
Jia et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(3):194-211 194

 

 

 

 

Study on the deformation theory of a parabolic part  

based on solid granules medium forming 
 

Xiang-dong JIA, Chang-cai ZHAO†‡, Jian-chao LI, Liu-yang HE 
(MOE Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Qinhuangdao 066004, China) 

†E-mail: zhao1964@ysu.edu.cn 

Received June 1, 2016;  Revision accepted Sept. 1, 2016;  Crosschecked Feb. 7, 2017 

 

Abstract:    Solid granules medium forming (SGMF), a new flexible die forming technology, uses solid granules instead of a rigid 
male or female die (or elastomer, liquid) for sheet metal drawing. The good fluidity and compressive capacity of a solid granules 
medium can improve the forming limit of complex shell parts. The sheet metal drawing process of SGMF is a compound process 
of drawing and bulging, which is very different from the conventional drawing process. A parabolic part is used as the research 
object for a study of the forming process. Two concepts, drawing weight and bulging weight, are originally proposed in the sheet 
metal drawing of SGMF (replacing the rigid male die), and the corresponding expressions are obtained. The computational for-
mulas of geometrical conditions and strain in the sheet metal drawing of SGMF are established, and the radius of the strain di-
viding circle is obtained by calculation. The established theoretical model is applied to the research object, an aircraft part, to 
analyze the forming process. The results show that the proposed theory can be applied to analyze the strain in different deformation 
regions of SGMF. This original theory provides a new theoretical analysis for studying the sheet metal drawing of SGMF.  
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1  Introduction 
 
As industrial technology progresses along with 

awareness of environmental issues, thin shell parts 
have become the most commonly selected light-
weight structure form, especially the thin shell curved 
parts, which are widely used in the aerospace and 
automobile industries. 

There are a lot of studies on forming technology 
for thin shell parts. Dhaiban et al. (2014) introduced a 
new technique for deep drawing of elliptic cups 
without a blank holder through a conical die. The 
geometrical parameters of the conical die and punch 
geometry were studied by numerical simulations and 

experiments. An elliptic cup with a limit drawing 
ratio (LDR) of 2.28 had been successfully obtained by 
applying the proposed technique in an experimental 
set-up. Tari et al. (2013) investigated relevant pa-
rameters and the fracture mechanism in a non- 
isothermal forming process of AZ31B-O magnesium 
alloy. Gavas and Izciler (2006) presented an innova-
tive blank holder concept. The blank holder was de-
signed as a rigid flat steel plate, on which a tightly 
wrapped spiral spring is mounted to reduce the fric-
tion surface between the blank and the blank holder. 
As a result, a square cup with a uniform thickness 
distribution has been obtained. Li et al. (2010) 
pointed out that the shear fracture in advanced high 
strength steels with reduced ductility could not be 
predicted by using the concept of forming limit curve. 
The modified Mohr-Coulomb fracture criterion was 
recently shown to be applicable to problems involv-
ing ductile fracture of materials and sheets.  
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Although much progress has been achieved in 
conventional drawing, the complexity of shell parts 
limits, to some extent, the application of conventional 
technology. The flexible die forming technology has 
become the main forming method for complex shell 
parts, taking advantage of its extensive application 
range and good forming quality. 

Hydroforming technology employs hydraulic 
pressure in sheet metal forming. It has been rapidly 
developed in the manufacturing of thin shell parts 
(Lücke et al., 2001). Thiruvarudchelvan and Tan 
(2006) noted that hydraulic pressure can increase the 
capability of the basic deep drawing process. Differ-
ent hydraulic pressures can induce different deep 
drawing methods. Halkaci et al. (2014) successfully 
enhanced the LDR of AA5754-O from 2.65 to 2.787 
by setting up draw beads in the flange. Furthermore, 
by employing the analysis of variance, it was shown 
that adding shallow draw beads to the blank holder 
was the most effective way of using the hydraulic 
deep drawing process. Labergere and Gelin (2012) 
used a semi-analytical approach to solve a simplified 
version of the Navier-Stokes equation. Equations 
were developed, to calculate the pressure of the fluid 
film and the leakage volume of the fluid between the 
sheet and the die in the case of hydromechanical deep 
drawing. Results showed that it is of great importance 
to take fluid-structure interactions into account so as 
to be able to directly evaluate the pressure distribution 
on the sheet beneath the blank holder. Liu et al. 
(2012) illustrated that the hydraulic pressure is nor-
mal to the sheet metal surface in hydroforming, and 
therefore the normal force equilibrium equation was 
derived due to the existence of thickness oriented 
stress. Zhang et al. (2015) pointed out that due to the 
normal stress in the thickness direction caused by the 
double-sided pressure, the material thickness de-
creased while the plastic strain and the effective stress 
increased in the forming region. Thus, a thick shell 
element can reflect the influence of normal stress in 
the finite element analysis (FEA) of double-sided 
hydroforming. Although hydroforming meets the 
requirements of thin shell parts forming to some de-
gree, there are still some weaknesses. As technology 
develops, higher standards for the forming of thin 
shell parts are required. 

Viscous medium forming technology has proved 
to be advantageous in hydroforming, and the tech-

nology can also improve the sealing performance of 
the pressure transfer medium. Shulkin et al. (2000) 
designed a flexible blank holder as part of an exper-
imental viscous pressure forming set-up. This 
demonstrated that spatial blank holder force control 
using a viscous medium was instrumental in influ-
encing the material flow in critical forming areas and 
improving formability of sheet metal parts. Gutscher 
et al. (2004) discovered the interrelationship of the 
geometric and material parameters under biaxial de-
formation conditions by employing the finite element 
method (FEM) simulations and experiments. They 
also provided the method for determining the flow 
stress in a biaxial stretching state, in which the in-
ternal pressure was employed by the viscous medium 
in sheet metal forming. Ahmetoglu et al. (2004) de-
scribed the application of viscous pressure forming to 
the forming of a non-symmetric part from steel, alu-
minum, and a nickel alloy. They also used FEM 
simulations and blank holder force control to opti-
mize the process conditions, which can precisely 
estimate metal flow and distribution thickness. Wang 
et al. (2010) investigated the failure mode of bulge 
specimens of AA3003 aluminum alloy at various 
temperatures in a non-isothermal viscous pressure 
bulging process, using the coupled thermo- 
mechanical FEM combined with a ductile fracture 
criterion. It turned out that there are various types of 
failure modes under different initial temperatures for 
the viscous medium. Although the viscous medium 
lowers the demand for sealing during the forming 
process, its application is still under restrictions like 
high inner pressure and high temperature. 

