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Abstract: The quality of compaction is key to the safety of dam construction and operation. However, because of incomplete 
information about the construction process and the unknown relationship between compaction quality and the factors that influ-
ence it, traditional evaluation methods such as neural networks and multivariate linear regression models fail to take uncertainty 
fully into account. This paper proposes a cloud-fuzzy method for assessing compaction quality by considering randomness, 
fuzziness, and incomplete information. The compaction parameters and material source parameters are the key parameters in the 
assessment of compaction quality. A five-layer neural-network model of compaction quality assessment is established that con-
siders compacted dry density and its classification membership and probability as the criteria, and the rolling speed, rolling passes, 
and compacted layer thickness as alternatives. Because of uncertainties in the criteria and alternatives, the cloud-fuzzy method, in 
which a fuzzy neural network is extended with a cloud model to handle uncertain and fuzzy problems more effectively, is intro-
duced to determine the compaction quality. A case study is presented to evaluate the compaction quality of a hydropower project in 
China. The results indicate that the cloud-fuzzy model is feasible in relation to precision and makes up for the sole focus on 
precision by traditional methods. The proposed method provides a triple index for understanding compaction quality, which 
facilitates assessment of the compaction quality of an entire dam surface. 
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1  Introduction 
 

The quality of dam compaction is critical to the 
stability and durability of the dam itself. Inadequate 
control of compaction quality can lead to decreased 
strength and bearing capacity, and increased settle-
ment, volume change, and permeability (Liu et al., 
2012). 

In the traditional field of transportation engi-

neering, previous studies of the evaluation of com-
paction quality have focused on correlating compac-
tion quality with soil properties and construction 
parameters, such as machine drive power (MDP) 
technology (Komandi, 1999; White et al., 2004), soil 
stiffness (Kb, a measure of the compaction) (An-
deregg et al., 2004, 2006; Kaufmann and Anderegg, 
2008), compaction meter value (CMV) (Sandstrom 
and Pettersson, 2004), and total harmonic distortion 
(THD) (Mooney and Rinehart, 2007; Rinehart and 
Mooney, 2008). However, although the aforemen-
tioned approaches address the issue of compaction 
quality control in road construction, they are not 
immediately applicable to the construction of dams 
from earth rock because of the different construction 
materials and quality-control philosophies involved 
in these two types of construction (Liu et al., 2012). 
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There are two main measures for controlling the 
compaction quality of a rockfill dam. One is the dry 
density obtained from pit testing. However, it may be 
unreliable or even misleading to represent the com-
paction quality of an entire surface from a limited 
number of spot samples, and the feedback provided in 
this manner is often too late (Liu et al., 2012). The 
other type of measure is the compaction parameters of 
the construction process itself. In the existing study, a 
method is proposed for monitoring the operational 
compaction parameters in real time and correlating 
them with the compactness to control the quality in an 
earth-rock dam construction project (Zhong et al., 
2009, 2011, 2017). Monitoring the compaction qual-
ity of the core of a rockfill dam in real time may be 
effective in improving the efficiency of the sur-
face-compaction quality control, and can allow the 
compaction parameters to be measured at any loca-
tion on the surface.  

However, because of uncertainties in the mate-
rial source parameters, the compaction quality cannot 
be based on the compaction parameters alone (Zhong 
et al., 2009, 2011). Hence, relationships are estab-
lished between the compaction parameters and the 
compaction quality to evaluate the construction qual-
ity. Liu et al. (2012) and Liu and Wang (2014) used a 
multiple regression model to investigate the rela-
tionship between compaction itself and the associated 
compaction parameters. They established a non-linear 
relationship between the two measures, and proposed 
methods for evaluating the compaction quality of the 
entire dam surface. A dual evaluation model that 
combined dry density and reliability has also been 
developed by Wang R et al. (2015). They obtained the 
variability of dry density and its influencing factors 
via reliability and sensitivity analyses of its parame-
ters, thereby improving the reliability of evaluation. A 
multilayer forward artificial neural network was used 
to establish a non-linear relationship between the 
compaction parameters and the dry density. This 
involved taking the distribution of material parame-
ters into consideration, thereby allowing the dry den-
sity to be fitted anywhere on the dam surface (Wang 
XL et al., 2015). Hence, the compaction parameters 
and the distribution of material source parameters 
were analyzed from a large number of test pit data in 
the same dam area to obtain relatively credible values 
of the material parameters. This provided data support 

to the evaluation of compaction quality while con-
sidering material uncertainties, thereby taking ac-
count of incomplete information. 

