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Abstract: The parameters of existing roller-compacted concrete (RCC) dam construction simulation are usually fixed based on 
experience while the actual construction conditions of an RCC dam change during the process of the project. The simulation 
accuracy of an RCC dam is therefore reduced because the change has not been considered. A new method for RCC dam con-
struction simulations based on real-time monitoring is presented in this paper. First, real-time monitoring technology is used to 
collect and analyze the actual construction information. Second, meteorological data obtained from the real-time monitoring 
system are analyzed using the fuzzy average function method, and the weather conditions of the next stage are forecasted. Then the 
construction schedule simulation model is updated via the Bayesian update method. Results of the analysis are used as the input to 
the construction simulation parameters, and the construction simulation is performed. A real-world engineering example is pre-
sented to compare the simulation results with the actual construction schedule. The results demonstrate that the method can ef-
fectively improve the accuracy and real-time performance of construction simulations. 
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1  Introduction 
 

Simulation is a rehearsal for the real world 
(Banks, 2005). Construction simulation is one of the 
most important methods for the formulation of the 
construction organization plan and the realization of 
construction resource allocation. In an actual con-
struction process, if the construction simulation re-
sults and actual progress deviate, then the next phase 
of the actual construction will be full of risk and we 

lose the guiding role of simulation in the construction 
process. The simulation parameters of the roller- 
compacted concrete (RCC) dam are an important part 
of the simulation system. The accuracy and effec-
tiveness of the input parameters directly affect the 
credibility of simulation results. However, most RCC 
dam construction simulation methods are based on 
the parameters given by experience. The given pa-
rameters are assumed to have the mean value or to be 
a value based on experience. When the variation of 
the construction simulation parameters cannot be 
reflected in the simulation model, the simulation re-
sults will deviate from the actual construction. Con-
struction simulation based on real-time monitoring 
takes the changes in the construction parameters into 
account, dynamically updates the construction simu-
lation model to ensure that the model changes with 
the actual construction conditions, and improves the 
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adaptability of the simulation. Therefore, it is im-
portant both in theory and practice to study the con-
struction simulation based on real-time monitoring. 

The construction simulation method has been 
applied to study the construction of an RCC dam for 
many years (Jurecha and Widmann, 1973). In recent 
years, the research on the simulation has concentrated 
mainly on a specific process such as storehouse sur-
face area planning (Dong and Zhao, 2013) and 
storehouse surface construction simulation (Zhong et 
al., 2013, 2017). The multi-process coupling has also 
been developed (Luo, 2009). Simultaneously, with 
the development of network and information tech-
nology, some progress has been made in dynamic 
simulation (Zhong, 2012). However, due to the 
shortcoming that the simulation parameters are fixed, 
the accuracy of the results has been affected by the 
inaccurate estimation of construction parameters. 

Construction quality real-time monitoring is 
applied to road engineering in its early stages (An-
deregg et al., 2006; Hossain et al., 2006; White et al., 
2006; Mooney and Rinehart, 2007). It has been suc-
cessfully applied to hydropower projects, but is used 
mainly for the rock-fill dam (Cui et al., 2009; Cui, 
2010; Zhong et al., 2011). Although some results 
have been achieved in the field of quality control of 
concrete dam construction (Zhong et al., 2012a; Liu et 
al., 2015), studies of construction schedule control 
based on real-time monitoring technology are lacking. 

Construction process simulations based on real- 
time monitoring information have emerged in recent 
years. At present, most such simulations are applied 
to earthwork engineering or rock-fill dam engineer-
ing. Song and Eldin (2012) collected real-time data of 
the site construction which was applied to real-time 
analysis of the construction schedule. Vahdatikhaki 
and Hammad (2014) proposed near real-time simula-
tion methods and considered environmental influ-
ences to the construction simulation but without any 
prediction of the impact of rainfall. Lu et al. (2007) 
introduced a concrete construction decision system 
based on the trail of vehicle tracking technology, the 
principle of discrete event simulation, and an opti-
mization algorithm. This system updates the param-
eters of the simulation using current monitored data. 
Navon (2005a, 2005b) realized the real-time moni-
toring of earthwork transportation in highway con-
struction, calculated and analyzed the duration of 

actual construction, equipment productivity, and the 
rate of resource degradation in real time using real- 
time monitored data. Han et al. (2005) analyzed the 
productivity of earthwork based on GPS (global po-
sitioning system) real-time data of the earthwork 
transportation system and compared the calculated 
data with the experiential data. Akhavian and 
Behzadan (2012) updated the simulation model in 
real time according to the real-time construction data 
in the site and completed the construction process 
simulation using the data. The real-time animation 
model was built by simulations and the 3D dynamic 
visualization of simulations of the construction pro-
cess was realized. There were no predictions of sim-
ulated parameters for construction process in the 
future using the site construction data. Akhavian and 
Behzadan (2013) used k-means to analyze the real- 
time construction information and updated the con-
struction parameters but there was a lack of consid-
eration of the influence of environmental factors. Han 
et al. (2006) completed the earthwork transportation 
process model and simulation with online cyclic 
network simulation technology based on GPS data 
while updating in real time the earthwork productivity. 

