticular orientation of the payload in space is required. 
In the latter case, the payload becomes a pendulum- 
type device and the balance during motion is im-
paired, causing some control and positioning prob-
lems. Obviously, the swinging payload can affect the 
machine itself or/and the handling operations. First, 
for automatic loading and unloading systems, or with 
an operator without much experience, this phenomenon 
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considerably increases the crane cycle time. Second, 
the load swinging imposes particular dynamical 
loading on the crane elements, generating additional 
inertia forces and torques, causing increased stress 
and irregularity in motion. In the case of jib cranes, 
payload sway can also be caused by other reason- 
hitting obstacles, lifting the payload from the ground 
with initially slack slings or other such factors. In any 
case, moving the boom along some trajectory in space 
causes the payload to swing freely about the pivot 
point due to unavoidable tangential and radial accel-
erations. This is especially true for hydraulic drive, 
when the sudden opening or closure of manually or 
electromagnetically controlled valves occurs, and a 
sudden surge of pressure is observed (Jovanovic et 
al., 2014). 

Payload-swinging during crane-boom slewing or 
luffing has been the subject of many academic and 
industrial interdisciplinary research activities in-
volving the fields of mechanical, electrical, and control 
engineering. Some basic textbooks (Divisiev, 1986; 
Vaynson, 1989) pay attention to the payload oscilla-
tions for cranes driven by a slewing mechanism with 
flexible joints, in order to determine the necessary 
torque and motor power depending on the payload- 
swinging and the flexibility of the driveline elements. 
In other studies, investigations were aimed at finding 
the inertial forces acting upon the boom and other 
parts of the structure (Jerman, 2006; Marinovic et al., 
2012). Another direction of research is the possibility 
of developing strategies for controlling the slewing 
motion, in order to damp the payload swing and thus 
to reduce the dynamic forces and increase the per-
formance of the system. This direction is also appli-
cable to the horizontal translation as well as to the 
hoist mechanism (Abdel-Rahman et al., 2003; Palis 
and Palis, 2008; Lawrence and Singhose, 2010; 
Devesse, 2012; Gudarzi, 2016). 

Crane-system modeling methods presented in 
some studies are based upon fundamental mechanical 
principles, but vary to a certain extent. For derivation 
of the governing equations, Divisiev (1986) used 
Newton’s second law of motion, while Marinovic et al. 
(2012) used a mathematical model based on second- 
order Lagrange equations defined for a multibody 
system. In all cases, the elasticity and damping of the 
steel structure, the friction in the main bearing, and 
the nonlinearity of the power transmission can be 

easily taken into account for better accuracy. Papa-
dopoulos and Sarkar (1997) used the well-known 
Newton-Euler iterative method, implemented sym-
bolically, to derive equations of motion for the inves-
tigated mechanical system. After reviewing the crane 
models available in the literature, such as distributed- 
and lumped-mass, Abdel-Rahman et al. (2003) ana-
lyzed the reduced models as a special case of spatial 
pendulum ones. In this case, an approximate solution 
is available through the method of multiple scales. A 
few authors have explored the crane system by con-
sidering the elasticity of the metal structure. Ju et al. 
(2006) have studied the dynamic response of tower 
cranes coupled with the pendulum motions of the 
payload. The tower crane was modeled using the 
finite element method, while the pendulum motion 
was represented as rigid-body kinetics. Ren et al. 
(2008) have derived the governing equations for the 
dynamic response of a crane ship coupled with a 
pendulum motion of the payload. The developed 
boom model was based on the finite element method, 
while the payload was considered as a planar pendu-
lum of point mass. The dynamic response was studied 
using numerical methods. In all cases, the considera-
ble escalation of the calculations needed with the 
increasing number of bodies cannot be avoided, but 
reliable results were obtained. 

The literature survey reveals a variety of sim-
plifications made in the mathematical models, such as 
considering small angles of the payload sway (Ju et 
al., 2006) and a non-deformable structure (Chin et al., 
2001), which serve to set and solve the problems with 
sufficient accuracy within the modeling aims. 

A practical approach, widely used in engineering 
practice for simulation of the multibody systems, is a 
modeling by way of general purpose numeric multi-
body codes (Gruening et al., 2010). This type of 
software usually has a high license cost and the re-
ceived results are limited by its capabilities. Another 
drawback is that the generated equations of motion 
are embedded in the program and are not available for 
review and modification by the user. In some cases, 
simultaneous modeling and simulation of subsystems 
from different physical domains is impossible, and 
thus co-simulation and interface for data exchange 
between different dedicated programs are necessary 
(Sicklinger et al., 2014). 
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The investigations described are, however,  
directed mostly towards tower, gantry, harbor, or 
mobile cranes with long reach and electric driving 
mechanisms (Marinković et al., 2012). The influence 
of payload swinging on the hydraulic system has not 
been investigated in depth. Since the hydraulic system 
has its own dynamics due to fluid compressibility, it is 
necessary also to consider its effect on the overall 
dynamic performance of the crane. Hydraulic drives 
impose specific elements and require a slightly dif-
ferent mathematical approach due to the specificity of 
the driving system itself. This is taken into account by 
some authors (Sun et al., 2005; Sun and Liu, 2006) 
and directed towards hydraulically driven luffing 
mechanisms in boom cranes. A hydraulic system 
model also can be combined with a low-order dy-
namic model for multilink flexible cranes, and is 
suitable for a deeper understanding of the mechanical 
system (Linjama and Virvalo, 1999). Other combined 
models are suitable for simulation of the machine 
response and sizing of the hydraulic components 
(Papadopoulos and Sarkar, 1997). 