To overcome the shortcomings of the existing 
flexible die forming technology, Zhao (2005) first 
proposed solid granules medium forming (SGMF), 
which is used for sheet metal drawing using solid 
granule microspheres instead of a rigid male or fe-
male die (or elastomer, liquid). SGMF offers some 
advantages since the solid granules medium has good 
fluidity, compressive capacity, and high temperature 
resistance. It is also sealing-free and recyclable. 

Zhao et al. (2006) experimentally studied the 
pressure-transfer performance of the solid granules 
medium. Results showed that pressure distribution of 
the solid granules medium along the height direction 
was uneven. Later experiments on flexible die 
forming with the method on sheet metal showed that 
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it was particularly suitable for forming curved sur-
faces (Zhao et al., 2009). Cao et al. (2012) investi-
gated a non-isothermal drawing technology on 
magnesium alloy sheet based on SGMF. The opti-
mum conditions of AZ31B magnesium alloy forming 
process were obtained through numerical simulations 
and experiments. To reduce the risk of fluid medium 
leakage under high temperature, Grüner and Merk-
lein (2010) trial-manufactured a cup-shaped part 
using ceramic beads as the pressure-transfer medium 
and measured pressure-transfer performance of the 
beads. Dong et al. (2015) established the constitutive 
equation and theoretical forming limit diagram of 
AA7075 sheet at high temperatures. The sheet form-
ing performance was again analyzed by numerical 
simulations and experiments. Although much pro-
gress with SGMF has been achieved, the deformation 
mechanism needs further in-depth study to extend its 
application. 

In this study, a parabolic part is chosen as the 
research object. The geometrical boundary condition 
and the deformation geometry equations of SGMF are 
established by analyzing the forming process. The 
concepts of drawing weight and bulging weight are 
proposed for the sheet metal drawing of SGMF, and 
the corresponding expressions are obtained. On this 
basis, both computational formulas of the geometrical 
conditions and strain are established. The defor-
mation process of an aerospace part is analyzed both 
theoretically and experimentally.  

 
 

2  Parabolic parts forming process based on 
sheet metal drawing of SGMF 

 
As we have mentioned, SGMF uses solid gran-

ules instead of the conventional rigid male die as the 
new forming medium. The schematic diagram is 
shown in Fig. 1. The sheet metal is gradually de-
formed under both axial and radial pressures of solid 
granules medium, which are caused by a punch.  

In the forming process, the deformation regions 
of the sheet metal can be divided into three regions, 
i.e., the flange, fillet, and female die regions (Fig. 2). 
The female die region can be further divided into a 
part wall region and a free deformation region. 

The deformation paths and modes of the whole 
female die deformation region are shown in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. As shown in Fig. 3, stage 1 is labeled as path 1. 

When the forming height H is small (H<H′), the sheet 
metal is in contact only with part of the fillet of the 
female die, and is under free deformation. 

2. As shown in Fig. 3, stage 2 is labeled as path 3 
and the threshold condition is labeled as path 2. When 
the forming height H is larger than the forming 
threshold height H′, the sheet metal starts to have 
contact with the lateral wall of the female die. The 
deformed sheet metal can be divided into two parts, 
part wall region and free deformation region. As the 

Fig. 1  Schematic diagram of sheet metal drawing based 
on SGMF 

Fig. 3  Different deformation stages of sheet metal in 
female die region 

H
'

Fig. 2  Deformation regions of the sheet metal 
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height grows, the free deformation region becomes 
smaller. 

 
 

3  Establishment of theoretical model 
 
The deformation process and forming mecha-

nism in the flange region are identical with those 
during conventional drawing. However, the forming 
mechanism of the female die region is different, and is 
formed under the compound action of conventional 
drawing and bulging.  

At a random forming height H, the deformation 
of any point in the female die region is composed of 
conventional drawing deformation and bulging de-
formation. Theoretically, the thickness of sheet metal 
in the female die region almost keeps invariant during 
drawing. During the bulging process, the deformation 
is caused by only thickness reduction of sheet metal 
and the material in the flange will not flow into the 
female die. Thus, these are the assumptions we make 
in this study. 

To represent the proportions of drawing defor-
mation and bulging deformation in the whole forming 
process, the concepts of drawing weight and bulging 
weight are proposed.  

In the flexible drawing technology, drawing 
weight, α, is defined as the proportion of the defor-
mation caused by drawing to the whole deformation 
in the female die region. Bulging weight, β, is defined 
as the proportion of the deformation caused by bulg-
ing to the whole deformation in the female die region.  

During the forming process of parabolic parts, 
sheet metal drawing is first generated. In this stage, 
the flange radius decreases. After the drawing, the 
flange is unchanged, and the sheet metal in the female 
die region bulges due to the inner pressure of the solid 
granules medium. Then the forming height continu-
ally increases but the thickness decreases. As a result, 
in the whole deformation process, the drawing weight 
(α) and bulging weight (β) can be expressed as func-
tions of the workpiece surface area variation before 
and after deformation:  

 

  d f
1

a a

,
S S

f S
S S

 
   

 
                    (1) 

  b
2

a

,
S

f S
S


  


                          (2) 

where ΔSf is equivalent to the decrement of the flange 
surface area (i.e., the ratio of decrement of the flange 
volume to the initial thickness), ΔSd the surface area 
increment of the workpiece in the female die region 
under drawing, ΔSb the surface area increment of the 
workpiece in the female die region under bulging, and 
ΔSa the surface area increment of the workpiece in the 
female die region. ΔSa=Sa−πRd

2=ΔSd+ΔSb, where Sa is 
the surface area of the workpiece in the female die 
region. 

When the deformation is formed only by draw-
ing, ΔSb=0, ΔSf=ΔSa, namely, α=1.  

When the deformation is formed only by bulg-
ing, ΔSf=0, ΔSb=ΔSa, namely, β=1.  