We therefore aim to (1) establish a construction 
simulation model of high roller-compacted concrete 
dam based on real-time monitoring; (2) use Bayesian 
update technology, combined with a priori infor-
mation and sample information, to achieve construc-
tion simulation parameter prediction. 

 
 

2  Construction simulation framework 
 

In this simulation, data are acquired by real-time 
monitoring. The data are used to adjust and update the 
simulation boundary and model; then simulation and 
schedule prediction are based on the current con-
struction features.  

We use real-time monitoring technology to col-
lect all types of construction process data. Then a 
dynamic data analysis method is used to analyze the 
data to determine the intensity of concrete placing, 
paving productivity, rolling productivity, quality 
inspection duration, and predicted daily rainfall. The 
overall framework for an RCC dam construction 
simulation is shown in Fig. 1. The implementation 
steps are as follows: (1) It uses a GPS, a computer 
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network, automatic control, and database technology 
to monitor the construction process of the RCC dam 
to acquire real-time data on the dump truck, com-
pactor, quality control, and the storehouse surfaces, in 
addition to other raw data. (2) Pre-processing is car-
ried out on the dynamic data obtained in step (1) to 
determine the intensity of concrete placing, paving 
efficiency, rolling productivity, quality inspection 
duration, and predicted daily rainfall. The construc-
tion time of construction quality inspection data, 
calculated by different quality inspection points of 
quality inspection duration, simulates the parameters 
of the construction quality inspection procedure. The 
meteorological conditions are the necessary condi-
tions clearly specified in the construction specifica-
tions. Therefore, the rainfall data are used to predict 
the future meteorological conditions. (3) The con-
struction simulation parameters obtained in step (2) 
are applied in the RCC dam simulation model using 
Bayesian update and a fuzzy mean generating function.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(4) On the basis of step (3), after obtaining the simu-
lation results of the next stage of the construction 
progress, comparisons are made for the simulation 
results of the proposed method, traditional methods, 
and the actual schedule, and then visualize the simu-
lation results. Then these results are used to adjust the 
construction plan for the next phase to ensure that the 
next phase of the actual construction schedule will 
meet the planning requirements. (5) In the next stage 
of construction, steps (1)–(4) are repeated. 
 
 
3  Mathematical model 

 
The mathematical model of the construction 

simulation is the mathematical abstraction of the 
simulation object evolution process. It is divided into 
four parts: objective function, state transition equa-
tion, constraint condition, and parameter updating 
method. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1  Framework for an roller-compacted concrete (RCC) dam construction simulation based on real-time monitoring
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Eq. (1) defines the objective function of the 

construction simulation, where T and U indicate the 
construction period and utilization factor of the con-
struction equipment, respectively. The construction 
period and the mechanical utilization rate are optimized. 

Eq. (2) defines the dam state transition equations 
before and after the construction simulation. Specif-
ically, the first equation represents the construction 
process of dam section l, where He(l) and Hs(l) rep-
resent the ending and starting elevations of dam sec-
tion l, respectively, and ΔHl(i) represents the pouring 
thickness of dam section l of pouring warehouses i; 
the second equation represents the propulsion process 
of the construction time of dam section l, where Te(l) 
and Ts(l) represent the construction ending time and 
starting time of dam section l, respectively, and ΔTl(i) 
represents the construction period of dam section l of 
pouring warehouses i, including the waiting period of 
the warehouse and the actual construction period; the 
third equation represents the cumulative concrete 
volume of dam section l, where V(l) represents the 
volume of pouring concrete of dam section l and 
ΔVl(i) represents the volume of pouring concrete of 
dam section l of pouring warehouses i; the fourth 
equation represents the accumulation process of con-
struction duration of machinery m, where TC(m) rep-
resents the construction duration of machinery m and 
ΔTm(i) represents the construction duration of ma-
chinery m in pouring warehouses i; the fifth equation 
represents the cumulative amount of concrete poured 
by machinery m, where VC(m) represents the volume 
of concrete poured by machinery m, ΔVm(i) represents 

the volume of concrete poured by machinery m in 
pouring warehouses i, and α represents machinery m 
in the pouring warehouse i project accounting for the 
proportion of which (m=1, 2, …, M with M the total 
number of machines). 

Eqs. (3)–(5) define the simulation constraints of 
construction. Specifically, Eq. (3) is the opening 
constraint, where Ts(i, j, k) represents the starting 
concrete pouring time of warehouses i (1≤j≤k≤N, N is 
the total dam number), Te(o, …, …), Te(p, …, …), and 
Te(q, …, …) represent the completion time of pouring 
warehouses o, p, and q which have a spatial cross 
relationship with pouring warehouse i, and Tb(i, j, k) 
represents the duration of construction preparation of 
warehouse i. Eq. (4) shows the height difference 
constraints of dam material transportation, where 
Hs(i, j, k) and He(i, j, k) are the starting and ending 
elevation heights of pouring warehouses i, respec-
tively, He(o, r, j−1) represents the ending elevation 
height of pouring warehouses r adjacent to pouring 
warehouses i, and Ht

max denotes the height difference 
control threshold. Eq. (5) is the construction quality 
constraints, where CM represents the data set of con-
struction quality and CMb represents the standard data 
set of construction quality, including the detection 
data set C of rolling control system, the test data set E 
of upper dam transportation system, the inspection 
data set Q of construction quality, and the data set R 
of rainfall information. 