The general aim of the present study is to inves-
tigate the dynamic behavior of a hydraulically driven 
crane with an articulated boom and a freely suspended 
payload at its end. The investigation is directed to-
wards the worst case of hydraulic flow control, i.e., 
sudden opening and closure of hydraulic valves. To 
simplify the problem, two motions of the crane boom, 
namely luffing and slewing, are considered separately. 
This generally reduces the case to the dynamics of 
luffing jib cranes and slewing cranes. 

 
 

2  System model 

2.1  General model of the mechanical system 

Fig. 1 shows a discrete 3D model of a hydraulic 
rotating crane with an articulated boom and a freely 
suspended payload. The crane consists of a fixed base 
and three rotating links. The column rotates about the 
vertical axis and the boom is composed of an arm and 
a forearm, both rotating about horizontal axes to de-
termine the reach of the crane and the payload lift 
respectively. To simulate the spatial sway of the 
payload, two additional rotational joints are added to 
the forearm, both having mutually perpendicular axes 
of rotation. The crane hydraulic drive system consists 

of a rack and pinion mechanism, intended for column 
rotation, and hydraulic cylinders, intended for arm 
and forearm rotation. All crane elements are consid-
ered as rigid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Taking into consideration slewing and luffing 

motions separately, the crane is regarded as a three- 
link kinematic chain with three revolute joints. In-
vestigating the dynamic behavior of such a kinematic 
chain requires the solution of the forward dynamics 
problem for a mechanism with three rotational de-
grees of freedom, driven by a torque at the first joint, 
calculated according to some law. Among the many 
different approaches, one solution of such a problem 
is to derive a set of second-order differential equa-
tions in a form similar to that proposed by Vukobra-
tovic and Potkonjak (1982): 

 

       , ,t    M θ θ H θ θ G θ τ  0          (1) 

 

where ,θ  ,θ  and θ  are respectively the vectors of 

position, velocity, and angular acceleration in the 
joints (generalized coordinates); M(θ) is the mass 
matrix composed of elements defining the accelera-

tion terms θ  for each joint;  , H θ θ  is a matrix 

composed of elements defining the acceleration 

terms, but not containing ;θ  G(θ) is the weight term; 

and τ(t) is the driving torque vector at each joint. 
To compose the set of differential equations of 

motion, a non-iterative method proposed in Grigorov 
(2013) is used. The method is based on a general 
Newton-Euler algorithm for solving the forward dy-
namics problem of an open kinematic chain with 

Fig. 1  Discrete 3D model of the hydraulic crane 
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revolute joints. It is based on D’Alembert’s principle, 
which implies that the dynamic balance of each link j 
(Fig. 2) is considered during the entire motion and 
with all the forces and moments acting on the link, 
including inertial, gravity, and the actuator torque. 

 
 
 
 
 
 
 
 
 
 
 
This method regards the links of the kinematic 

chain as rigid bodies and requires a frame attached to 
each link according to some known principle. In the 
present investigation, a Denavit-Hartenberg (D-H) 
notation (Hartenberg and Denavit, 1955) is used. 
According to D’Alembert’s principle and the nota-
tions in Fig. 2, summing all the moments at the origin 
of the jth frame yields 
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where 

jN  is a moment with respect to the frame 

origin of the inertial force acting on the link at the 
center of gravity due to the linear acceleration of the 
link, Nj is an inertial moment acting on the link due to 
the angular acceleration, 

jGN  is the moment of the 

gravity force (the weight of the link) acting at the 
center of gravity Cj with respect to the frame origin, 

,
i

j
N  ,j

iN  and 
i

j
GN  are moments of inertial force, 

inertial moment, and moment of the gravity force 
acting on link i, respectively, expressed in terms of 
frame j and reduced to the origin of frame j (j<in), 
τj(t) is the joint torque (usually time or position de-
pendent) exerted by the actuator at joint j. 

Inertial forces Φj and moments Nj acting at the 
center of gravity of each link can be calculated using 
the well-known Newton-Euler equations (Craig, 2005): 

 ,
jj j CmΦ v                               (3) 

   ,j j j j j j  N I ω ω I ω                     (4) 

 

where 
jCv  is the linear acceleration of the gravity 

center of link j expressed with respect to the link 
frame, jω  and jω  are the angular velocity and ac-

celeration of frame j expressed with respect to the 
same frame, mj and Ij are the mass and inertia tensor 
of link j written with respect to a frame with origin 
located at the center of gravity Cj and with the same 
orientation as the link frame j. 

Using Eqs. (3) and (4), and after some symbolic 
transformations and simplifications, Eq. (2) can be 
rewritten in the following form: 
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where 
i

j
CP  is the position of the gravity center of link 

i expressed in terms of the jth frame, 
iCP  is the posi-

tion of the gravity center of link i expressed in the 
same frame, Gi is the weight of the link expressed in 

terms of the 0th frame, and j
iR  is the following 3×3 

rotational matrix: 
 

cos sin 0

sin cos 0 ,

0 0 1
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j

i i i

 
   
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 R                    (6) 

 
describing the orientation of frame i with respect to 
frame j. 