When the deformation is formed by both draw-
ing and bulging in one forming process, the rela-
tionship of drawing weight (α) and bulging weight (β) 
conforms to the condition shown below: 

 
α+β=1.                                  (3) 

 

3.1  Basic assumptions and geometrical conditions 

An arbitrary parabolic shaped shell part is cho-
sen as the research object, with height b and opening 
radius Rd. The cylinder coordinate system is set to 
analyze the part. As shown in Fig. 4, the center of the 
workpiece opening plane is set as the origin of the 
coordinates, the axis of symmetry is set as h-axis, and 
the line perpendicular to the axis of symmetry in the 
opening plane is set as the r-axis. The generatrix 
equation of the parabolic part can be obtained as 

 
h=ar2−b,                                  (4) 

 
where r is the radius of a random point in generatrix 
of the parabolic part, b the height of the parabolic part, 

and 2
da b R . 

To simplify the calculation and application of 
the theoretical model, the following assumptions are 
made:  

1. The thickness of the flange remains constant 
during deformation. The deformation of the female 
die region is a compound of conventional drawing 
and bulging, which work separately. First, sheet metal 
is deformed by drawing, and the outer radius of the 
flange decreases from R0 to Rw. The thickness of the 
sheet metal in the flange region and female die region 
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remains constant. Then sheet metal in the female die 
region is deformed by bulging alone, with the radius 
and thickness of the flange remaining constant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. The shape of the free deformation region is 

assumed here as a spherical cap. Large numbers of 
forming experiments conducted by our research team 
showed that the generatrix shape of the formed 
workpiece by SGMF in the free deformation region 
can be fitted by a circular function.  

3. When the forming height is not larger than the 
opening radius of the female die (Rd), the sheet metal 
is assumed in contact only with the fillet of the female 
die and produces free forming only, which is labeled 
as path 1 in Fig. 4. Until the whole hemisphere is 
formed, the radius of the hemisphere equals the 
forming height and it also equals the opening radius 
of the female die (Rd). The situation is labeled as  
path 2 in Fig. 4. 

4. When the forming height is larger than the 
opening radius of the female die (Rd), the deformation 
of the female die region is assumed to consist of 1/2 
spherical shell and part wall revolving shell, which is 
labeled as path 3 in Fig. 4.  

Some geometrical relationships based on the 
fundamental assumptions can be obtained as follows.  

When the forming height satisfies H≤Rd, and 

within O1A1B1 and O1O2A1,  22 2
1 d 1 ,r R r H    

the radius of the spherical cap (r1) can be derived as 
 

2 2
d

1 .
2

R H
r

H


                              (5) 

 

When the forming height satisfies H>Rd, the 
height of the spherical shell center is assumed as h′, 

and then 2
3 3 3 .h r ar b r H       The radius of 

spherical cap (r3) can be derived as  
 

 
3

1 1 4
.

2

a b H
r

a
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                      (6) 

  

3.2  Deformation analysis of flange region  

The initial outer radius of the sheet metal is R0, 
and it decreases to Rw when the sheet metal, under the 
pressure of solid granules medium and with an initial 
thickness t0, is processed to the forming height H. A 
point on the circle with radius R1 of the initial sheet 
metal will move to the circle with radius R on the 
flange of the workpiece (Fig. 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
According to the constant volume condition, the 

equation can be obtained as  
 

   2 2 2 2
0 1 0 w 0π π .R R t R R t                   (7) 

From Eq. (7), we have 

2 2 2
1 0 w .R R R R                            (8) 

 
According to the definition of the strain, the 

tangential strain in any radius (R) of the formed 
workpiece flange can be expressed as  

 

2 2 2
1 0 w

2π
ln ln .

2π

R R

R R R R
 

 
             (9) 

 
The thickness of the flange is assumed to be 

constant during deformation. According to the  

Fig. 5  Deformation of flange during deep drawing 

H

Fig. 4  Deformation stages of parabolic shaped shell part

r 1

r 2

r 3

H
'=

R
d

h'

b
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constant volume condition, the radial strain of the 
points on the circle, with radius R, of the flange region 
can be obtained as  

 

r 2 2 2
0 w

ln .
R

R R R
   

 
                  (10) 

 

3.3  Deformation analysis of female die region 

The forming mechanism of parabolic parts based 
on SGMF is different from that of conventional 
drawing. The deformation of sheet metal in the fe-
male die region is the result of both conventional 
drawing and bulging, and it cannot be directly ana-
lyzed by existing theories. To make theoretical anal-
ysis of the whole deformation process, a single de-
formation analysis method is adopted; namely, the 
single drawing is defined as the sheet metal deformed 
only by the action of conventional drawing, and the 
single bulging is defined as the sheet metal deformed 
only by the action of conventional bulging. The de-
formation analysis can be respectively analyzed under 
single drawing and single bulging conditions. Also, 
the actual deformation can be calculated with the 
drawing weight and bulging weight. 

3.3.1  Deformation analysis with forming height H≤Rd 

The sheet metal in the female die region pro-
duces free deformation only when the forming height 
is H≤Rd. It is assumed that point O in the formed 
workpiece is moved from the initial position point O′ 
in the initial sheet metal under the compound action 
of drawing and bulging (Fig. 6).  
3.3.1.1  Drawing weight and bulging weight  

Based on the fundamental assumptions, when 
the outer radius of the flange decreases from R0 to Rw, 
the surface area decrement of the flange can be cal-
culated as  

 

 2 2
f 0 wπ .S R R                           (11) 

The surface area variation of the female die region is  

 2 2
a 1 dπ 2 π ,S r H R H                     (12) 

 

where r1 is derived from Eq. (5). 
Substituting Eqs. (11) and (12) into Eqs. (1) and 

(3), the drawing weight and bulging weight can be 
obtained as follows:  

2 2
0 wf

2
a

,
R RS

S H


 


                        (13) 

2 2
0 wf

2
a

1 1 .
R RS

S H


   


                  (14) 

 

3.3.1.2  Analysis of single drawing deformation 
Under the action of single drawing, the sheet 

metal is deformed to the shape with the forming 
height H in Fig. 6. The corresponding formed point of 
the initial point O′1 in the sheet metal is point O in the 
spherical cap of the formed workpiece (Fig. 7).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on the fundamental assumptions, the 

thickness variation of sheet metal is ignored. With 
respect to the constant volume condition, we have  

 

   2 2 2
1 0 1 1 1 0π 2π .R t r r r R t                (15) 

Then 

 2 2
1 1 1 12 .R r r r R                       (16) 

 

The tangential strain of point O can be obtained as  
 

 
d

2 21
1 1 1

2π
ln ln .