Eq. (6) defines the updating method of con-
struction simulation parameters, where RM repre-
sents the parameter updating method set, including 
the Bayesian update method RMB and the fuzzy ho-
mogenous function RMF. 

3.1  Raw data collection 

To obtain the construction simulation parame-
ters in line with the actual conditions of the construc-
tion site, we propose a dam construction information 
acquisition method composed of the differential ref-
erence station, monitoring terminal, field control 
station and control center, applied GPS technology, 
general packet radio service (GPRS) wireless data 
transmission technology, computer network tech-
nology, and database technology (Fig. 2). Four dif-
ferent methods are used to collect data. Using the GPS 
technology and the vibration sensor, the compaction 
construction information, such as the space-time  
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coordinate P(x, y, z, t) and the vibration status Lv are 
collected in real time (Liu et al., 2015). Using the GPS 
technology and the loading and unloading sensors, the 
transportation information of dam construction, such 
as the position coordinates of vehicle Q(x, y, z, t) and 
the transport volume V are collected in real time (Cui, 
2010). Quality inspection personnel collect construc-
tion quality inspection information, including quality 
inspection time tq, dry density of concrete ρc, and 
concrete moisture content Mc, with a personal digital 
assistant (PDA) at the construction site (Liu et al., 
2013). The microclimate monitoring station, com-
posed of temperature sensor, humidity sensor, ane-
mometer, and pluviometer, is used mainly to collect 
construction site temperature T, humidity M, wind 
speed υ, and rainfall Rf (Zhong et al., 2012b). The 
resultant construction information is transmitted and 
stored in the database server of the data center 
through the GPRS network in real time. The fre-
quency and accuracy of the raw data used in the con-
struction simulation are shown in Table 1. 

3.2  Data processing 

The real-time monitoring data are the raw data, 
which reflect the actual construction process of dam 
construction. Because the data acquisition frequency  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

is inconsistent, the data processing method is used to 
process the raw data. 

3.2.1  Data cleaning 

For the cleaning of construction data, 
Vahdatikhaki and Hammad (2015) monitored the 
same rigid component of a digger by multiple data 
collection equipment to ensure the accuracy of the 
data. An interpolation method was used to fill up the 
missing values. Zhang et al. (2012) monitored the 
operation of a crane via multiple data collection and 
judged whether there existed outliers based on the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Precision frequency table of construction simu-
lation raw data 

Raw data Accuracy Frequency 

Temporal and spatial  
information of roller  
machine P(x, y, z, t) 

2–3 cm 1 s 

Temporal and spatial  
information of transport 
vehicle Q(x, y, z, t) 

2–3 cm 1 s 

Carrier number N − Based on the con-
struction schedule

Quality inspection time tq − Based on the con-
struction schedule

Rainfall Rf 0.1 mm 1 min 

Fig. 2  Framework of real-time data acquisition and processing for an RCC dam construction 
RTK: real-time kinematic 
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geometric constraint conditions and also filled up 
missing data with interpolation. As we analyzed data 
which contain spatial data and rainfall data, as well as 
the spatial data focused on the locations of rolling 
compaction machines and dump trucks, the pro-
cessing is comparatively simple. By analyzing raw 
data, there are constraints on the speed of data 
changes. In the rolling process, the running distance 
of a roller in any two seconds cannot be greater than  
1 m. The construction information data cleaning 
problem is transformed into the time series data 
cleaning problem with speed constraints (Song et al., 
2015). 

Consider a sequence X=X1, X2, …, where each Xi 
is the value of the ith data point and each Xi has a 
timestamp ti. Taking all the time series values x=x1, 
x2, …, xn within time interval T=[t1, tn], the time series 
is detected. If the jth time series value is missing, the 
time value tj is added, and xj=0 is taken to ensure the 
integrity of the time series.  

A speed constraint s=(smin; smax) with window 
size w is a pair of the minimum speed smin and the 
maximum speed smax over sequence x. For any time ti 
and tj, it requires xi and xj to meet the following  
condition: 
 

min max0 ,    .


    


j i
j i

j i

x x
t t w s s

t t
         (7) 

 

Assuming that the correction value of xi is xi′, 
according to the minimum change principle, it re-
quires Δ(xi, xi′)=|xi, xi′| to be the minimum value. 

Taking the spatial information collected by the 
rolling control information acquisition system as an 
example, the process of data cleaning is described. 
The spatial data collected at a certain time period are 
shown in Table 2. 