Starting from frame 0, which has zero velocities 

and accelerations, 
jCv  and jω  are evaluated by the 

following formulas (Grigorov, 2013): 
 

1

,
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j
j i j
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Fig. 2  Local frames and forces acting on the kinematic 
chain links 
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 
=1

= + + .
j j j

j
j j

C i i i C VC
i

   v R θ P P C             (10) 

 
The separated members in Eqs. (8)–(10) for j>1, 

which do not contain angular accelerations of the 
joints are 

 

11 1 1= + ,
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In Eqs. (7)–(13), i
θ  (

T
0 0i i
   

 θ ) is the 

angular acceleration of frame i and similar definitions 

are given for i
θ  and ;iθ  

j
C , ,

jVC  and 
jVCC  are el-

ements, correspondingly, of the angular acceleration, 
link frame origin linear acceleration, and link gravity 
center linear acceleration, which do not depend on 

;j
θ  j

iP  and 
i

j
CP  are position vectors specifying the 

origin and the gravity center of the ith frame ex-
pressed in terms of the jth frame, Pj is the vector of the 
(j+1)th frame’s origin with respect to the jth frame. 

Substituting Eqs. (7)–(13) into Eq. (5) and per-
forming some symbolic transformations and simpli-
fications, finally the equilibrium equations of the 
kinematic chain links can be derived (Eqs. (15)–(17)). 
The aim of the transformations is to express the left 
side of the equation as a matrix multiplication. For 
this purpose, in Eqs. (15)–(17) the vector cross product 
is expressed as the product of a 3×3 skew-symmetric 

matrix  and a vector (Zill and Cullen, 2006); for 

example, 
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Each of Eqs. (15)–(17) represents a 3×1 column 
vector. Because the only possible motion is the rota-
tion about the joint local Zi-axis, then in order to de-
rive the set of differential equations in form (1), a dot 
product of Eqs. (15)–(17) and unit vectors along local 
Zi=[0 0 1]T axis is taken. In such a case, the vector of 
generalized coordinate accelerations can be written in 

the form 
T

1 2 3 .   
     θ  Finally, the received set 

of differential equations is considered as an initial- 
value problem and is written in the following general 
form: 

 

 1( ) ( ) , ( ) ,t     
 θ M θ τ H θ θ G θ         (18) 
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which is convenient for solution by standard numer-
ical routines. 

2.2  Slewing case 

Differential equations for the slewing case are 
derived from the system of equations (Eqs. (15)– 
(17)), for which the needed geometrical quantities are 
defined by the D-H parameters. In this case, link 1 is 
represented as a combination of the column and boom 
(composed from the arm and the forearm), regarded 
as a single body (link 1), which rotates about a ver-
tical axis Z0 (Fig. 3). The slewing motion is defined 
by its rotational angle θ1, while the spatial motion of 
the payload is defined by swinging angles θ2 and θ3. 
By Ls is designated the length of the cable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The local frame attachment is depicted in Fig. 3 

and the values of the corresponding D-H parameters 
are summarized in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
The slewing motion is performed by using a 

standard rack and pinion mechanism, which generates 
a driving torque. The pinion (with radius R) is driven 
by the rack, which is connected to a double action 
hydraulic cylinder (with piston area S1) (Fig. 4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The flow to the cylinder is controlled by the 

spool direction control valve. A double cross-over 
relief valve is incorporated in the hydraulic circuit, in 
order to relieve the excessive pressure caused by 
sudden closure of the direction control valve and 
occurred inertial loads. 

The first link is driven by a torque τ1=[0 0 τ1]
T. 

The hydraulic cylinder force and thus τ1 can be de-
termined using the well-known hydraulic theory 
(Akers et al., 2006). A simplified dynamical model of 
the hydraulic system is presented, assuming constant 
supply pressure, compressible oil, and the absence of 
oil leakage in the hydraulic system. Based on the 
continuity equation for the compressible oil and re-
ferring to Fig. 4, one can write equations for the 
pressures in the hydraulic cylinders as follows: 
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where p1 and p2 are the pressures in the hydraulic 
cylinder chambers, Q1 and Q2 are the flow rates 
through the direction control valve, Qv1 and Qv2 are 
the flow rates through the relief valves,  is the fluid 

bulk modulus, 1
0V  is the constant oil volume sub-

jected to compression, x1 is the piston displacement, 

Table 1  Denavit-Hartenberg (D-H) parameters for the 
slewing case 

Link j αj (rad) aj (m) dj (m) θj (rad)
1 0 0 Min: −1.22; 

Max: 1.18 
θ1 

2 π/2 Min: 2.037; 
Max: 3.352 

0 θ2 

3 −π/2 0.162 0 θ3 

Max or min refers to the maximum or the minimum reach of the 
crane 

Fig. 3  Denavit-Hartenberg (D-H) parameters and frame 
attachment for the slewing case 

Fig. 4  Slewing hydraulic rack and pinion mechanism 
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1x  is the piston velocity, S1 is the piston area, and l1 is 

the hydraulic cylinder stroke. 
The flow through the direction control valve is a 

nonlinear function of the pressure drop across the 
valve orifices and of the current orifice size (for tur-
bulent flow): 

 

 s 1
1 d v s 1

2
( ) sign ,

p p
Q C wx t p p




         (21) 

 2 0
2 d v 2 0

2
( ) sign ,

p p
Q C wx t p p




        (22) 

 

where Cd is the orifice discharge coefficient, w is the 
direction control valve area gradient, xv(t) is the di-
rection control valve opening as a function of time, ρ 
is the oil density, ps is the supply pressure, p0 is the 
drain pressure, and function sign is ‘−1’ for a negative 
number, ‘0’ for zero, or ‘+1’ for a positive number. 