There are many factors that affect the quality of 
dam compaction, and any uncertainty, especially 
randomness and fuzziness, in those factors compli-
cates its evaluation. On one hand, because of the 
limited number of samples, randomly selected test 
data regarding dry density and other material source 
parameters are bound to contain some uncertainty, 
especially the characteristic of fuzziness in spatial 
distributions. Compaction parameters are associated 
with a construction process that is inherently affected 
by random operations. On the other hand, the rela-
tionship between compaction and its factors is neither 
linear nor non-linear but a complex one that also 
presents fuzziness. There are various methods for 
measuring such uncertainty. For example, the nu-
meral unit spread assessment pedigree (NUSAP) 
method was used to quantify qualitative uncertainty 
in the frequency analysis of regional rainfall (Zhu et 
al., 2015). A fuzzy pattern-recognition method that 
takes fuzziness into consideration was used to assess 
groundwater vulnerability (Mao et al., 2006). A cloud 
model is a cognitive model that can realize a bidirec-
tional cognitive transformation between a qualitative 
concept and quantitative data based on probability 
statistics and the theory of fuzzy sets (Wang et al., 
2014). Forward and backward cloud transformations 
are used to make cognitive transformations between 
the intension and extension of a concept (Wang and 
Xu, 2012). Combined with randomness and fuzzi-
ness, a cloud model forms a mapping between quan-
tification and quality, thereby constituting a break-
through at the limits of probability, statistics, and 
fuzzy-set theory (Li et al., 2006).  

Hardly any previous studies have attempted to 
unite fuzziness and randomness to evaluate compac-
tion quality. To solve this problem effectively, in the 
present study a cloud model is proposed based on 
fuzzy mathematics and probability statistics, thereby 
taking both fuzziness and randomness into consider-
ation. This provides the possibility to evaluate dam 
compaction quality and uncertainty. The approach is 
no longer focused entirely on accuracy, but rather on 
depicting the uncertainty relationship. 

The present study introduces the theory of arti-
ficial intelligence with uncertainty based on a cloud 
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model for the evaluation of the compaction quality of 
a rockfill dam. A cloud-fuzzy model is established 
that makes dam construction evaluation conform to a 
set of objective laws. The compaction parameters and 
material source parameters are analyzed through data 
mining based on massive real-time monitoring and 
testing data regarding compaction quality, and are 
analyzed with the cloud model. The distribution 
characteristics of the compaction quality and material 
source parameters at the testing pit site are obtained 
and are used to generate material data by means of 
bootstrap methods. The reliability (i.e. predictive 
uncertainty) and precision of the cloud-fuzzy model 
are assessed in comparison with those of an improved 
back propagation (BP) neural network, a radial basis 
function (RBF) neural network, and a multivariate 
linear regression (MLR) model. The cloud-fuzzy 
model based on artificial intelligence with uncertainty 
is used to forecast the dry density distribution and 
make fuzzy evaluations. This approach may over-
come the failure of previous methods to consider 
uncertainty in the evaluation of the surface compac-
tion quality of rockfill dams.  
 
 
2  Rockfill dam compaction quality evalua-
tion based on cloud-fuzzy model 
 

The framework of the proposed methodology 
comprises three major parts: obtaining the evaluation 
parameters, establishing a cloud-fuzzy model, and 
compaction quality evaluation (Fig. 1). Firstly, from  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

analyzing the results of a real-time compaction qual-
ity monitoring system and pit testing, the following 
are proposed as the input parameters of compaction 
quality assessment: rolling velocity, thickness, rolling 
passes, moisture, and gradation. Secondly, a cloud- 
fuzzy model is established for evaluating the com-
paction quality by reforming a fuzzy neural network 
with the cloud model. Finally, a cloud-fuzzy method 
for compaction quality evaluation is proposed based 
on the cloud-fuzzy model, and is applied to a case 
study of rockfill dam compaction quality assessment 
in a hydropower project in China. 

2.1  Cloud-fuzzy model 

2.1.1  Cloud model  

A cloud model that is based on fuzzy mathe-
matics and probability statistics takes fuzziness and 
randomness into consideration and realizes a trans-
formation between a qualitative concept and its 
quantitative expression. In other words, a cloud 
model is a powerful tool with which to study the 
transformation between qualitative and quantitative 
concepts, thereby overcoming the deficiencies of 
traditional fuzzy and RBF neural networks. 

Cloud is defined as follows (Li et al., 2006). 
Definition 1: Let U={x} be a universal set de-

scribed by precise numbers (where x is one type of 
parameter) and T be the qualitative concept. If there is 
one number xU, which is a random realization of the 
concept T, and the membership CT(x) of the qualita-
tive concept T is a random number with a stable  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1  Framework of proposed methodology 
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tendency, then the distribution of the membership of 
concept T in the number field [0, 1] is called the 
membership cloud C(X), where each X is a cloud 
drop: 
 

( ) : [0,1], , ( ).T TC x U x U x C x   
       

 (1)
 

 
A cloud model integrates fuzziness and ran-

domness by using digital characteristics such as the 
expected value Ex, entropy En, and hyper-entropy He 
(Li et al., 2006; Wang et al., 2014), whereby  

 
2

2

( Ex)
( ) exp .