According to the construction site control 
standard, we can see that the rolling speed is limited 
as s=(smin; smax)=(0; 2) where w=2. Given that the 
timestamps of the space coordinates are t1, t2, …, t10, 
the corresponding spatial coordinates are {(x1, y1, z1), 
(x2, y2, z2), …, (x10, y10, z10)}. Because the data varia-
tion is constrained to the roller speed, the coordinates 
are converted into a roller speed that is {v1, v2, …, 
v10}. Thus, the data change rate between v7 and v8 is 

=0.925 2.
3

2.701 0.851

1





 Then the missing space 

coordinates (233.85, 12.635, 1105.0315) are obtained 
by the interpolation method from finding the exist-
ence of missing values by detecting the timestamps. 
Similarly, the data change rate between v8 and v9 is 
1004.777 1.351

=1003.426>2.
4 3




 Thus, v9 is the ab-

normal value and should be deleted, and then the new 
spatial coordinates (236.25, 12.66, 1105.0295) are 
obtained by interpolation. The new data are listed in 
Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.2  Data analysis 

In traditional construction simulation, Zhou and 
Zhao (2008) selected the pouring strength, efficiency 
of concrete spreading, and productivity of the rolling 
machine as the construction simulation parameters; 
Chang et al. (2013) chose the construction quality 

Table 2  Spatial data collected at a certain time period 
before data cleaning 

Time x (m) y (m) z (m) v (m/s)

2011/3/15 11:24:55 227.5 12.58 1105.034 0.808

2011/3/15 11:24:56 228.3 12.83 1105.038 0.838

2011/3/15 11:24:57 229.2 12.59 1105.040 0.931

2011/3/15 11:24:58 230.0 12.86 1105.035 0.844

2011/3/15 11:24:59 230.8 12.61 1105.035 0.838

2011/3/15 11:25:00 231.7 12.88 1105.032 0.939

2011/3/15 11:25:01 232.5 12.59 1105.036 0.851

2011/3/15 11:25:03 235.2 12.68 1105.027 2.701

2011/3/15 11:25:04 236.1 12.83 100.250 1004.777

2011/3/15 11:25:05 237.3 12.62 1105.032 1004.783

Table 3  Spatial data collected at a certain time period 
after data cleaning 

Time x (m) y (m) z (m) 
v 

(m/s)

2011/3/15 11:24:55 227.50 12.580 1105.0340 0.808

2011/3/15 11:24:56 228.30 12.830 1105.0380 0.838

2011/3/15 11:24:57 229.20 12.590 1105.0400 0.931

2011/3/15 11:24:58 230.00 12.860 1105.0350 0.844

2011/3/15 11:24:59 230.80 12.610 1105.0350 0.838

2011/3/15 11:25:00 231.70 12.880 1105.0320 0.939

2011/3/15 11:25:01 232.50 12.590 1105.0360 0.851

2011/3/15 11:25:02 233.85 12.635 1105.0315 1.351

2011/3/15 11:25:03 235.20 12.680 1105.0270 1.351

2011/3/15 11:25:04 236.25 12.660 1105.0295 1.050

2011/3/15 11:25:05 237.30 12.620 1105.0320 1.050

Bold values indicate that the data were obtained after data cleaning
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inspection time as a simulation parameter. On the 
basis of the above research, taking into account the 
feasibility of real-time information collection at the 
construction site, we selected pouring strength, effi-
ciency of concrete spreading, productivity of the 
rolling machine, and construction quality inspection 
time as the simulation parameters. The RCC con-
struction specifications stipulate that the construction 
should be forced to stop when the rainfall is at a cer-
tain point, which has great influence on the construc-
tion site organization. Taking into account this situa-
tion, rainfall in the dam area is chosen as a constraint 
condition. 

1. Analysis of the intensity of concrete placing 
and paving productivity 

The current state of the machine, including the 
position, speed, and direction, is determined by the 
automatic acquisition of the monitoring data. Taking 
transport vehicle warehousing as an example, ‘geo- 
fencing’ technology (Reclus and Drouard, 2010) 
based on mechanical positioning data can be used for 
dynamic analysis and real-time calculation of the 
actual intensity of concrete placing (Pa) and paving 
productivity (Pb): 
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where Ni is the carrier number of the ith vehicle in the 
pouring period Δt, Vi (m3) is the rated carrying ca-
pacity of the ith vehicle, Δt (h) is the concrete pouring 
time, m is the number of vehicles used for transport, tsl 
(s) is the moment at which transport vehicle l enters 
the storehouse surfaces, tel (s) is the moment at which 
transport vehicle l exits the storehouse surfaces, Vl 
(m3) is the rated carrying capacity of transport vehicle 

l, and n 
1

  
 


m

k
k

n N  is the number of vehicles en-

tering the storehouse surface. 
2. Analysis of rolling productivity  
The most critical operating procedure in the 

construction of RCC dams is storehouse surface 
rolling, which is directly related to the quality and 
progress of the whole project. In the operating system, 
the rolling productivity Pc is an important index to 

control the construction schedule. In this study, the 
following method is used to analyze the rolling 
productivity. 

