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hybrid magnetic circuit. The flow rates (Q) of the MR 
fluid passing through that device are estimated from 
the velocity of the piston rod. The test has established 
the efficiency of their hybrid magnetic circuit in 
saving electric power and in supplying a magnetic 
field to the fluid. Their design is appropriate for MR 
fluid applications where a constant viscosity for a 
period of longer than 0.7 s is to be maintained.  

4.2  Smart passive system-based MR damper 

Cho et al. (2005) and Choi et al. (2007) intro-
duced an MR damper with power generation ability 
that consists of an EMI device for reducing suspen-
sion vibrations. The proposed model comprises an 
MR damper and an EMI system containing a per-
manent magnet and a coil. It gives a mechanism for 
self-powered vibration control and the EMI exploits 
vibration energy to produce electrical energy. It is, 
however, large, and that may impact negatively on its  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

application in restricted spaces such as in cars, buses, 
motorcycles, and robots. 

4.3  Self-powered and sensing control system 
based on an MR damper 

Wang et al. (2009) presented a new self-powered 
MR damper with a sensing semi-active control sys-
tem. The system consists of a rack and pinion mech-
anism, a linear permanent magnet DC generator, a 
current controlled MR damper, and a control circuit. 
Fig. 18 displays the flowchart of the proposed model. 
The model was tested for five control strategies: ideal 
active control, two semi-active controls, and two 
self-powered semi-active controls. In all five cases 
the results showed similar control performance in 
respect both to pier response and to bearing response 
and only one accelerometer to monitor the response is 
needed. The shortcoming of this model is the com-
plicated arrangement of four parts and the conse-
quently increased weight. 

4.4  MR damper-based self-powered smart damp-
ing system 

Jung et al. (2008) designed, manufactured, and 
tested a self-powered smart damping system using an 
MR damper for a real-scale structure. The system was 
designed specially with a large-scale MR damper and 
big scale EMI part as shown in Fig. 19. The experi-
ment result demonstrated the ability of this system to 
produce enough induced current for the damper. The 
size of the individual parts is large and only suitable 
for civil structures. Such a large-scale MR damper is 
usually implemented in civil structures such as  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16  Hybrid magnetic circuit of MR damper to control 
viscosity of MRF 

Fig. 17  Performance evaluation of magnetizing device for MR damper (Sato and Umebara, 2012)  
ΔP is the constant pressure drop 
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buildings, bridges, etc. Some of these implementa-
tions are described in (Cha et al., 2013a; 2014; 
Friedman et al., 2015; Cha and Agrawal, 2016). 
These studies show improved vibration reduction in 
the structures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.5  Self-powered MR damper as an energy- 
harvesting dynamic vibration absorber 

Choi and Wereley (2009) developed a self- 
powered MR damper attached to an energy- 
harvesting device containing a stator, a permanent 
magnet, and a spring, which operates as an energy- 
harvesting dynamic vibration absorber (DVA) as 
shown in Fig. 20. The controlling technique of the 
model is stable and may not be appropriate for all 
applications, but the model has shown good vibration 
isolation performance of a self-powered MR damper 
without the need for a sensor and control algorithm. 

4.6  Self-powered MR damper-based vibration 
reduction system 

Sapiński (2010) introduced a power generator 
for a linear MR damper known as an electromagnetic 
power generator. In this model the electromagnetic 
generator has a mechanical and electrical sub-system 
and the full system contains these sub-systems and an 
MR damper as shown in Fig. 21. The generated force 
of this model is expressed by  
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where c1, c2, c3, and c4 are constants in the MR 
damper model, and β, p1, and p2 are scaling parame-
ters enabling transition, in the pre-yield region, from 
negative to positive velocities.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The generator works as an MR damper energy 

source and the necessary energy is absorbed from the 
environmental vibrations. Energy achieved by the 
generator accounts for almost 2.5% of energy gener-
ated by the MR damper in its mechanical sub-system. 
This research mainly focused on the performance and 
design construction of the generator. 

Fig. 19  Schematic of self-powered smart damping system 
employing MR damper and EMI 

Fig. 20  Configuration of a typical self-powered MR 
damper 

Fig. 18  Flow diagram of an energy-harvesting MR 
damper-based control system 

Fig. 21  Schematic diagram of a self-powered MR damper-
based vibration reduction system 
Fg: generator force; F: damping force; Fs: force generated 
from spring; x: final displacement; z: initial displacement 



Rahman et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2017 18(12):991-1010 1004

4.7  Self-powered MR damper with self-sensing 
ability  

Chen and Liao (2012) designed, fabricated, and 
tested a self-powered and self-sensing MR damper 
that integrates energy-harvesting and dynamic sens-
ing damping technology into a single device. Fig. 22 
shows the block diagram of the experimental setup.  

The experimental results from this MR damper 
model demonstrated its capability of generating 
power and its velocity-sensing abilities and relevance 
to different dynamic methods. This is actually a large 
double-ended MR damper and is thus more suitable 
for civil structures. 