If the dynamics of the relief valves is neglected 
and the turbulent flow is assumed, then the flow 
through the valves is governed by  

 

   v dv v

2
sign , 1, 2,i i i

iQ C A p p p i    


   (23) 

 

where the pressure-dependent orifice passage area 
Av(Δpi) is described by the following piecewise linear 
function: 
 

   
set

v set set max

max max

0, ,

, ,

, ,

i

i i i

i

p p

A p k p p p p p

A p p

  
      


 

     (24) 

max

reg

,
A

k
p

                                 (25) 

 

where Δpi is the relief valve pressure differential for 
valve i, Amax is the fully open relief valve passage area, 
pset is the relief valve preset pressure, preg is the relief 
valve regulation range, pmax is the valve pressure at 
the maximum opening, and Cdv is the orifice dis-
charge coefficient. 

Using the solution of Eqs. (19) and (20), the 
function to determine the torque is given as 

 

  T

1 1 1 2 1 10 0 ( ) ,S p p b x R    τ        (26) 

where b1 is the viscous friction coefficient. Moreover, 
the angular velocity is 
 

T

1
1 0 0 .

x

R
    

θ                         (27) 

 

2.3  Luffing case 

In this case, the payload lifting is performed by 
boom raising by means of arm hydraulic cylinders. 
The local frame attachment is depicted in Fig. 5. Here, 
the following assumptions are made: (1) During the 
luffing, the two links of the boom (the arm and the 
forearm) do not move with respect to each other and 
form a rigid link 1, rotating about the horizontal axis 
Z1 (Fig. 5); (2) The column is fixed; (3) The payload 
is lifted at the maximum reach (the actual geometrical 
configuration is not shown in Fig. 5). The boom mo-
tion is defined by the rotational angle θ1, while the 
spatial motion of the payload is defined by the 
swinging angles θ2 and θ3. 

Table 2 summarizes the D-H parameters for the 
luffing case. 

The boom driving moment depends on the arm 
hydraulic cylinder force and the geometrical param-
eters of its attachment to the arm and the column 
(Pavlovic et al., 2014) (Fig. 6a). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Denavit-Hartenberg (D-H) parameters for the 
luffing case 

Link j αj (rad) aj (m) dj (m) θj (rad)

1 0 0 0 θ1 

2 0 3.352 0 θ2 

3 −π/2 0.162 0 θ3 

Fig. 5  Denavit-Hartenberg (D-H) parameters and frame 
attachment for the luffing case 
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The arm hydraulic cylinder is controlled by a 
hydraulic circuit, a fragment of which is shown in  
Fig. 6b. Thus, the following two equations: 

 

 1 1 2 22
0 2 2

,p Q S x
V S x

 
   

                 (28) 

 2 3 2 22
0 3 2 2

,
( )

p S x Q
V S l x

 
    

             (29) 

 
together with Eqs. (21) and (22), are used for pressure 
calculations, where p1 and p2 are the cap end and rod 
end hydraulic cylinder chamber pressures, S2 and S3 

are the piston and piston minus rod areas, 2
0V  is the 

constant oil volume subjected to compression, x2 is 

the piston displacement, 2x  is the piston velocity, and 

l2 is the hydraulic cylinder stroke. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Referring to the designations in Fig. 6, the arm 
driving moment is given as 

 

 
T

2 1 3 2 2 2
1 2 2

sin( )
0 0 ,

2 cos( )

S p S p b x ab

a b ab

    
  

     

   

  
τ

                       (30) 
 

where  is the current angle between links and b2 the 
viscous friction coefficient. Moreover, for the angular 
velocity of the boom, we can write  

 

 
 

T
2 2

2
1

2 cos
0 0 .

sin

x a b ab

ab

    
 

   

   
  

θ  

                (31) 

3  Numerical examples 
 
Using the method described in the previous sec-

tions, the numerical simulation of an experimental 
crane is carried out. To confirm the results, an ex-
perimental procedure with the same crane is also 
conducted. The following assumptions are made: (1) 
The payload hoisting will not occur during slewing, 
as the rotation about the vertical axis is not considered 
during luffing motion; (2) The damping forces in 
joints will be neglected; (3) The mass properties of 
the moving parts are taken from a CAD model of a 
real-life crane design. 

The numerical values used for the mass and mass 
moments of inertia of the crane elements are shown in 
Table 3, and the numerical values for the hydraulic 
system parameters are shown in Table 4. Numerical 
values for the geometrical parameters are as follows: 
Ls=1.8 m, a=0.716 m, b=0.181 m, α=7.3°, and γ=18°. 

3.1  Slewing case simulation 

To solve the mechanical model for the general-

ized coordinates θ  and ,θ  the sets of Eqs. (15)–(17), 

(19), and (20) are numerically integrated simultane-
ously as an initial-value problem. The simulation is 
performed for two positions of the arms, i.e., the 
minimum reach and the maximum reach with the 
corresponding numerical values from Table 1. At the 
beginning of the simulation, the three angles are set to 
θ1(0)=0°, θ2(0)=−90°, θ3(0)=0°, and the initial pres-
sures are set to p1(0)=p2(0)=4.5 MPa. The duration of 
the simulation is 7 s and the rotation itself is set to 5 s, 
after which time the valve closes. 