Although the driving process of the rolling ma-
chine in the storehouse surfaces is inevitably influ-
enced by the driver, the machine itself and the con-
struction environment have a strong regularity in 
terms of the specific time, specific storage area, and 
specific construction. According to its operating 
rules, based on the real-time monitoring system, the 
position coordinates of the two points P(x1, y1, z1, t1) 
and P(x2, y2, z2, t2) of one track and their corre-
sponding time t1 and t2 can be extracted. Based on the 
extracted data, the length of the compacted section l 
and the roller speed v can be obtained: 

 

       
 

2 2 2

1 2 1 2 1 2 1 2

1 2

2 1

, + ,

,
,

l S P P x x y y z z

S P Pl
v

T t t

      


 
 

  

   (10) 
 

where S(P1, P2) (m) is the distance between P1 and P2 
and ΔT (s) is the time interval. 

Finally, the roller productivity is calculated us-
ing the following equation: 

 

t
c

0 R

3600( )
,

( )


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
z c lhK

P
l v t N

                     (11) 

 
where z (m) is the width of the roller wheel, c (m) is 
the lap width of the rolled strip, h (m) is the thickness 
of the paving layer, l (m) is the length of the com-
pacted section, v (m/s) is the speed of the roller, t0 (s) 
is the turning and shifting time of the roller, NR is the 
rolling pass number, and Kt is the time factor. 

3. Quality inspection duration analysis 
The quality inspection process of the storehouse 

surface with a nuclear density meter is presented as 
follows: after the completion of storehouse construc-
tion, the on-site inspection personnel use a nuclear 
moisture density meter to measure the density of the 
compacted surface (i.e. the quality inspection proce-
dure). After the completion of a point, the detection 
data, detection time, detection position, and other 
information are sent to the total control center data-
base using a handheld PDA until all test points have 
been analyzed. Therefore, the real-time monitoring 
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data analysis module can calculate the duration of 
inspection procedure of the storehouse based on the 
data of the detection time in the database, as shown 
below: 

 

eq sq
q ,

3600

t t
T


                            (12) 

 

where Tq (h) is the duration of construction quality 
inspection, teq (s) is the detection time of the first 
point, and tsq (s) is the detection time of the last point. 

4. Analysis of the influence of the microclimate  
The microclimate of the dam area has a strong 

influence on the construction of the RCC. Special 
weather impacts the working efficiency of the con-
struction machinery, and excessive rainfall and high 
winds can lead to construction stagnation. The accu-
racy of the weather forecast must be improved to 
facilitate a timely understanding of the meteorologi-
cal conditions of rainfall and air temperature and 
proper planning of the construction schedule during 
the construction period. 

The microclimate monitoring device collects 
microclimate data and sends the data to the database 
every minute. A fuzzy mean generating function 
method is used to update the parameters in the con-
struction simulation. The fuzzy mean generating 
function (FMGF) takes the data collected within 1 h 
as a data bit and the data collected within 24 h as a 
data column. This requires the analysis of microcli-
mate data to meet the requirements of real-time up-
dating of the simulation parameters. Taking rainfall as 
an example, because the system uploads rainfall data 
every minute, the total amount of rainfall within 1 h is 
shown as follows: 

 

fRF ,R                              (13) 
 

where RF (mm) is the total rainfall within 1 h and Rf 
(mm) is the rainfall data collected from the real-time 
data microclimate monitoring device. 

3.3  Simulation parameter updating 

3.3.1  Real-time updating of the construction effi-
ciency parameters 

Bayesian update technology provides a system-
atic method for subjective estimation of data and 
effective integration of real data. Based on the actual 

data acquired from the real-time construction infor-
mation monitoring system, Bayesian updating tech-
nology can effectively improve the input and output 
accuracies of the simulation model. 

Assume that the initial probability density func-
tion of input parameter xi of the simulation model is 
f′(xi) (according to the past experience and analysis, 
known as the prior density function). When actual 
observational data are acquired, they can be used to 
modify and update the initial hypothesis according to 
Bayes’ theorem; then the posterior distribution f′′(xi) 
can be obtained. The expression is shown below 
(Straub and Papaioannou, 2015): 

 

     s ,i i if x k L x f x                       (14) 
 

where L(xi) is a likelihood function and ks is a stand-
ard constant whose expression is  
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s d ,i i iL x f x xk
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where xi represents the intensity of concrete placing 
(m3/h), the paving productivity (m3/h), rolling 
productivity (m2/h), or quality inspection duration (h) 
(i=1, 2, 3). 