2π 2

R R

R r r r R
 

   
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Fig. 6  Deformation of sheet metal with forming height 
H≤Rd 

2Rd

2R1

2R0

O

O′

Fig. 7  Single drawing deformation (H≤Rd) 

r 1

H
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Substituting Eq. (5) into Eq. (17),  
 

     
d

2 22 2 2 2 2 2 2 2
d d d

2
ln .

2 4

HR

R H R H R H H R


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  

(18) 
 

According to the constant volume condition, the 
radial strain of point O along the generatrix can be 
derived as  

 
d d
r .                                   (19) 

 
3.3.1.3  Analysis of single bulging deformation 

Assume that a sheet metal, with an initial radius 
R0, is formed to the shape of a parabolic part with the 
forming height H by the action of bulging and no 
fracture occurring. Point O′2, in radius R′2, of the 
initial sheet metal moves to point O in the spherical 
cap of the formed workpiece after the action of single 
bulging (Fig. 8).  

 
 
 
 
 
 
 
 
 
 
 
Based on the fundamental assumptions, the 

shape of the free deformation region (Fig. 8) is a 
spherical cap. According to the geometric equation of 
axisymmetrical deformation, the tangential strain εθ

b 
and radial strain εr

b of point O can be expressed as 
 

 
b b

r

d
ln ln .

d d sin

R R

R u R u
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  


         (20) 

Thus, the following equation can be obtained:  

 
d

.
d d sin

R R

R u R u

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                    (21) 

 

According to the geometric condition, R=r1sinθ, 
and dR=r1cosθdθ. Substituting them into Eq. (21), we 
have  

 1

d
cos 1 .

d sin

u u
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 
                   (22) 

Then, u can be obtained by solving Eq. (22):  

 1

sin
cos ,

cos 1
u r C 


 


                  (23) 

 

where C is a constant of integration. 
At the fillet of the female die, where R=Rd, 

sinθ0=Rd/r1, and u=0, substitute them into Eq. (23). 
Then C=−r1cosθ0 and Eq. (23) becomes 

 

 0cos cos .
cos 1

R
u  


 


                (24) 

 
According to the geometric condition, Eq. (24) 

can be expressed as  
 

 2 2 2 2
1 1 d2 2

1 1

.
R

u r R r R
r R r

   
 

      (25) 

 
Substituting Eq. (25) into Eq. (20), the tangential 

strain εθ
b and radial strain εr

b of point O can be ob-
tained as 

 

2 2
b b 1 1
r 2 2

1 1 d

ln .
r R r

r r R

 
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 
                     (26) 

 

The normal strain in the thickness direction of 
point O can be obtained based on the constant volume 
condition: 

 

2 2
b 1 1
t 2 2

1 1 d

2 ln .
r R r

r r R

 
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 
                     (27) 

 

3.3.1.4  Deformation analysis of sheet metal based on 
SGMF 

With the solid granules medium, sheet metal is 
deformed to the shape with the forming height H in 
Fig. 6 by the compound action of conventional 
drawing and bulging. Consequently, the strain of 
point O of the free deformation region in radius R can 
be obtained as follows:  

 
d b          (H≤Rd),                   (28) 
d b

r r r        (H≤Rd),                   (29) 

Fig. 8  Single bulging deformation (H≤Rd) 
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b
t         (H≤Rd).                       (30) 

 

Therefore, the thickness t of any point on the 
formed workpiece can be expressed as 

 

t 0exp( )t t     (H≤Rd).                    (31) 
 

3.3.2  Deformation analysis with forming height H>Rd 

When the forming height satisfies H>Rd, the 
sheet metal gradually comes into contact with the die 
under internal pressure of the solid granules medium. 
The deformation region of the female die consists of a 
part wall region and a free deformation region. Point 
A is assumed as a random point in the free defor-
mation region and it moves from point A′ in the initial 
sheet metal under the compound action of drawing 
and bulging. Point B is assumed as a random point in 
the part wall region and it moves from point B′ in the 
initial sheet metal under the compound action of 
drawing and bulging (Fig. 9). 
3.3.2.1  Drawing weight and bulging weight  

According to the fundamental assumptions, 
when the outer radius of the flange decreases from R0 
to Rw, the surface area decrement of the flange, ΔSf, 
can be obtained from Eq. (11) under the condition 
shown in Fig. 9. The surface area of the female die 
region can be calculated as 

 

   3 32 2 2 2 2
a d 3 32

π
4 1 4 1 2π ,

6
S a R a r r

a
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    (32) 

 

where r3 can be obtained from Eq. (6). According to 
Eq. (32), the surface area variation of the female die 
region can be obtained as 
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 (33) 

 

Consequently, the drawing weight and bulging 
weight under the condition of Fig. 9 can be calculated:  
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3.3.2.2  Deformation analysis of single drawing  
Assume that the sheet metal is deformed to the 

workpiece shape with a forming height H (Fig. 10), 
by single drawing. Assume no thickness variation 
occurred in the part wall or free deformation region. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Point A on the circle with radius R1 (0<R1≤r3) of 

the free deformation region moves from point A′1 of 
the initial sheet metal. From Eqs. (18) and (19), and 
with respect to the constant volume condition, the 
tangential and radial strain of point A can be obtained:  

 

 
d 1 1

2 211
3 3 3 1

2π
ln ln ,

2π 2

R R

R r r r R
 

   
        (36) 

d d
r ,                                   (37) 

 

where 11R  is the radius of point 1A  and r3 is the ra-

dius of the spherical cap of the free deformation re-
gion with forming height H＞Rd, satisfying Eq. (6). 

Point B on the circle with radius R2 (r3<R2<Rd) of 
the part wall region moves from point B′1 of the initial 

Fig. 10  Single drawing deformation (H>Rd) 

r 3

H
Fig. 9  Deformation of sheet metal with forming height 
H>Rd 

r 3
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sheet metal. According to the constant volume con-
dition, we have 

 

   

2 2
21 0 3 0

3 32 2 2 2
2 3 02 2

π( ) 2π

π π
4 1 4 1 ,

6 6

R t r t

a R a r t
a a

 

      

 (38) 

where 21R  is the radius of point 1.B  Then  
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According to Eq. (39), the tangential strain of 
point B can be calculated as  
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  (40) 
 

Then the radial strain along the generatrix of point B 
can be obtained: 

 
d d
r .                                 (41) 

 

3.3.2.3  Deformation analysis of single bulging 
Assume that the sheet metal can be formed into 

any forming height without fracture. The shape shown 
in Fig. 11 is formed by single bulging deformation.  