2EnT

x
C x

 
  

 
                    (2)

 

 
Taking the cloud concept of thickness as an 

example (Fig. 2), in the normal cloud model, the ex-
pected value Ex is the most typical sample with which 
to represent the concept. Corresponding to the center 
of the mass of the cloud the entropy En is a synthetic 
measure of the random probability and fuzziness of 
the qualitative concept. The hyper-entropy He 
measures the uncertainty of the entropy, which can  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
also be considered as the entropy of En. Near the 
origin of the coordinate with an expected value of 
zero, a larger value of En corresponds to a greater 
coverage of cloud drops; the larger the value of He, 
the more discrete are the cloud drops. It is clear that 
the expected value reflects the stability of mutation, 

that the entropy reflects the span of mutation, and that 
the hyper-entropy reflects the accuracy of mutation; 
the hyper-entropy He is the degree of uncertainty in 
the entropy En (Song et al., 2011). 

The cloud expectation curves of qualitative 
knowledge in most natural and social sciences ap-
proximately follow normal or semi-normal distribu-
tions, which indicate the universality of the normal 
cloud model (Li et al., 2006). The expectation curve 
determined by Ex and En can be expressed as 
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The normal cloud model can be extended to a 

multi-dimensional normal cloud as follows. 
Definition 2: Let U be a set of n-dimensional 

ordered vectors U={xi1, xi2, …, xin}, and A is a fuzzy 
set of U. If there is a stable random number μA(xi1, 
xi2, …, xin) corresponding to any element (xi1, xi2, …, 
xin), then μA(xi1, xi2, …, xin) corresponding to any el-
ement (xi1, xi2, …, xin) is defined as the membership 
(xi1, xi2, …, xin) of A. The membership μA is called an 
n-cloud, which can also be expressed by n groups of 
numerical characteristics comprising the expected 
value (Ex1, Ex2, …, Exn), the entropy (En1, En2, …, 
Enn), and the hyper-entropy (He1, He2, …, Hen). The 
hyper-expectation curve of the n-dimensional cloud 
determined by (Ex1, Ex2, …, Exn) and (En1, En2, …, 
Enn) can be expressed as (Li and Du, 2014) 
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2.1.2  Cloud transform method 

Cloud transform is a method for discretizing 
compaction quality data and transforming them into 
qualitative concepts. Within the allowable error, us-
ing a cloud model to fit the probability density func-
tion of the data distribution, any function can be de-
composed into cloud stacks. Each cloud represents a 
discrete and qualitative concept. The transformation 
error depends on the number of superimposed clouds. 
The more clouds there are, the smaller the error is. In 
other words, a cloud transformation can extract a 
qualitative description in the form of a probability 

Fig. 2  Cloud concept of thickness (Ex=24 cm, En=
0.5085 cm, He=0.0578 cm) 
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distribution of compaction quality data, leading to the 
following partitioning (Qin and Wang, 2008): 
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( ) ( ) ,
n

i i
i
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

                         (5) 
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where g(x) is the data distribution function, ci is the 

coefficient of fi(x): 
2

2
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( ) exp

2En
i

i
i

x
f x

 
  

 
 is the 

expected function of probability density, n is the 
number of clouds, and ξ is the defined maximum 
allowed error (here, we set ξ=0.001). 

Because it does not consider the relationship 
between clouds in the transformation process, the 
cloud sets so obtained may be coarser. The shorter the 
distance between clouds, the more similar the de-
scribed concepts, whereas clouds that are relatively 
far apart may lead to a conceptual vacuum. Therefore, 
a comprehensive cloud model is required to promote 
concepts. The basic method for promoting concepts is 
soft fusion based on weighting, which can bring 
clouds closer together. 

If there are two adjacent cloud models C1(Ex1, 
En1, He1) and C2(Ex2, En2, He2), where Ex1<Ex2, 
cloud model C3(Ex3, En3, He3) can be obtained as 
follows (Fu et al., 2011): 

 

3 1 2 1 2

3 2 1 1 2

3 1 2

Ex (Ex Ex ) / 2 (En En ) / 4,

En (Ex Ex ) / 4 (En En ) / 2,

He max(He , He ).

   
    
 

        (7) 

 
To evaluate the effect of concept promotion, the 

ambiguity degree CD is proposed (Li and Du, 2014). 
The larger the ambiguity CD, the more discrete the 
concept, and also the greater the overlap between 
adjacent cloud concepts. In contrast, the smaller the 
value of CD, the more convergence between con-
cepts, and also the smaller any adjacent overlap. 
Furthermore, it is easier for the promoted concepts to 
reach consensus. For CD(0.2, 0.5004], the cloud 
concept is comparatively mature; for CD(0, 0.2], 
the cloud concept is mature; for CD=0, the cloud 
concept is very mature and the cloud distribution 
degenerates into a Gaussian function.  