4.8  Linear MR damper with energy-harvesting 
capability 

Sapiński (2014) designed and tested an energy- 
harvesting linear MR (EHLMR) damper prototype  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

which is a combination of three main components in 
one device. These parts include a damper piston as-
sembly, a power generator for producing electrical 
power, and a conditioning electronics unit.  

In this model, due to its self-powered and self- 
sensing capability there is no need of an external 
power supply or displacement sensors. However, the 
output voltage of the self-powered MR damper model 
is limited. Table 2 summarizes the main features of 
the self-powered MR dampers described. 

In this section, different designs of self-powered 
and self-sensing MR damper were presented. The 
purpose of these designs is to generate energy for 
current supply to drive the MR damper. Generally, the 
current in the MR damper is supplied externally, but 
this energy can be saved if an optimal self-powered 
MR damper is implemented. The limitations of these 
designs are highlighted to indicate where more re-
search is needed to discover more effective, lower 
cost, and simpler designs. 

 
 

5  Conclusions 
 

The MR damper is a smart semi-active device, 
which has some advantages over passive and active 
devices such as controllability of current supply to the 
damper, comparatively light weight, and low power 
consumption. The damper contains a smart fluid 
called MR fluid and works on different fluid flow  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Summary of various self-powered MR dampers 

Reference Focus Method Remark 

(Cho et al., 
2005) 

Power generation EMI device Large, not applicable in confined spaces

(Jung et al., 
2008) 

Self-powered Big scale EMI Only for civil structures 

(Wang et al., 
2009) 

Self-powered with  
sensing 

Rack and pinion mechanism Arrangement of four parts is very com-
plicated and increases the weight 

(Choi and 
Wereley, 2009) 

Self-powered Energy-harvesting device such 
as a stator, a permanent 
magnet, and a spring 

Control algorithm is not appropriate for 
variety of applications. 

(Snamina and 
Sapiński, 2011) 

Vibration reduction Mechanical and electrical sub-
system of the electromag-
netic generator 

Needs a large space 

(Chen and Liao, 
2012) 

Self-powered and 
self-sensing 

Energy harvesting, dynamic 
sensing damping 

Only modeled for double-ended MR 
dampers and suitable for civil  
structures 

(Sapiński, 2014) Energy harvesting,  
dynamic sensor 

Electromagnetic energy  
extractor 

Limited range of output voltage 

Fig. 22  Block diagram of a self-powered and self-sensing 
MR damper system (FFT is fast Fourier transform) 
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modes. The basic design and construction of MR 
dampers, along with the configurations of their vari-
ous types, are discussed in this paper to understand 
their versatile applicability for a range of environ-
ments and purposes. The techniques for characteriz-
ing the non-linear complex behavior of MR dampers 
are demonstrated using some well-known damper 
mathematical modeling methods and all these are 
summarized here. To cope with different applications, 
design modification, optimization, and advancement 
are covered in this review. Saving energy is the ulti-
mate demand at present and is a challenge to modern 
technology. In that connection, self-sensing and 
power saving, i.e., the energy-harvesting capability of 
an MR damper from the wasted mechanical energy, 
are compared here with their proper modeling. In 
future, a new type of self-powered and self-sensing 
mono-tube MR damper could be built, which is con-
structive to combine power generation and sensing 
ability within one small device, like the mono-tube 
MR damper, and suitable for small-scale applications, 
such as vehicle suspension systems. That damper 
would combine the advantages of energy harvesting 
(reusing wasted energy) and MR damping (control-
lable damping force). This multifunctional integration 
would bring great benefits such as energy saving, size 
and weight reduction, lower cost, higher reliability, 
and less maintenance for MR damper systems. By 
comparison with conventional mono-tube MR 
dampers, this proposed energy-generated MR damper 
design would have an extra permanent magnet, 
nonmagnetic material, and an external coil which 
would work as a power generator in the proposed 
model. Overall, the optimal design, fabrication and 
smart application of various MR dampers, and the 
latest advances in self-powered and self-sensing 
technology are reviewed in this paper. This work may 
be useful to implement MR dampers in various 
structures for vibration control with minimum current 
supply. 
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中文概要 
 

题 目：磁流变阻尼器最新进展综述：优化设计和应用 

概 要：本文对各种磁流变阻尼器的优化设计、制造和智

能应用以及自供电和自感应技术的最新进展进

行了综述。本文讨论了磁流变阻尼器的基本设计

和结构以及各种类型的配置，以了解它们在各种

环境和目的下的多功能性。为了应对不同的应

用，本文介绍了设计的修改、优化和改进。节能

是当前的终极需求，是对现代技术的挑战。磁流

变阻尼器需要改进，以确保较低的电流供应得到

较高的效力。这项工作将有助于在各种结构中使

用磁流变阻尼器，使其以最小的电流供应进行振

动控制，并在优化中获得最佳结果。 

关键词：磁流变阻尼器；自供电；振动控制；节能；优化

和提升 

 