 
 
 
 
 
 
 
 
 
 
 
 

According to the geometric condition, the height 
of part wall region h can be calculated as 

 

h=H−Rd.                                (42) 
 

In the single bulging process, the sheet metal in 
the part wall region is tightly attached to the female 

die because of the pressure from the granules medi-
um, and, for the most part, remains consistent in the 
following forming. However, the thickness of the 
bottom free deformation region continues to decrease 
and generates a new part wall region and free defor-
mation region in the forming process that follows. 

The whole attaching-die process can be divided 
into n steps (Fig. 11). The height of the newly gener-
ated part wall region in each step Δh is 

 

Δh=H−Rd/n.                             (43) 
 

Half of the spherical shell is first generated be-
fore the sheet metal attaches to the female die, as 
position 0 in Fig. 11. In this status, according to  
Eqs. (26) and (27), the radial strain εb

r,0, tangential 
strain εb

θ,0, and normal strain εb
t,0 of any point in po-

sition 0 can be obtained: 
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+
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
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When the forming height increases from Rd to 
Rd+Δh, the newly generated height of the part wall 
region is Δh, as shown at position 1 in Fig. 11. As-
sume that the thickness of free deformation region 
decreases uniformly while the sheet metal bulges 
from position 0 to position 1; i.e., the increment of 
normal strain at any point is equal. According to the 
constant volume condition, the increment of normal 
strain in the thickness direction Δεb

m,1 from position 0 
to position 1 can be obtained: 

 
f
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where S0
f is the surface area of the workpiece in the 

free deformation region at position 0, and S1 is the 
surface area of the workpiece in the female die region 
at position 1. According to the geometric condition, 
we have 
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Fig. 11  Single bulging deformation (H>Rd) 
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From Eq. (6), r3,1 can be calculated as 
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According to Eqs. (45) and (46), for any point at 

position 1 in the free deformation region with radius 
R, the normal strain in the thickness direction εbf

t,1 can 
be obtained: 

 
bf b b
t,1 t,0 m,1         (0<R≤r3,1).             (49) 

 
In the single bulging process, the tangential 

strain and radial strain satisfy εθ=εr. According to the 
constant volume condition and Eq. (49), the tangen-
tial strain εbf

θ,1 and radial strain εbf
r,1 of any point at 

position 1 in free deformation region can be calcu-
lated as 

 

 bf bf b b
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2
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Since the newly generated height of the part wall 

region Δh is quite small, assume that the strains of any 
point within the range of Δh are equal, with values 
being equal to the ones of the point on the circle with 
radius r3,1 in the free deformation region. According 
to Eqs. (49) and (50), the strains within the range of 
Δh in this newly generated part wall region can be 
obtained: 
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Similarly, the newly generated part wall region 
and free deformation region in position i are bulged 
from the free deformation region in position i−1. In 
this process, the increment of the normal strain in the 
thickness direction Δεb

m,i can be calculated:  
 

f
b 1
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S

S
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where Sf

i−1 is the surface area of the workpiece in the 
free deformation region at position i−1, and Si is the 

surface area of the workpiece in the female die region 
at position i. Thus, we have 
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From Eq. (6), we have 
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The normal strain in the thickness direction εbf
t,i can 

be obtained: 
 

bf bf b b b b
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Given that the tangential strain and radial strain 
satisfy the relation in the single bulging process, we 
have 
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Thus, the strains (the normal strain in the thick-
ness direction εbt

t,i, tangent strain εbt
θ,i, and radial 

strain εbt
r,i) of the newly generated part wall region 

can be calculated: 
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According to Eqs. (56) and (57), when the 
forming height reaches H, the bulging strains in the 
free deformation region can be obtained:  
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(0<R≤r3,n).    (61) 
 

The strains of any point in the part wall region 
can be obtained from Eqs. (58) and (59). 
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3.3.2.4  Deformation analysis of sheet metal based on 
SGMF 

In the forming process with solid granules me-
dium, any point in the female die region of the 
workpiece shown in Fig. 9 is the result of the com-
pound action of drawing and bulging. Consequently, 
when the forming height satisfies H>Rd, the tangen-
tial strain, the radial strain, and the normal strain in 
the thickness direction of a random point in the fe-
male die region can be obtained: 

 
d b

          (H>Rd),                (62a) 
d b

r r r        (H>Rd),                (62b) 
b

t         (H>Rd).                     (62c) 

 
In Eqs. (62a)–(62c), when the radial radius of a 

random point, R, satisfies 0<R≤r3, the point is in the 
free deformation region. Its radial strain and tangen-
tial strain can be derived from Eqs. (36), (37), (60), 
and (61). When R satisfies r3<R<Rd, the point is in the 
part wall region. Its radial strain and tangential strain 
can be derived from Eqs. (40), (41), (58), and (59). 

The thickness t of any point on the formed 
workpiece can be calculated with Eq. (62c): 

 
t=exp(εt)t0      (H>Rd).                    (63) 

 
From Eqs. (13), (14), (34), and (35), the drawing 

weight (α) and bulging weight (β) are functions re-
lating to the radius of the sheet metal (R0), the outer 
radius of the flange (Rw), and the forming height (H). 
At a certain forming height, the smaller the ratio of 
the outer radius of the formed workpiece flange to the 
initial outer radius of sheet metal (namely, Rw/R0) is, 
the larger the proportion of the drawing weight in the 
whole deformation is, and the smaller the thickness 
reduction of sheet metal in the deformation region is. 
Conversely, the thickness reduction of sheet metal in 
the deformation region is larger.  

When the ratio of the outer radius of the flange of 
the workpiece to the outer radius of the sheet metal 
(namely, Rw/R0) is fixed, the drawing weight decreases  
 
 
 
 
 

with the increment of the forming height. The draw-
ing weight reaches the minimum value when the 
forming height increases to a critical value. In the 
critical condition, the whole sheet metal acts only 
with bulging deformation, and the thickness in the 
deformation region will reduce gradually, causing 
easy fracture in the free deforming region. 