2.1.3  Cloud-fuzzy model 

By combining a cloud model with a fuzzy neural 
network (FNN), a cloud-fuzzy model is established as 
shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each input dimension xi leads to ni synthesized 
cloud models via peak-cloud-transformation and soft 
fusion. Normal n-dimensional clouds are constructed 
as neurons of the hidden layer based on the theory of 
high-dimensional cloud models. Eventually, there 
will be n1×n2×…×nn n-dimensional cloud neurons, 
each of which is expressed by three groups of nu-
merical characteristics: expected value (Ex1, Ex2, …, 
Exn), entropy (En1, En2, …, Enn), and hyper-entropy 
(He1, He2, …, Hen).  

The cloud neurons can transform the n- 
dimensional inputs into a group of uncertainties 
obeying some stable distribution and take the expec-
tation of that group as the final output. For input {xi}, 
the output of the cloud-fuzzy-layer neuron μi is 

 
2

2
1 1

( Ex )1
exp ,

2En

k n
i i

i
t i j

x

k


 

 
    
                 (8) 

 
where En′j is one of the k n-dimensional random 
numbers generated with expectation (Ex1, Ex2, …, 
Exn) and hyper-entropy (He1, He2, …, Hen).  

Because certain impossible combinations of 
high-dimensional clouds may lead to a small output 
value in the n1×n2×…×nn hidden-layer neurons, a 
threshold value should be set and any output less than 
that threshold should be set to zero. In addition, the 

Fig. 3  Cloud-fuzzy model 
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corresponding weight coefficient is not involved in 
the network training, thereby reducing the ill- 
condition of the hidden-layer output matrix. 

The strength of each rule is normalized by that of 
layer 3 of the fuzzy inference, and the output of the 
fuzzy rules is calculated at layer 4.  

At the defuzzification layer 5, the output of the 

training data 1 2( ,  ,  ...,  )p p p
p nx x x x  is 

 

1

( , ),
h

i i i
i

y F w f


                             (9) 

 

where h is the number of output nodes, and iw  and fi 

are the weight and value of output node. 
Finally, the parameters can be solved in ac-

cordance with the principle of least squares as a 
Takagi-Sugeno fuzzy model. 

2.2  Compaction parameters and material source 
parameters analysis 

The factors that commonly affect the surface 
compaction quality of a rockfill dam include the fill-
ing materials, environment, machines, and construc-
tion method. The usual method of compaction evalu-
ation is an example of “control after the event”, which 
is one of the three phases in engineering quality con-
trol. The compaction quality is measured by means of 
the dry density obtained by pit experiments conducted 
after surface rolling, which is also compared with the 
compactness at the same pits. Along with pit testing, 
material parameters such as the moisture content and 
different size contents (i.e. p=0.074 (the proportion of 
aggregate diameter less than 0.074 mm) and p=5 (the 
proportion of aggregate diameter less than 5 mm)) are 
obtained at the same time. Hence, the factors influ-
encing the compaction quality of the dam surface can 
be classified as either material source parameters or 
compaction parameters. Because the material source 
parameters are obtained via pit testing, it is impossi-
ble to obtain their values at every location on the 
surface. The compaction parameters can be obtained 
by using the compaction quality real-time monitoring 
system, which gives complete information. The 
compaction parameters are collected in real time, and 
are certain in relation to historical data from the con-
struction process but random in relation to the gener-
ation of data regarding the vibration compactor (e.g. 
the roller speed). As for the material source parame-

ters, they have the characteristics of randomness and 
fuzziness; this data uncertainty leads to an uncertainty 
in the compaction quality. 

2.2.1  Automatic collection of compaction parameters 
in real-time 

To control the process of rockfill dam construc-
tion, Zhong et al. (2009, 2011, 2017) developed 
technology for the real-time monitoring of rolling 
velocity, rolling passes, and compacted thickness. 
This system was designed with thickness and the rate 
of rolling passes as the main indicators of compac-
tion. Compared with traditional control methods, this 
system greatly reduces the extent to which human 
factors interfere in the construction process.  

The process of compaction parameters collected 
is as follows. It begins with obtaining the time- 
dependent spatial coordinates of the rollers and real- 
time data about the vibration state via a global posi-
tion system (GPS) benchmark site, a high-precision 
positioning and receiving device, and vibration sen-
sors in the construction area. All these data are then 
sent to a database server through an independent 
transmission network, and are analyzed in an appli-
cation server. The results are provided to engineering 
managers through the same transmission network. 
The managers regulate the construction process via 
real-time monitoring of the roller speed, track, rolling 
passes, and the vibration state. Finally, the compac-
tion is evaluated via a system client that generates 
maps of the thickness and the rolling-pass ratio. 