The results of the simulation are given in  
Figs. 7–12. Fig. 7 shows the time history of the 
slewing angle θ1, Fig. 8 shows the driving torque τ1 
exerted at the first link, and Fig. 9 shows the corre-
sponding hydraulic cylinder pressures at the mini-
mum reach and the maximum reach. Figs. 10 and 11 
respectively show graphs of angles θ2 and θ3, for the 
minimum reach and the maximum reach. Fig. 12 
shows the reactive force in the forearm driving hy-
draulic cylinder. 

The adopted method of solution gives, after in-

tegration of Eqs. (15)–(17), a solution for θ  and en-
ables determination of the inertial forces and mo-
ments acting on the links, as described by Eq. (5). 
This approach makes the mechanical structure force  

Fig. 6  Geometrical parameters of the arm 
(a) Hydraulic cylinder attachment; (b) Hydraulic circuit 
fragment 
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Fig. 7  Slewing angle θ1 
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Fig. 9  Hydraulic cylinder pressure 

Fig. 10  Angle θ2 Fig. 8  Driving torque τ1 exerted at the first link 
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Table 3  Numerical values for the mass and mass moments of inertia of the crane elements 

Link j 
Mass, mj (kg)  Inertia tensor Ij elements on the main diagonal (kg·m2) 

Luffing Slewing  Luffing Slewing 
1 m1=128.1 m1=277.3  Jxx=1.4, Jyy=95, Jzz=94 Minimum reach: Jxx=65.9, Jyy=193.0, Jzz=131.0; 

Maximum reach: Jxx=41.8, Jyy=274.5, Jzz=236.2
2 m2=5.9 m2=5.9  Jxx=0.016, Jyy=0.032, Jzz=0.027 Jxx=0.016, Jyy=0.032, Jzz=0.027 

3 m3=150.3 m3=150.3  Jxx=4.1, Jyy=9.2, Jzz=9.2 Jxx=4.1, Jyy=9.2, Jzz=9.2 

 

Table 4  Numerical values for the hydraulic system parameters 

Parameter Value Parameter Value 
Relief valve preset pressure, pset 9 MPa Drain pressure, p0 0 

Supply pressure, ps 8 MPa (slewing),
18 MPa (luffing)

Opening and closing time of the  
directional valve 

0.05 s 

Fluid bulk modulus, β 1.32×109 Pa Orifice discharge coefficient, Cd or Cdv 0.62 

Relief valve regulation range, preg 0.5 MPa Hydraulic cylinder strokes l1=0.5 m, l2=0.38 m

Valve pressure at maximum opening, pmax 9.5 MPa Radius of the pinion, R 0.12 m 

Fully open relief valve passage area, Amax 1.2×10−4 m2 Direction control valve area gradient, w 0.011 m 

Constant oil volumes 1 6 3
0

2 6 3
0

18.2 10 m ,

42.9 10 m

V

V





 

 

The maximum direction control  
valve opening, max

v ( )x t  
0.5×10−3 m 

Piston areas S1=1.96×10−3 m2,
S2=7.69×10−3 m2,
S3=3.04×10−3 m2

Viscous friction coefficients b1=1.2×106 N·s/m,
b2=2.2×106 N·s/m

Fluid density, ρ 855 kg/m3   
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analysis a convenient process, and the time history of 
forces and moments in each joint can be easily com-
puted. The reactive forces in the hydraulic actuators 
present particular interest, as they are important for 
the hydraulic driving system and the design of the 
mechanical structure. Using this approach, the 
equivalent torque M in the rotational joint, connecting 
the arm and the forearm, is computed. The mapping 
M(F) of the forearm hydraulic cylinder force F to the 
joint torque М is established using the principle of the 
virtual work (Greenwood, 1977), which allows the 
formulation of the required equations without con-
sidering the forces generated in the linkage joints. 
Applying this principle to the forearm driving 
mechanism, the layout of which is shown in Fig. 13, 
one can write  

 

   
 

1 2 3 4

2 3

sin sin
,

sin

L
M F

   
 

 
 


            (32) 

 

where all angles are measured from the arm axis n-n. 
The computed reactive force in the forearm hydraulic 

cylinder during the slewing motion is shown in  
Fig. 12. 

It will be shown later in Fig. 19 that the simula-
tion data (Fig. 12) are overlapped with the experi-
mental data for the reactive force, calculated from the 
experimentally measured pressures. 

 
 
 
 
 
 
 
 

3.2  Luffing case simulation 

To simulate the link motion for this case, the 
same set of differential equations with the corre-
sponding values from Table 2 is used. The initial 
conditions for the generalized coordinates are set to 
θ1(0)=−15°, θ2(0)=−105°, and θ3(0)=−15°. The lifting 
process starts with a payload laying on the ground and 
a slack suspension cable. The overall duration of the 
simulation is 20 s. The process corresponds to the 
following sequence of motions performed by the 
hydraulic control valve activation: (1) boom raising, 
from initial angle θ1=−15° to angle 22.5°; (2) holding 
in the upper position for 2 s; (3) boom lowering to the 
initial position. The time evolutions of payload 
swinging angles θ2 and θ3 are shown in Figs. 14 and 
15, respectively. The simulation of the boom rotation 
angle θ1 will be given later in Fig. 17, while the sim-
ulations of the corresponding pressures p1 and p2 in 
the arm hydraulic cylinder will be shown in Fig. 18. 