According to the central limit theorem, the con-
struction efficiency of each process E obeys the 
normal distribution, i.e. e~N(μe, σe

2). However, the 
mean μe and variance σe

2 of the normal distribution 
are unknown. Therefore, the overall distribution 
p(e; ) contains two unknown parameters, where 
={μe, σe

2}T. 
According to the posterior distribution (σe

2|t) 
using the posterior expectation estimation, the vari-
ance σe

2 and mean μe of each process duration can be 
updated with Eqs. (16) and (17) as follows (Zhang et 
al., 2014): 
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where α0, β0, 0, 0 are hyper-parameters of conjugate 

prior distribution f(t|α0, β0, 0, 0), 0 0
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is the mean of a priori data, 0=n, 0 =( 1) / 2, n  

2
0 1

1

= ( ) / 2,
n

i
i

t t


  and f(t|α0, β0, 0, 0) is a normal- 

inverse-Gamma distribution (Gelman et al., 2004). Its 
posterior distribution is f(t|α1, β1, 1, 1), where n is 
the sample size of the first stage, 

1t  is the sample 

mean of the first stage, and t1i is the ith component of 
the sample of the first stage, where i<n. 

3.3.2  Real-time updating of weather data 

Using the FMGF model (Wei and Cao, 1993), 
the short-term meteorological event sequence is pre-
dicted; this provides the basis for the long-term 
placement of the dam. To make the application of the 
average function more extensive and improve the 
fitting precision, Wei and Cao (1993) extended the 
mean generating function to the fuzzy set and formed 
the FMGF: 
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where M=INT(N/2), nl=INT(N/l), N is the sample 
size, and ˆ ( )A i  is a membership function for the 

periodic time series X(t),  
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According to the meteorological historical data 
structure, the meteorological original time series is 
X0(t), t=1, 2, …, N. To achieve the effect of a 
high-pass filter, the first- and second-order differ-
ences of the original sequence are calculated to obtain 
X1(t) and X2(t), respectively.  

The FMGFs of the sequences X0(t), X1(t), and 
X2(t) are obtained, and three sets of FMGF extension 
sequences fl

0(t), fl
1(t), and fl

2(t) are created by periodic 
extension. To fit the upward and downward trends in 
the original sequence, the cumulative continuation 
sequence is further established. 

Finally, a double-score criterion is used to select 
the 4×M extended sequence. Assuming that K pre-
dictions are eventually introduced, the sequence pre-
diction model is defined according to 

0
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
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i i
i

X t a a f t                     (19) 

 

where ai represents the coefficient of the ith epitaxial 
FMGF sequence and a0 represents the value of x(t) 
when no fuzzy mean-generating function is introduced. 

3.3.3  Updating the construction simulation boundary 
conditions  

A simulation based on real-time monitoring is 
conducted to provide support and service for the 
progress forecast and scheduling. Therefore, the 
simulation must update the parameters of the model 
and obtain and update the current state of the system 
simulation boundary conditions in real time. The 
comprehensive information system of the project 
contains many types of construction information, 
such as recent resource scheduling and the next phase 
of the construction tasks. The information is updated 
quickly and reflects the real situation of the engi-
neering construction and provides the necessary pre-
requisites for acquisition and real-time updating of 
simulation boundary conditions. 

3.4  Implementation 

We adopt the discrete event simulation method 
to develop the simulation software with C++ inde-
pendently. The updating of the simulation model is 
realized by updating the simulation parameters. When 
the simulation program receives the command to start 
the simulation, it reads the raw data from the data-
base. Then the initial simulation parameters are cal-
culated using the formula given in this study. The 
initial simulation parameters are automatically put 
into the Bayesian network to obtain the simulation 
parameters. Then the simulation model is carried out. 
The above processes are automatically completed. 
The construction simulation interface is shown in  
Fig. 3. 

 
 

4  Case study 
 
An RCC dam in southwest China is selected as a 

case study to demonstrate the validity of the research. 
The maximum dam height is 140 m. The dam is di-
vided into 28 sections. It uses two grades of RCC on 
the upstream face and abnormal concrete to control  
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seepage. In addition to the intake section, the dam is 
constructed using RCC around the bottom hole and 
above the surface of the weir. 

The construction simulation is divided into four 
stages. In the actual construction process, the con-
struction simulation can be carried out according to 
the needs of the construction site. After the simula-
tion, the simulation results such as elevation of each 
section and the maximum area of storehouse surface, 
are stored in the web database which can be displayed 
in real time. The real-time progress control system 
will read the simulation results in the web database 
and display it in real time, as shown in Fig. 4. 

At the beginning of the simulation, because the 
construction of the dam has not yet started, the real- 
time monitoring system failed to capture real-time 
monitoring data. The simulation input model cannot 
be updated. 

Therefore, the simulation parameters of the 
whole process simulation of the pre-construction 
process are used as the initial input parameters and the 
simulation results are shown in Tables 4 and 5. 

After the construction of the first stage, real-time 
monitoring data regarding the real construction process 
are used to update the simulation input model, and the 
updated model is used to simulate the next stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A regression model is established based on the 

rainfall data of the Ludila (LDL) project. Taking the 
rainfall information of June, July, and August as the 
regression samples and using the fuzzy average 
function model, the forecasting factors are selected 
using the double-score criterion, and the regression 
model is established. Finally, through the regression 
model, rainfall information for September is fore-
casted and verified. The regression model is given in 
Eq. (20), and the regression coefficient and FMGF 
can be observed in Table 6.  