2.2.2  Material source parameters generation 

The parameters of a gravelly soil usually express 
the different contents of grain gradation and moisture. 
At the beginning of construction on a hydropower 
project, the amount of pit testing data is too small to 
reflect the characteristics of the soil material com-
prehensively. However, the improved bootstrap 
method, which is a numerical method that incorpo-
rates uncertainty, can be used to overcome this data 
insufficiency and thereby determine the distribution 
of the material parameters. Along with the develop-
ment of construction, the sample data will be replen-
ished, whereupon the statistics obtained using the 
bootstrap method can reflect the distribution of the 
material parameters effectively. 

The bootstrap method is a resampling strategy 
that determines a distribution from given observation 
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information alone, with no other assumptions or new 
observations. It is a numerical method that incorpo-
rates uncertainty through digital simulation technol-
ogy to expand the sample size. This method depends 
entirely on the sample data themselves without any 
subjective assumptions, thereby generating sample 
data that is more objective. The core of the method is 
the construction of independent samples via 
resampling; the bootstrap method is therefore an ef-
fective way to overcome the finiteness of measured 
data. 

Using moisture content as an example, the sam-
ple size is determined by taking a confidence level of 
95% and a permissible error of 0.05, whereupon the 
sample size is determined by 

 
2 2 2

2( ) / ,N z                            (10) 

 

where N is the determined sample size, σ is the pop-
ulation variance of the samples, ε is the permissible 
error, α is the confidence level, and zα is the statistic at 
the confidence level α. Here, N is less than the pit 
testing sample data size of 1050. Hence, the bootstrap 
method can be used in this study. 

The bootstrap structures the distribution function 
F(x) through the data x=(x1, x2, …, xn) and samples 
x*=(x1

*, x2
*, …, xn

*) in F(x). 

2.3  Procedures for evaluation of compaction 
quality based on cloud-fuzzy method 

Based on the cloud-fuzzy model, the detailed 
process for estimating compaction quality is summa-
rized in Fig. 4. 

The procedures are divided as follows: 
1. To establish the cloud-fuzzy model, the in-

fluence factor of dry density should be analyzed first 
with a cloud model. The set of compaction data is 
collected according to the construction procedure. 
The data include the material parameters of the sam-
pled test pits, such as dry density, moisture content, 
and gradations (i.e. p=5 and p=0.074), and the com-
paction parameters associated with the test pits, in-
cluding roller passes, compacted thickness, and roller 
velocity, all of which are collected from the real-time 
monitoring system. 

2. Based on the cloud analysis, the structure of 
the cloud-fuzzy model can be determined. The num-
ber of hidden-layer neurons and their arguments, 

including expected value, entropy, and hyper-entropy, 
can be calculated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Using the historical data, train the cloud-fuzzy 
model. Firstly, calculate the strength of the rules; 
normalizing the strength of the rules, calculate the 
input weights; calculate the output of the rules; then, 
setting the dry density data as the output, calculate the 
parameters of the linear transfer function according to 
the least square method. 

4. Using the cloud-fuzzy model, the dry density 
of each grid in the work area can be calculated on the 
basis of the known parameter data associated with the 
grid center point. 

5. Finally, on the basis of cloud analysis of the 
dry density of the test pits, the fuzzy assessment F of 
each grid, which has two indices Cμ and P, can be 
calculated as follows: 

Fig. 4  Detailed procedures for the cloud-fuzzy evaluation
of compaction quality 
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where Cμ is the membership value of the predicted dry 
density to the qualitative concept C(I, II, III) of dry 
density, x is the predicted dry density, I, II, and III are 
the classifications of the dry density, CIμ, CIIμ, and 
CIIIμ are the membership of each classification of the 
predicted dry density, P is the probability that the 
predicted dry density belongs to the classification of 
dry density, ExII is the dry density average of II, II1 is 
the left half of II, II2 is the right half of II, and the 
function ϕ(x) is given by 

 
2
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( ) exp d .

2EnEn 2π

x x
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2.4  Models for comparison  

2.4.1  Back propagation neural network 

Artificial neural networks (ANNs) are mathe-
matical models that mimic the structure of the human 
brain, where outputs depend on input signals (Zeng et 
al., 2017). The BP neural network is one kind of 
feed-forward neural network with multi-layers. The 
BP neural network including one or more hidden 
layers is one of the ANN methods, which have a rel-
ative simple structure and thus can be realized easily 
(Wang et al., 2017).  

2.4.2  RBF neural network 

An RBF is a real-valued function (Mirinejad and 
Inanc, 2017). The learning algorithm of this type of 
neural network requires three parameters: the center 
of the basis function, and the variance and weights 
between the hidden and output layers. The mapping 
from the input layer to the output layer in an RBF 
neural network is non-linear, whereas the output layer 
is linear in terms of the adjustable parameter. There-
fore, the network weights can be obtained directly as 
the solutions to linear equations. The learning process 
of an RBF neural network is fast and may avoid the 
local-minimum problem. 