 
 

4  Experimental setup and validation of the 
mathematical model 
 

The validation of the mathematical model is 
conducted by comparison between the simulation and 
the experimental data. Fig.16 shows a view of the 
experimental setup, whose main elements are the 
rotating column, the arm, the forearm, and the hy-
draulic power unit. It is equipped with sensors for 
measuring six different quantities as follows: (1) the 
pressures at the cap end and at the rod end of the arm 
driving cylinder; (2) the pressures at the cap end and 

Fig. 13  Forearm hydraulic cylinder layout 
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Fig. 12  Reactive force in the forearm hydraulic cylinder 
at the maximum reach 
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at the rod end of the forearm driving cylinder; (3) the 
current displacements of the arm and the forearm 
driving cylinders. For the displacement measurement, 
two linear variable inductance transducers are used,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

attached to the body and the rod couplings of the 
hydraulic cylinders, while for pressure measurement, 
four pressure sensors to measure absolute pressures 
are used. Analog outputs from the sensors are con-
verted to digital ones by analog-to-digital converter 
(National Instruments 8 inputs, 14 bits) and are sent to 
a computer measurement system, where a computer 
program DASYLab 11 is used for initial processing 
and visualization of data. 

The experimental data overlapped with the nu-
merical simulation results are shown in Figs. 17 and 
18 for the luffing case, and in Fig. 19 for the slewing 
case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5  Discussion 
 

The results from the numerical simulation show 
that the driving torque (force) of the hydraulic actu-
ators depends mostly on the parameters of the fluid 
flow and that the inertial properties of the system have  

Fig. 15  Angle θ3 
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Fig. 16  A view of the experimental setup and sensor 
placement 
1: rotating column; 2: arm; 3: forearm; 4: hydraulic power 
unit; 5: sensors for measuring the pressures at the cap end 
and at the rod end of the arm driving cylinder; 6: sensors for 
measuring the pressures at the cap end and at the rod end of 
the forearm driving cylinder; 7: sensor for measuring the 
current displacement of the arm driving cylinder; 8: sensor 
for measuring the current displacement of the forearm 
driving cylinder; 9: computer measurement system 

Fig. 17  Time history of the boom rotation angle θ1 for the 
luffing case 

Fig. 18  Pressures in the boom hydraulic cylinder for the 
luffing case 
1: simulation data for p1; 2: experimental data for p1; 
3:  experimental data for p2; 4:  simulation data for p2 
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little influence upon its motion. This is clear from 
Fig. 7 (for the slewing case), where for the minimum 
reach and the maximum reach, angle θ1 reaches 
nearly the same value at the end of the simulation 
time (about 3.3% difference). Nevertheless, as might 
be expected, an increase of the mass moment of iner-
tia of the mechanical system leads to a decrease of the 
rotational acceleration. This can be explained having 
in mind the results shown in Fig. 8, where the driving 
moment τ1 as a function of time is given. The constant 
supply pressure causes a slight increase in the driving 
torque for the maximum reach, when a larger inertial 
force is opposed. 

The sudden closure of the directional valve at the 
end of rotation (t=5 s) causes a significant rise of 
pressure in the hydraulic circuit, as shown in Fig. 9 
the variation in pressure for both volumes of the hy-
draulic actuator. The suddenly increased pressure 
after closure of the valve produces a flow through the 
relief valves. This flow restricts the pressure in the 
cylinder equal to the valve preset pressure, but ham-
pers the exact positioning of the crane. The effect is 
clearly visible in Fig. 7 (see the curve for the maxi-
mum reach), which shows a slight increase in angle θ1 
after the closure of the direction control valve at t=5 s. 
Fig. 9 also shows that the payload swinging induces 
an additional pressure variation in the hydraulic cir-
cuit, which cannot be neglected. Such a variation is 
present during the rotation phase (0–5 s), and also 
after the directional valve closure (5–7 s). This is 
confirmed by the results of the driving moment shown 
in Fig. 8. As can be seen in Fig. 9, the pressures in 
both hydraulic cylinder chambers are symmetrical. 

Because of the rotation of the mechanical sys-
tem, tangential and radial accelerations occur, leading 
to the payload swinging about two mutually perpen-
dicular axes. Swinging angles of the payload (angles 

θ2 and θ3) are shown in Figs. 10 and 11. It can be seen 
that the nature of the swings does not depend very 
much on the boom configuration; the maximum am-
plitudes of the swinging angles in both the minimum 
reach and the maximum reach are about 6°–8° for θ2 
and 18°–20° for θ3. The actual swing in the plane 
perpendicular to that of the boom (Fig. 11) damps 
relatively quickly after the initial acceleration and 
starts after the valve closure. The swing amplitudes 
depend on the cable length. Relatively large ampli-
tude values give rise to extensive inertial loads as well 
as fatigue and reliability problems. 