 
9

0
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ˆ ( ) ( ).i i
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Fig. 4  Visualization of construction schedule simulation 
results 

Fig. 3  Construction simulation interface 
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The regression model was used to forecast the 

rainfall in September. The maximum fitting error is 
5.72 mm between the forecast value and the actual 
value, the mean error is 1.63 mm, and the correlation 
coefficient is 0.874. The comparisons of the measured 
and fitted values are shown in Fig. 5, demonstrating 
that the verification results are satisfactory. 

Roller productivity (m3/h), the main input pa-
rameter of the simulation model, is used to illustrate 
the whole Bayesian updating process. The sample  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
size of the roller productivity data is 160. The average 
value is 41.79 m3/h, the standard deviation is 11, the 
median is 40.45 m3/h, and the minimum and maxi-
mum values are 20.51 and 70.97 m3/h, respectively. 
The Kolmogorov-Smirnov (K-S) and Phillips-Perron 
(P-P) tests are conducted. The results indicate that the 
best-fitting distribution is a normal distribution with a 
mean value of 41.79 m3/h and a standard deviation of 
11. The distributions of the first and second updates 
are shown in Fig. 6. 

Table 6  Regression coefficient 

Regression coefficient Value FMGF Regression coefficient Value FMGF 

a0 −2.5333 − a5 0.2975 (0)
32 ( )f t

a1   0.4450 (0)
44 ( )f t a6 0.1586 (0)

41 ( )f t

a2   0.3695 (0)
35 ( )f t a7 0.1893 (0)

37 ( )f t

a3   0.5332 (0)
46 ( )f t a8 0.2663 (0)

20 ( )f t

a4   0.1281 (2)
45 ( )f t a9 0.2007 (0)

31 ( )f t

FMGF: fuzzy mean generating function; ( 0 )
44 ( )f t is an epitaxial FMGF sequence whose original sequence period is 44 d; ( 2 )

45 ( )f t  is an 

epitaxial FMGF sequence whose two-order differential sequence period is 45 d 

Table 4  Dam sections in different construction stages 

Serial number Stage I Stage II Stage III Stage IV 

1 Sections 13–16 Sections 13–16 Sections 12–17 Sections 4–9 

2 Sections 7–11 Sections 4–9 Sections 18–20 Sections 10 and 11 

3 Section 12 Section 12 Sections 2 and 3 

4 Sections 17–19 Sections 18–20 

Table 5  Comparisons between simulation results and actual construction results 

Stage Section 
Time (d) 

 
Maximum area (m2)

Maximum intensity of  

concrete placing (m3/h) 
Filling  
volume  

(m3) 

Filling  
elevation 

(m) Simulation Actual  Simulation Actual Simulation Actual 

I 

1 62 137  6700 5300 410 386 10.72 1110 

2 44 87  5690 4300 396 375 11.51 1150 

3 35 65  540 420 57 45 7.93 1128 

4 76 132  4900 4150 375 350 16.61 1153 

II 

1 28 31  6680 6530 350 335 9.81 1125 

2 123 170  10000 8700 495 467 13.89 1190 

3 35 35  610 593 97 90 1.45 1142 

4 117 177  5300 4950 325 280 8.57 1191 

III 

1 243 276  4200 3850 250 235 39.9 1192 

2 114 104  2100 2970 175 140 3.88 1225.5 

3 43 51  560 560 83 80 0.91 1225.5 

IV 
1 59 56  2550 2707 167 180 5.49 1222 

2 150 156  2500 2340 165 146 7.24 1213 
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In the initial simulation model, the roller 

productivity fits the normal distribution whose mean 
value is 55.0 m3/h and standard deviation is 3, as 
indicated in Table 7. In addition, the other input pa-
rameters of the simulation model, such as the store-
house construction intensity, paving efficiency, and 
quality inspection duration, can be dynamically up-
dated using Bayesian techniques. 

After completion of stage I, the simulation pa-
rameters of stage II such as the intensity of concrete 
placing, paving productivity, rolling productivity, 
quality inspection duration, and rainfall influence 
factors can be obtained by analyzing the raw data 
acquired by the real-time monitoring system. When  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
the simulation of stage II starts, the simulation pa-
rameters will be calculated on the basis of the raw 
data. A Bayesian updating technique and an FMGF 
model are used to calculate simulation parameters of 
stage II. The simulation program automatically puts 
parameters into the simulation model and obtains the 

Table 7  Comparisons of roller productivity 

Distribution type
Initial empirical 

distribution 
Actual data fitting 

distribution 

Distribution 
Normal 

distribution 
Normal 

distribution 
Mean value 55.00 41.79 

Variance 3.00 11.00 

Fig. 5  Rainfall fitting forecast results 

Fig. 6  Comparison chart of roller productivity distribution 

N(44.13, 10.57) 

N(44.63, 10.03)

N(45.24, 10.15)

N(46.21, 10.28)
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simulation results. Stages III and IV repeat the above 
steps, and the simulation results of different stages are 
shown in Tables 4 and 5. Fig. 7 shows the simulation 
results of each stage and the comparison between the 
simulation results and the actual construction schedule. 
Table 8 shows the actual construction schedule of the 
RCC dam. 