2.4.3  Multivariate linear regression 

MLR analysis is a multivariate statistical tech-
nique used to examine the relationship between a 
single dependent variable and a set of independent 
variables. The main objectives of MLR are explana-
tion and prediction. Explanation examines the re-
gression coefficients, their magnitude, sign, and sta-
tistical inference, for each independent variable. Pre-
diction involves the extent to which the independent 
variables can predict the dependent variable (Bas et 
al., 2017). 
 
 
3  Case study 

3.1  Project overview 

The cloud-fuzzy method is applied to a case 
study to evaluate the compaction quality of a dam 
surface in the hydropower project A located on the 
Lancang River in Yunnan Province, China based on 
real-time monitoring data and pit testing data. Hy-
dropower project A is a core rockfill dam (Fig. 5). 

It is the first hydropower project to use a real- 
time monitoring system throughout the entire con-
struction process. Considering the influence of mate-
rial sources on different dam zones, the dam core was 
selected as the research target. The moisture content 
and particle size (<5 mm and <0.074 mm) of the 1050 
groups of pit testing data were chosen as the factors 
influencing dry density. By matching the pit testing 
data, the compaction parameters of rolling passes, 
compacting-machinery running speed, and thickness 
can be obtained. 

3.2  Establishing the cloud-fuzzy model  

3.2.1  Determining cloud arguments for evaluation 
factors  

To begin with, the frequency distribution of the 
influencing factors is analyzed, and then the proba-
bility density distribution of the factors is fitted by 
using the heuristic Peck cloud transform method to 
transform the curve into multiple Gaussian cloud 
concepts, as shown in Fig. 6.  

Taking the rolling velocity as an example, the 
promoting concepts are low, normal, and high, as 
shown in Fig. 6. The cloud concepts of moisture 
content, rolling speed, and soil ingredients are given  
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in Table 1. The classification of dry density is also 
expressed (Table 1). As we can see from the table, the 
promoting concepts of the factors are comparatively 
mature and the data can be divided fairly clearly. 

3.2.2  Determining function arguments  

On the basis of the cloud transform and cloud 
synthesis method, each factor is divided into three 
concepts. Hence, the number of neurons in the 
cloud-fuzzy layer is 3×3×3×3×3, and accordingly 
there are 243 fuzzy rules. However, there are some 
combinations with impossible outputs. In such  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
circumstances, those outputs are set to zero according 
to the threshold ξ=0.001 to improve the robustness of 
the cloud-fuzzy model. 

3.3  Evaluation by the cloud-fuzzy method 

3.3.1  Comparative analysis 

For comparison, as well as training and testing 
the cloud-fuzzy neural network, we also trained and 
tested a BP neural network, an RBF neural network, 
and an MLR model using the same data. We set 800 
groups as training data and 250 groups as testing data 
among the 1050 groups of data. Table 2 gives the 
absolute testing errors of the four types of model, and 
Table 3 gives the relative errors. It can be seen from 
Tables 2 and 3 that the RBF neural network has the 
smallest maximum error and sum of squared errors, 
followed by the improved BP neural network. Alt-
hough the maximum error and the sum of square 
errors of the cloud-fuzzy model are larger than those 
of the RBF and improved BP models, it has an ob-
vious advantage over the MLR model and no apparent 
disadvantage. 

3.3.2  Rationality analysis of the cloud-fuzzy models 

Fig. 7 (p.299) allows comparisons between the 
results predicted by the four models and the real 
measured values.  

Clearly, the distribution of results predicted by 
the RBF neural network with the smallest sum of 
square errors has a flat elliptical structure, and the  

Fig. 5  Details of hydropower project A 

Fig. 6  Promoting concept of velocity 
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predicted values tend to the average dry density of the 
samples. The errors are the largest for the smallest and 
largest values of dry density, which is not consistent 
with the actual results. Compared with the results of 
the RBF model, those predicted by the improved BP 
model are more scattered and form two regions on 
either side of the average but still gather near the 
mean. The results predicted by the cloud-fuzzy model 
are even more scattered at larger values of dry den-
sity, but most values still lie in the range from −0.05  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
to +0.05. The results predicted by the MLR model are 
the worst, with the predicted data being the most 
scattered and gathering into three regions that the 
main region crosses the +0.05–−0.05 envelope. Only 
a few data are close to the line of original values, 
which shows that it is not a simple linear relationship. 
There is a slight improvement for the accuracy of the 
cloud-fuzzy method at the smaller end (<1.8 g/cm3) 
and the larger end (>1.9 g/cm3) compared with RBF 
between the factors and the compaction quality. 