The luffing case simulates lifting a payload off 
the ground with some initial speed, which is one of 
the reasons for considerable payload swinging, espe-
cially during the lifting phase (Figs. 14 and 15). From 
Fig. 18 one can see that the variations in cylinder 
pressure induced by payload swinging are relatively 
small and this can be related to the much higher static 
component of pressure compared with the dynamic 
one in the hydraulic cylinder. As with the slewing 
case, pressures in the actuator’s volumes are nearly 
symmetrical. Moreover, Fig. 18 reveals a considera-
ble difference between the experimentally measured 
and simulated pressures, which is observed during the 
period of holding the boom in the upper position (in 
time interval 11.5–13.5 s). Nevertheless, the com-
parison of the results and the good correlation be-
tween the experimental data and simulation results 
allow us to conclude that the adopted mathematical 
model may confidently be used to simulate the dy-
namic problems present. 

From the range of variation of the reactive force 
in the forearm hydraulic cylinder during slewing 
motion (Figs. 12 and 19), it might be concluded that a 
dynamic factor of 1.3–1.4 should be taken into ac-
count when the metal frame and a hydraulic driving 
system are designed. Similarly, the graph of the 
driving torque (Fig. 8) shows considerable dynamic 
loading onto the rack and pinion driving mechanism 
and metal frame elements due to the payload swing-
ing induced during motion. 

 
 

6  Conclusions 
 

The design process for a hydraulic crane is 
highly iterative and a number of iterations are needed 

Fig. 19  Reactive force in the forearm hydraulic cylinder 
for the slewing case 
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to achieve a satisfactory design. The design of a sys-
tem, containing subsystems from hydraulic and me-
chanical domains is difficult, and the modeling tech-
nique must take into account their interaction in op-
erational performance. The hydraulic actuators, con-
trolling the moving crane elements, have their own 
dynamics due to the presence of inertial parameters of 
their elements and the compressibility of the hydrau-
lic oil. The internal forces, which arise in the me-
chanical system during performance of typical oper-
ations, and the pressures and flows in the hydraulic 
system, are important for the reliability and strength 
calculations of the crane elements. 

We have studied issues related to the develop-
ment of a nonlinear dynamical model of a hydraulic 
crane operating with freely suspended payload. 
Among many important aspects that might be inves-
tigated, the simultaneous modeling and simulation of 
subsystems from different physical domains has been 
performed. The conducted investigation clearly 
shows that payload swinging during the motion of a 
hydraulic crane strongly influences the dynamic 
processes in the crane mechanical system and the 
hydraulic driving system itself, and thus cannot be 
neglected in the system design. The main direction for 
the improvement of the system performance is the 
implementation of a control system for minimizing 
the payload swinging, especially for the slewing mo-
tion. The performed validation of the developed dy-
namical model shows its applicability for the study of 
the hydraulic crane motion simulation, considering 
large angles of payload swinging and taking into 
account the hydraulic driving system dynamics. Alt-
hough the two typical motions have been considered 
separately, the modeling approach used is suitable for 
study of the crane general motion including the sim-
ultaneous link motion. 

 
References 
Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N., 2003. 

Dynamics and control of cranes: a review. Journal of Vi-
bration and Control, 9(7):863-908.  
http://dx.doi.org/10.1177/1077546303009007007 

Akers, A., Gassman, M., Smith, R., 2006. Hydraulic Power 
Systems Analysis. CRC Press, USA, p.77-100. 

Chin, C., Nayfeh, A.H., Abdel-Rahman, E., 2001. Nonlinear 
dynamics on a boom crane. Journal of Vibration and 
Control, 7(2):199-220. 
http://dx.doi.org/10.1177/107754630100700204  

Craig, J.J., 2005. Introduction to Robotics: Mechanics and 

Control (3rd Edition). Pearson Prentice Hall, p.171-172. 
Devesse, W., 2012. Slew Control Methods for Tower Cranes. 

MS Thesis, KTH Industrial Engineering and Management 
Machine Design, Stockholm, Sweden. 

Divisiev, V., 1986. Essential Hoisting Machines. Technika, 
Sofia, p.45-49 (in Bulgarian). 

Greenwood, D.T., 1977. Classical Dynamics. Prentice Hall, 
p.13-25. 

Grigorov, B., 2013. A generalized Newton-Euler algorithm for 
dynamic simulation of robot-manipulators with revolute 
joints. Recent, 14(2):99-105. 

Gruening, T., Kunze, G., Katterfeld, A., 2010. Simulating the 
working process of construction machines. 3rd Interna-
tional Conference & Exhibition BulkSolids, p.180-189. 

Gudarzi, M., 2016. Reliable robust controller for half-car 
active suspension systems based on human-body dy-
namics. Facta Universitatis Series: Mechanical Engi-
neering, 14(2):121-134.  

Hartenberg, R.S., Denavit, J., 1955. A kinematic notation for 
lower pair mechanisms based on matrices. Journal of 
Applied Mechanics, 22(2):215-221. 

Jerman, B., 2006. An enhanced mathematical model for in-
vestigating the dynamic loading of a slewing crane. 
Proceedings of the Institution of Mechanical Engineers, 
Part C: Journal of Mechanical Engineering Science, 
220(4):421-433.  
http://dx.doi.org/10.1243/09544062C08205 

Jovanovic, V., Janosevic, D., Petrovic, N., 2014. Experimental 
determination of bearing loads in rotating platform drive 
mechanisms of hydraulic excavators. Facta Universitatis 
Series: Mechanical Engineering, 12(2):157-169. 