 
 

4  Deformation analysis of the deep drawing 
process of an aircraft part 

 
As shown in Fig. 12, the aircraft part is a com-

plex thin-walled shell part, whose profile generatrix 
can be fitted by a parabolic function. In the coordi-
nates shown in Fig. 12, the equation of the parabolic 
function is expressed as 

 
20.0197 211.h r                          (64) 

 
The aircraft part is made from 1Cr18Ni9Ti sheet 

by cold rolling and its thickness is 1.2 mm. The basic 
mechanical parameters are shown in Table 1. 

4.1  Theoretical analysis 

To analyze the deformation process of SGMF 
shown in Fig. 12 by applying the theoretical model 
described in Section 2, the outer radius of the flange 
was measured at different drawing heights. When  
the measured values were substituted into the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 1  Mechanical parameters of 1Cr18Ni9Ti 

Density, 
ρ (g/cm3) 

Elastic modulus, 
E (GPa) 

Poisson’s ratio,
μ 

Yield strength, 
σs (MPa) 

Tensile strength, 
σb (MPa) 

Elongation rate,
 (%) 

7.85 200 0.28 ≥250 ≥1000 ≥50 

Φ207

Φ240

R26

h

rO

−h

r

Fig. 12  Target part of the certain aircraft part 
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corresponding calculation formulas, theoretical re-
sults of drawing weight, bulging weight, and strain 
distribution regularities were obtained. The forming 
experiments were conducted by the forming equip-
ment and mould (Fig. 13). 

Computer programs can be used to analyze the 
sheet metal drawing process with theoretical formulas. 
In this study, the theoretical program of the parabolic 
part was designed with the MATLAB programming 
language. The program structure diagram is shown in 
Fig. 14.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Analysis of deep drawing process 

Under the same conditions (R0=365 mm, t0= 
1.2 mm, and H=80 mm), the drawing process was 
carried out with three lubrication media (nothing, oil, 
and water-based graphite). The maximum thickness 
reduction rate (namely, Δt/t0, where Δt is the differ-
ence between the minimum thickness and the initial 
thickness, and t0 is the initial thickness of sheet metal) 
of the formed workpiece is obtained (Table 2). 

It turned out that the maximum thickness reduc-
tion rate with lubrication is smaller than that of no 
lubrication at the same forming height. However, 
pressure from the granules medium makes it easier for 
oil to be squeezed out, especially at the fillet of the 
female die. Thus, the effect of oil lubrication is 
greatly reduced. When using water-based graphite 
lubrication, a layer of graphite thin film will be 
formed on the surface of the blank, and it is difficult  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Maximum thickness reduction rate with dif-
ferent lubrication conditions (H=80 mm) 

Lubrication condition Maximum reduction rate (%)

Nothing 31.40 

Oil 20.10 

Water-based graphite 14.30 Fig. 13  Experimental equipment and mould 

Strain of single drawing 
and strain of single 
bulging when 0<R≤r3, 

Strain of single drawing 
and strain of single 
bulging when r3<R<Rd,

Open radius of formed part Rd, 
radius of initial sheet metal R0, 
generatrix equation, h=ar2−b

Input height H at different 
forming stages, instantaneous 
flange radius Rw

H>Rd

Radius of spherical cap,
2 2
d +

=
2

R Hr
H

No
Radius of spherical cap,

Yes
   



a b H
r

a
1 1+4

=
2

Strain of flange deformation region,

Strain of single drawing,

Strain of single bulging,

θε εd d
r ,

θε ε εb b b
t r, ,

Drawing weight α,
bulging weight β

Strain of female die deformation region, θε ε εr t, ,

θ θε ε ε ε εd d b b b
r t r, , , ,

Output strain and deformation weight parameters of the 
whole deformation process 

θ θε ε ε ε εd d b b b
r t r, , , ,

θε ε εr t, ,

Fig. 14  Program structure diagram of theoretical calculation 
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to squeeze out graphite even under high pressure. So, 
the friction between the blank and die can be signally 
reduced. Thus, the water-based graphite is used as the 
lubrication medium in this study.  

The initial diameter of the sheet metal is 365 mm, 
and it is processed using water-based graphite as the 
lubricant. The experimental results of instantaneous 
outer radius Rw of the flange and forming height H at 
different stages are shown in Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Substituting the experimental data of Table 3 

into the theoretical calculation program, the defor-
mation weight parameters were obtained and are 
shown in Fig. 15. 

With the same forming height, it can be seen 
from Fig. 15 that the drawing weight in the defor-
mation increases when the blank holder gap (BHG) 
increases from 1.0t0 to 1.1t0. However, the drawing 
weight in the deformation decreases when the BHG 
increases from 1.1t0 to 1.2t0. At the same BHG, the 
drawing weight decreases with the increase of the 
forming height. In the whole forming process, the 
change of the bulging weight is contrary to the 
drawing weight.  

The following process was carried out: cut the 
workpiece into two halves along the middle section; 
next, create coordinates and label measurement points 
in this cutting plane and mark those point positions 
through the height gauge and caliper (Fig. 16); then 
measure the thickness with the measuring equipment 
of Fig. 17.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the measurement process, the thickness of the 

flange outer edge (point 1 in Fig. 16) is first measured 
by the vernier caliper and used as the measuring basis 
of other measurement points. Then the variation value 
relative to point 1 can be obtained through the dial 
indicator with the measuring equipment in Fig. 17. 
Thus, the thickness of the corresponding point can be 

Table 3  Geometry size of workpiece 

Blank holder 
gap (mm) 

Height, H  
(mm) 

Average radius of 
flange, Rw (mm) 

1.0t0 

38.3 181.0 

66.0 178.3 

85.0 176.4 

102.0 Fracture 

1.1t0 

38.0 179.0 

70.8 170.5 

105.5 157.0 

138.0 148.5 

1.2t0 

38.2 179.8 

67.5 173.5 

99.5 162.7 

138.0 152.0 

Fig. 16  Positions of measurement points 
(a) H=38 mm; (b) H=138 mm 

Fig. 15  Curves of deformation weight parameters 
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Fig. 17  Thickness measuring equipment 
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obtained by making subtractions of the basis value of 
point 1 and the measured relative value. 

To minimize the measurement error caused by 
human factors, three measurements were performed 
for the same workpiece. The measurement results of 
measurement points are shown in Tables 4 and 5.  