Table 1  Promoting concepts 

Factor Concept Expectation Entropy Hyper-entropy Ambiguity degree Percentage (%)

Thickness (cm) 

Thin 18.51 0.75 0.085 0.383 23.26 

Normal 24.00 0.51 0.058 0.383 75.53 

Thick 30.43 0.40 0.090 0.099 1.21 

Moisture content (%) 

Low 10.75 0.37 0.051 0.416 9.03 

Normal 12.50 0.63 0.089 0.429 75.08 

High 14.57 0.59 0.084 0.429 15.89 

Rolling velocity 
(km/h) 

Low 1.98 0.17 0.027 0.485 9.38 

Normal 2.50 0.17 0.027 0.485 81.55 

High 3.11 0.19 0.028 0.445 8.17 

Particle size less than  
5 mm (%) 

Low 33.93 0.86 0.11 0.379 27.13 

Normal 38.39 1.54 0.19 0.379 50.80 

High 46.46 2.27 0.23 0.308 22.07 

Particle size less than 
0.074 mm (%) 

Low 27.13 1.98 0.24 0.363 16.84 

Normal 33.80 1.39 0.22 0.477 68.59 

High 37.77 1.14 0.18 0.477 14.57 

Dry density (g/cm3) 

I 1.79 0.007 0.0009 0.347 46.38 

II 1.83 0.013 0.0016 0.347 29.33 

III 1.93 0.022 0.0009 0.121 24.29 

Table 3  Relative error comparison 

Model 
Maximum relative  

error (%) 
Minimum relative  

error (%) 
Average relative  

error (%) 
Improved BP neural network   5.46 0 1.43 

RBF neural network   5.14 0 1.31 

Cloud-fuzzy model    5.78 0 1.53 

MLR model 11.52 0 3.33 

Table 2  Absolute error comparison 

Model 
Maximum absolute 

error (g/cm3) 
Minimum absolute 

error (g/cm3) 
Average absolute  

error (g/cm3) 
Error sum  
of square 

Improved BP neural network 0.1014 0 0.0263 0.2734 

RBF neural network 0.0943 0 0.0241 0.2384 

Cloud-fuzzy model  0.1073 0 0.0283 0.3272 

MLR model 0.2438 0 0.0618 1.3750 
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The prediction errors of the four models are 
shown in Fig. 8, where it can be seen that the error 
distributions of the cloud-fuzzy model are qualitatively 
similar to those of the improved BP and RBF models 
and quantitatively of the same order of magnitude.  

The errors of groups 101–150 of the testing data 
are shown in Fig. 9. The relationship between the 
absolute errors can be seen clearly. The RBF testing 
error is not always the smallest, and neither is the 
cloud-fuzzy error always larger than the RBF one, but 
the MLR error is generally the highest. 

The improved BP neural network, RBF neural 
network, and MLR model are based on limited sam-
ples to determine the relationship between influencing 
factors and construction quality, but the cloud- 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fuzzy model is based on overall sample distribution. 
The improved BP neural network, RBF neural net-
work, and MLR model are deterministic models to 
describe the relationship between the influencing 
factors and the construction quality, but the cloud- 
fuzzy model is an uncertain model. The relationship 
between influencing factors and construction quality 
is not a simple linear one. MLR is a linear model, 
while the improved BP neural network, RBF neural 
network, and cloud-fuzzy model are non-linear mod-
els. To evaluate the performance of the models, we 
should not only pay attention to their accuracy, but 
also pay attention to uncertainty. Therefore, the cloud- 
fuzzy model is effective for evaluating the quality of 
compaction. 

Fig. 7  Measured value and estimated value of different models 
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3.2.3  Compaction quality evaluation of whole dam 
surface 

By analyzing the real-time monitoring data in 
relation to the dam core area, the No. EL711.7_3 
surface is chosen as an example. It is divided into 
grids (2 m×2 m) according to the desired level of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

accuracy and the attribute values of the factors are 
obtained for each grid, as shown in Fig. 10.  

Therefore, the dry density for any grid of No. 
EL711.7_3 can be estimated using a cloud-fuzzy 
model (Fig. 11). The predicted values and those ac-
tually measured from test pit samples after the work 
surface was finished are given in Table 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 4  Comparison of actual values and prediction values 

Name of test pit Actual value (g/cm3) Prediction value (g/cm3) Absolute error (g/cm3) Relative error (%)

EL711.7_3-01 1.873 1.880   0.007 0.4 

EL711.7_3-02 1.836 1.823 −0.013 0.7 

EL711.7_3-03 1.832 1.821 −0.011 0.6 

EL711.7_3-04 1.860 1.845 −0.015 0.8 

Fig. 8  Errors of the predictions 

Fig. 9  Partial errors of the predictions 
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Taking the 15th column as an example, because 
each calculation may involve a different time, the 
assessment results are averaged over 10 calculations 
and are presented in Table 5. Most of the values of dry 
density belong to C(II), which is the general level, 
with the others belonging to C(III), meaning a high 
dry density. It can also be seen that the close values of 
membership Cμ may result in a large difference in the 
probability P, because the dry density values are  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

on the opposite sides of the expected value Ex. Hence, 
C(I) should be avoided in the construction process. 
The higher the value of P for the dry density, the 
greater the possibility of over-rolling. Thus, C(III) 
should also be treated carefully.  