Ju, F., Choo, Y., Cui, F.S., 2006.  Dynamic response of tower 
crane induced by the pendulum motion of the payload. 
International Journal of Solids and Structures, 43(2): 
376-389. 
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.078 

Lawrence, J., Singhose, W., 2010. Command shaping slewing 
motions for tower cranes. Journal of Vibration and 
Acoustics, 132(1):011002. 
http://dx.doi.org/10.1115/1.3025845 

Linjama, M., Virvalo, T., 1999. Low-order dynamic model for 
flexible hydraulic cranes. Proceedings of the Institution of 
Mechanical Engineers, Part I: Journal of Systems and 
Control Engineering, 213(1):11-22. 
http://dx.doi.org/10.1243/0959651991540340 

Marinković, Z., Marinković, D., Petrović, G., et al., 2012. 
Modeling and simulation of dynamic behaviour of elec-
tric motor driven mechanisms. Tehnićki Vjesnik, 19(4): 
717-725. 

Marinovic, I., Sprecic, D., Jerman, B., 2012. A slewing crane 
payload dynamics. Tehnićki Vjesnik, 19(4):907-916. 

Palis, F., Palis, S., 2008. High performance tracking control of 
automated slewing cranes. In: Balaguer, C., Abderrahim, 
M. (Eds.), Robotics and Automation in Construction. 
InTech, p.187-198. 
http://dx.doi.org/10.5772/5851 



Grigorov and Mitrev / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(4):268-281 281

Papadopoulos, E., Sarkar, S., 1997. The dynamics of an 
articulated forestry machine and its applications. IEEE 
International Conference on Robotics and Automation, 
p.323-328. 
http://dx.doi.org/10.1109/ROBOT.1997.620058 

Pavlovic, J., Jovanovic, M., Miloevic, A., 2014. Optimal 
synthesis of the manipulator using two competitive 
methods. Facta Universitatis Series: Mechanical 
Engineering, 12(1):61-72. 

Ren, H.L., Wang, X.L., Hu, Y.J., et al., 2008. Dynamic 
response analysis of a moored crane-ship with a flexible 
boom. Journal of Zhejiang University-Science A, 9(1): 
26-31. 
http://dx.doi.org/10.1631/jzus.A071308 

Sicklinger, S., Belsky, V., Engelmann, B., et al., 2014. 
Interface Jacobian-based co-simulation. International 
Journal for Numerical Methods in Engineering, 98(6): 
418-444. 
http://dx.doi.org/10.1002/nme.4637 

Sun, G., Liu, J., 2006. Dynamic responses of hydraulic crane 
during luffing motion. Mechanism and Machine Theory, 
41(11):1273-1288. 
http://dx.doi.org/10.1016/j.mechmachtheory.2004.07.014 

Sun, G., Kleeberger, M., Liu, J., 2005. Complete dynamic 
calculation of lattice mobile crane during hoisting motion. 
Mechanism and Machine Theory, 40(4):447-466.  
http://dx.doi.org/10.1016/j.mechmachtheory.2004.07.014 

Troha, S., Milovančević, M., Kuchak, A., 2015. Software 
testing of the rall vehicle dynamic characteristics. Facta 
Universitatis Series: Mechanical Engineering, 13(2): 
109-121. 

Vaynson, A., 1989. Hoisting Machines. Machinostroenie, 
Moscow, p.124-134 (in Russian). 

Vukobratovic, M., Potkonjak, V., 1982. Dynamics of 
Manipulation Robots: Theory and Application. Springer- 
Verlag, Berlin, Germany, p.87-116. 

Zill, D., Cullen, M., 2006. Advanced Engineering Mathemat-
ics. Jones & Bartlett Publishers, p.319. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

中文概要 
 

题 目：液压起重机操作自由悬浮载荷的动态特性 

目 的：对载有自由悬浮载荷的液压驱动起重机的动态特

性分别在升降运动和回转运动两种工况下进行

研究，建立动力学模型并验证其正确性。 

创新点：1. 为了简化任务，将两种运动分开讨论。一次只

考虑一种运动，把起重机看作具有三个转动关节

连接的运动链；2. 为起重臂的运动问题构造微分

方程，使用了通用的牛顿-欧拉算法；3. 对运动和

动力模型进行仿真，得到摆动角度、液压压强和

连接作用力随时间的变化曲线，并通过实验进行

了验证。 

方 法：1. 建立系统的运动和动力模型，分别对回转运动

和升降运动两种工况下的液压缸压强进行推导；

2. 在两种工况下，对起重臂转角、液压缸压力和

最大行程前臂液压缸反作用力进行仿真计算；

3. 将实验获得的有关参数的曲线与仿真得到的

曲线进行对比，验证模型的正确性。 

结 论：1. 在液压起重机运动期间悬浮载荷的摆动对起重

机的机械系统和液压驱动系统本身具有强烈的

影响，所以在系统设计中不能忽视；2. 系统性能

提升的主要方向是安装控制系统以减小载荷摆

动（特别是在起重机回转运动时）；3. 本文建立

的考虑了负载的大角度摆动和液压驱动系统的

动力学模型得到了验证，表明其对起重机运动仿

真的适用性。尽管分开考虑了两种典型运动，但

所用的建模方法还是适合对起重机一般运动的

研究。 

关键词：液压起重机；载荷摆动；牛顿欧拉方法；液压驱动 

 