Combining the experimental measurement (the 
average values in Tables 4 and 5) and theoretical 
calculation, the curves of the maximum thickness 
reduction rate of the formed workpiece at different 
forming heights and BHGs are shown in Fig. 18. The 
thickness distribution curves of workpieces at the 
same forming height (H=38 mm, H=138 mm) and  
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

different BHGs are shown in Fig. 19. The experi-
mental value is the average of the three measurement 
results in Tables 4 and 5. 

It can be seen from Figs. 18 and 19 that the 
maximum thickness reduction rate of the formed 
workpiece increases with the increment of forming 
height. At the same forming height, the maximum 
thickness reduction rate in the deformation decreases 
when BHG increases from 1.0t0 to 1.1t0. However, 
when BHG increases from 1.1t0 to 1.2t0, excessive 
BHG makes serious wrinkles in the flange and the 
maximum thickness reduction rate in the deformation 
increases.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Thickness of workpiece for different measurement points (H=38 mm) (unit: mm) 

Point 
BHG=1.0t0  BHG=1.1t0  BHG=1.2t0  

No. 1 No. 2 No. 3 Average No. 1 No. 2 No. 3 Average No. 1 No. 2 No. 3 Average

1 1.20 1.20 1.21 1.203 1.21 1.21 1.21 1.210 1.21 1.21 1.22 1.213 

2 1.20 1.19 1.19 1.193 1.20 1.21 1.21 1.207 1.21 1.20 1.21 1.207 

3 1.20 1.19 1.20 1.197 1.20 1.21 1.20 1.203 1.20 1.21 1.20 1.203 

4 1.19 1.20 1.19 1.193 1.20 1.20 1.20 1.200 1.20 1.20 1.19 1.197 

5 1.18 1.19 1.18 1.183 1.20 1.19 1.20 1.197 1.18 1.17 1.19 1.180 

6 1.12 1.11 1.11 1.113 1.18 1.18 1.18 1.180 1.15 1.14 1.15 1.147 

7 1.08 1.09 1.09 1.087 1.17 1.17 1.18 1.173 1.13 1.14 1.12 1.130 

8 1.05 1.05 1.04 1.047 1.17 1.16 1.17 1.167 1.10 1.09 1.10 1.097 

9 1.03 1.04 1.03 1.033 1.17 1.16 1.17 1.167 1.10 1.09 1.09 1.093 

10 1.03 1.03 1.02 1.027 1.16 1.15 1.15 1.153 1.09 1.08 1.09 1.087 

11 1.02 1.02 1.02 1.020 1.15 1.14 1.14 1.143 1.08 1.08 1.08 1.080 

12 1.01 1.02 1.01 1.013 1.14 1.14 1.14 1.140 1.08 1.07 1.08 1.077 

BHG: blank holder gap 

Table 5  Thickness of workpiece for different measurement points (H=138 mm) (unit: mm) 

Point 
BHG=1.1t0 BHG=1.2t0  

No. 1 No. 2 No. 3 Average No. 1 No. 2 No. 3 Average 

1 1.22 1.22 1.21 1.217 1.22 1.22 1.21 1.217 

2 1.22 1.21 1.21 1.213 1.21 1.21 1.22 1.213 

3 1.21 1.20 1.20 1.203 1.21 1.20 1.21 1.207 

4 1.20 1.20 1.19 1.197 1.20 1.18 1.19 1.190 

5 1.14 1.15 1.14 1.143 1.05 1.03 1.05 1.043 

6 1.00 1.05 1.08 1.043 0.96 0.97 0.95 0.960 

7 0.96 0.96 0.96 0.960 0.92 0.92 0.93 0.923 

8 0.95 0.96 0.95 0.953 0.89 0.89 0.87 0.883 

9 0.92 0.93 0.92 0.923 0.83 0.82 0.83 0.827 

10 0.89 0.88 0.88 0.883 0.81 0.82 0.80 0.810 

11 0.86 0.85 0.85 0.853 0.78 0.77 0.78 0.777 

12 0.82 0.83 0.83 0.827 0.73 0.74 0.73 0.733 

13 0.83 0.82 0.82 0.823 0.74 0.74 0.73 0.737 

14 0.82 0.81 0.81 0.813 0.74 0.75 0.74 0.743 
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Comparing the results of Figs. 15 and 18, the 

maximum thickness reduction rate of the formed 
workpiece increases with the decrement of drawing 
weight. Combined with the experimental results in 
Tables 2 and 3, the thickness difference of the formed 
workpiece can be efficiently reduced and the forming 
height limit can also be improved in the deformation 
process of SGMF by setting reasonable blank holder 
and lubrication conditions, lowering the blank flow 
resistance and increasing the proportion of the draw-
ing weight. 

It can be seen from Fig. 19 that thickness is 
gradually reduced from the fillet of the female die to 
the central position of the workpiece. The difference 
between experimental measurement results and the-
oretical calculation is not obvious, and the maximum 
relative error is less than 10%. 

With BHG=1.1t0, the experimental workpieces 
at different forming stages are shown in Fig. 20. The 
profiles of workpieces in the female die region at 
different forming stages are shown in Fig. 21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comparing the calculated theoretical profiles 

and testing profiles in Fig. 21, we can see that there is 
little difference between two profile curves near the 
female die fillet when the forming height is small, 
while the two profile curves gradually coincide with 
the increase of the forming height. At an arbitrary 
forming stage, two profile curves coincide near the 
center point of the parts. With respect to Fig. 15, the 
bulging weight increases gradually and the bulging 
proportion increases in the whole deformation pro-
cess with the increase of the forming height. Thus, the 
profile curve of the free deformation region is prox-
imate to the spherical shell. 

Under the same condition, the radial and tan-
gential strain distributions of workpieces were ob-
tained through theoretical calculation when the 
forming height is 38 mm or 138 mm (Fig. 22). 

Fig. 19  Thickness distribution curves of workpieces 
(a) H=38 mm; (b) H=138 mm 
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Fig. 18  Curves of reduction rate in the forming process

Fig. 21  Profiles of workpieces in the female die region at 
different forming stages 
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Fig. 20  Workpieces at different forming stages 
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It can be seen from Fig. 22 that the radial strain is 

the tensile strain and the tangential strain is the com-
pressive strain in the flange region. From the outer 
edge of the flange to the female die fillet, the absolute 
value of the strain increases gradually. In the part wall 
and fillet region, the radial strain is the tensile strain 
and the tangential strain is the compressive strain. The 
absolute value of the tangential strain decreases 
gradually as the distance from the workpiece sym-
metry axis decreases. In the free deformation region, 
the radial strain decreases gradually and tangential 
strain transforms gradually from compressive strain 
to tensile strain. The radial strain equals the tangential 
strain near the symmetric axis of the workpiece. 