In Table 6, the dry density assessment matching 
C is presented for the entire dam surface. As we can 
see, at least 90% of the surface area meets the speci-
fication requirements, which indicates that the com-
paction quality was controlled nearly perfectly. This 
result can give timely feedback to help the relevant 
personnel control and improve quality. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Assessment of the 15th column grid of the dam 
surface 

Dry density (g/cm3) C Cμ P

1.828 II1 0.988 0.437
1.823 II1 0.879 0.306

1.810 II1 0.324 0.067
1.819 II1 0.689 0.194

1.819 II1 0.689 0.194
1.823 II1 0.879 0.306

1.811 II1 0.344 0.072
1.805 II1 0.167 0.029

1.857 II2 0.124 0.020
1.822 II1 0.815 0.261

1.826 II1 0.960 0.387
1.805 II1 0.167 0.029

1.844 II2 0.577 0.147
1.823 II1 0.879 0.306

1.882 III 0.094 0.015
1.823 II1 0.879 0.306

1.884 III 0.113 0.018
1.882 III 0.093 0.015

1.822 II1 0.815 0.261
1.826 II1 0.960 0.387

1.805 II1 0.167 0.029
1.844 II2 0.577 0.147

1.823 II1 0.879 0.306
1.882 III 0.094 0.015

1.823 II1 0.879 0.306
1.884 III 0.113 0.018

1.882 III 0.093 0.015

Table 6  Percentage of each class for whole surface 

C Percentage (%)

I   8.79 
II 59.62 
III 31.59 

Fig. 10  Surface division and compaction parameters sta-
tistical analysis 

Fig. 11  Dry density prediction of whole dam surface 
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4  Conclusions 
 
In this paper, a cloud-fuzzy evaluation method 

was proposed and established by considering artificial 
intelligence with uncertainty and fusing a cloud 
model with a fuzzy neural network. Based on real- 
time monitoring data and pit testing data, compared 
with an improved BP model, an RBF model, and  
an MLR model, the present cloud-fuzzy method  
was verified not only as feasible in relation to preci-
sion but also in its ability to express uncertainty  
relationships. 

The present cloud-fuzzy model takes into ac-
count the uncertain relationship between compaction 
and its factors. It can express the randomness and 
fuzziness of compaction, and can compensate for the 
sole focus on precision by traditional approaches. The 
present model brings compaction evaluation more 
into line with objective rules. 

In the process of evaluating the compaction of 
the entire surface of a core rockfill dam, a triple- 
indicator method was proposed for evaluating the 
compaction quality. Not only can this provide the 
value of dry density at any grid, it can also give 
membership and the probability of dry density be-
longing to a particular classification. The cloud-fuzzy 
evaluation method can be used to calculate relatively 
accurate distributions of dry density, make fuzzy 
linguistic assessments, and realize a triple evaluation 
of compaction. 
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中文概要 
 

题 目：基于云-模糊模型的堆石坝施工质量评估 

目 的：施工质量对于大坝建设期及运行期的安全至关重

要。由于施工过程中的信息不完备及碾压质量与

影响因素之间的关系并不是完全确定等原因，传

统的评估方法很少考虑不确定性对施工质量的

影响。本文旨在探讨考虑不确定性影响的碾压质

量评估方法，改善施工质量评估的可信性。 

创新点：1. 通过研究模糊神经网络与径向基神经网络，结

合云模型建立云-模糊模型；2. 建立施工质量三指

标体系评价方法。 

方 法：1. 通过碾压质量实时监控系统和现场试坑试验获

取参数数据；2. 通过云分析，建立云-模糊模型；

3. 对比不同的模型，验证云-模糊模型的可行性；

4. 利用验证的云-模糊模型对大坝施工仓面进行

压实干密度预测；5. 计算评价体系的三指标，对

施工质量进行评估。 

结 论：1. 云-模糊模型不但能在精度上满足预测要求，而

且能够综合考虑施工质量与影响因素之间的不

确定性关系；2. 云-模糊评价方法弥补了传统评价

方法仅追求精度的单一性，使得施工质量评价更

符合客观规律；3. 提出的施工质量三指标评价体

系充实了传统的评价方法，能够更客观地指导实

际工程建设。 

关键词：堆石坝；云模型；不确定性；施工质量评价 

 
 
 