Some conclusions can be drawn from the radial 
and tangential strain distribution curves. Before the 
part wall region is formed, as shown in Fig. 22a, the 
absolute values of the radial strain and tangential 
strain reach their maximum values simultaneously at 
the female die fillet. However, after the part wall 
region is formed, as shown in Fig. 22b, the absolute 

value of the radial strain reaches its maximum value 
at the junction zone of the free deformation region 
and the part wall region, and the absolute value of the 
tangential strain reaches its maximum value at the 
female die fillet. 

The strain dividing circle is defined as the set of 
points, on which the tangential strain is zero. As 
shown in Fig. 22a, the strain dividing circle locates in 
the free deformation region before the part wall re-
gion is formed. When the part wall region is formed, 
as shown in Fig. 22b, the female die deformation 
region is made up of the free deformation region and 
the part wall region. According to the geometrical 
conditions, the radius of the spherical cap of the free 
deformation region is 91.3 mm when the forming 
height is 138 mm. Thus, it can be seen from Fig. 22b 
that the strain dividing circle still locates in the free 
deformation region. Comparing Figs. 22a and 22b, 
the radius of the strain dividing circle increases 
gradually with the increase of the forming height; 
namely, the biaxial tensile strain region increases with 
the increase of the forming height. 

From the analysis results of Fig. 15, the bulging 
weight increases gradually with the increase of 
forming height. Then the influence of bulging to the 
whole female die deformation increases, resulting in 
the enlargement of the biaxial tensile strain region. 
Therefore, the radius of the strain dividing circle 
gradually increases with the increase of the bulging 
weight, and the strain dividing circle moves toward to 
the lateral wall of the female die. In the forming 
process, an appropriate blank holder condition and a 
lubrication condition should be applied to increase the 
drawing weight and reduce the radius of the strain 
dividing circle, thus decreasing the biaxial tensile 
strain region at the bottom of the workpieces. 
Therefore, serious reduction of bottom blank thick-
ness can be resisted and the limit forming height can 
be improved. 

 
 

5  Conclusions 
 
1. The deformation of sheet metal drawing in 

SGMF is a combination of drawing and bulging. The 
concepts of drawing weight and bulging weight are 
proposed as an original way of analyzing the forming 
process. The corresponding expressions are obtained. 

Fig. 22  Distributions of strain in the deformation pro-
cess with forming height of 38 mm (a) or 138 mm (b) 
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The result shows that the larger the drawing weight is, 
the smaller the wall thickness difference of the 
formed workpiece becomes. This result is provided 
by the analysis of a parabolic part forming process. 
However, the effect of the bulging weight is opposite. 

2. By analyzing the deformation of the flange 
region and the female die region of the parabolic part 
with drawing weight and bulging weight, the calcu-
lation formulas of strain in the deformation region for 
sheet metal drawing of SGMF are established. Also, 
the radius of the strain dividing circle can be calcu-
lated through the formulas. These concepts and for-
mulas provide a new theory for analyzing sheet metal 
drawing of SGMF.  

3. After the analysis of the parabolic part formed 
by drawing of SGMF, some design suggestions can 
be made. The forming height limit can be improved 
by setting reasonable forming conditions, increasing 
the drawing weight, and decreasing the radius of the 
strain dividing circle, which can also reduce the ex-
cessive thinning of the bottom. 
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中文概要 
 

题 目：抛物线型零件固体颗粒介质成形变形理论研究 

目 的：板材固体颗粒介质成形工艺作为一种新型的软模

成形技术，是采用固体颗粒代替刚性凸模或凹模

(或弹性体、液体)对板料进行成形加工的工艺。

固体颗粒介质板材拉深成形工艺为拉深和胀形

两种变形模式的复合成形，其变形过程与传统拉

深成形工艺有很大的区别。以抛物线型零件为研

究对象，对其成形过程进行研究，建立固体颗粒

介质板材软凸模拉深成形的几何条件和应变计

算公式。 

创新点：1. 首次提出了描述固体颗粒介质板材拉深成形变

形机理的拉深权和胀形权的概念，并建立了相应

的计算公式；2. 建立了固体颗粒介质抛物线型零

件软凸模拉深成形的几何条件和应变计算公式。 

方 法：1. 通过对抛物线型零件固体颗粒介质拉深成形的

变形过程分析(图 1~3)，将变形过程和成形工件

的变形区进行划分；2. 将数学中权函数的思想引

入到对抛物线型零件固体颗粒介质拉深成形的

分析中，提出拉深权和胀形权的定义及相应表达

式(公式(1)和(2))；3. 通过理论推导，构建不同成

形阶段抛物线型零件拉深成形过程中的应变计

算式(公式(28)~(30)和公式(62a)~(62c))和壁厚计

算公式(公式(31)和(63))；4. 利用 MATLAB 编制

抛物线型零件拉深成形应变计算程序(图 14)；

5. 以某航空零件为目标零件，通过试验试制不同

成形条件下不同阶段的抛物线型工件(表 2 和 3)，

将理论计算壁厚与实测厚度进行对比(图 19)，将

试验轮廓与理论计算轮廓进行对比(图 21)，验证

分析过程中所提假设及理论计算的可行性和正

确性；将试验获得成形工件的几何尺寸(表 3)代入

MATLAB 计算程序中，对该航空零件的变形过程

进行分析(图 15、18、19、21 和 22)。 

结 论：1. 固体颗粒介质拉深成形过程是胀形和拉深的复

合成形，通过对其变形过程分析，首次提出了拉

深权和胀形权的概念，并且给出了其计算公式。

成形过程中，拉深权越大，工件成形后的壁厚差

越小；胀形权则正好相反。2. 利用拉深权和胀形

权，建立了固体颗粒介质软凸模拉深成形变形区

应变计算公式，且可以计算出应变分界圆位置半

径，为分析固体颗粒介质软凸模拉深成形工艺变

形过程提供了新的理论依据。3. 设置合理的成形

条件、拉深权的提高和应变分界圆半径的缩小可

以降低拉深成形过程中底部的过度减薄，进而提

高极限成形高度。 

关键词：固体颗粒介质；软模成形；拉深；拉深权；胀形

权；应变 

 

 