Table 5 and Fig. 7 show that the simulation re-
sults for the first stage, in terms of both the overall 
progress and sub-schedule, are very different from the 
actual construction results. The simulation construc-
tion period is 61 d while the actual construction pe-
riod is 137 d, i.e. a difference of 76 d. The actual  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

construction schedule of different sections lags be-
hind the construction simulation results. The actual 
construction time of section 2 is completely behind 
the simulation time. The reason for the above hyste-
resis is that on the one hand, the input parameters of 
the simulation model are based on experience, but on 
the other hand, because the dam has just started, it 
cannot completely determine the key construction 
process. In the second stage of simulation, the simu-
lation results are close to the actual construction re-
sults. The total duration of the simulation is 181 d, 
when the total actual construction period is 183 d. 
However, there is a great gap between the simulation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 8  Actual construction schedule of the dam 

Construction stage Dam section Time Filling volume (×104 m3) Filling elevation (m)

I 

1 2011.1.28–2011.6.13 10.72 1110 

2 2011.4.23–2011.7.18 11.51 1150 

3 2011.3.17–2011.5.20 7.93 1128 

4 2011.3.12–2011.7.21 16.61 1153 

II 

1 2011.12.20–2012.1.19 9.81 1125 

2 2011.7.21–2012.1.6 13.89 1190 

3 2011.12.17–2012.1.20 1.45 1142 

4 2011.7.21–2012.1.13 8.57 1191 

III 

1 2012.1.7–2012.10.9 39.90 1192 

2 2012.7.18–2012.10.29 3.88 1225.5 

3 2012.9.5–2012.10.25 0.91 1225.5 

IV 
1 2012.12.8–2013.1.31 5.49 1222 

2 2012.12.15–2013.5.19 7.24 1213 

Fig. 7  Comparison between simulation results and actual results 
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results and actual construction in the sub-schedule. 
The differences are 47 d and 60 d in sections 2 and 4, 
respectively. The reasons for the above results are 
arranging the construction process rationally and 
prioritizing the key processes to be completed suc-
cessfully. In the third stage, the total construction pe-
riod is 283 d, the construction simulation result is  
269 d, a gap larger than that for the second stage. 
However, the maximum sub-schedule is 33 d which is 
less than the second. The main reason is that the total 
duration is affected by flood control, while the 
sub-schedule is closer and closer with the updating of 
simulation parameters. In the fourth stage, the total 
construction period is 162 d, and the construction 
simulation result is 158 d. The sub-schedule differ-
ences are 3 d and 6 d. It can be seen that without the 
influence of external factors, the simulation results 
including overall progress and sub-schedule ap-
proached closer and closer to the reality. 

This study has used the mathematical model of 
this method to carry out the simulation which updated 
the parameters and the traditional simulation. Specific 
calculation results are shown in Fig. 8. We can learn 
from the landscape contrast between different simu-
lation methods and the actual construction schedule 
that: at the beginning of the simulation, the construc-
tion period simulated by the method of this study and 
the traditional method are all 61 d because the simu-
lation models and parameters are the same, while the 
actual construction period is 143 d. However, in the 
second stage, the construction period simulated by the 
proposed method is 181 d. The construction period 
simulated by the traditional simulation method is 176 d. 
The differences between the results of these two 
methods and the actual construction period are 2 d and 
7 d, respectively. In the third stage, the construction 
period simulated by the proposed method is 269 d. 
The construction period simulated by the traditional 
simulation method is 245 d. The differences between 
the results and the actual construction period are 14 d 
and 38 d. In the fourth stage, the construction period 
simulated by the proposed method is 158 d. The con-
struction period simulated by the traditional simula-
tion method is 132 d. Differences between the results 
and the actual construction period are 4 d and 30 d. 
Therefore, deviation will occur with both the above 
methods. However, it can be seen that the deviation of 

the traditional method is greater than the method 
which has applied parameter updating in the second, 
third, and fourth stages. This is because the update of 
parameters can better reflect the actual conditions of 
the construction site. It can be found by longitudinal 
contrast of the second, third, and fourth stages that: 
the simulation results of the proposed method gradu-
ally approach the actual construction period, and the 
traditional simulation method will cause more and 
more deviation with the progress of construction 
because its parameters cannot be updated. 

Our method and the traditional simulation 
method use the same platform. Simulation platform 
parameters are shown in Table 9, and the time con-
sumptions of simulation in different stages are shown 
in Table 10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9  Simulation platform parameters 

Configuration 
type 

Parameters 

Hardware 
configuration

CPU: Intel (R) Core (TM) I7 2.40 GHz; 
Memory: 16.0 GB; SSD: 512 GB 

Software 
configuration

Win 7.0 x64 system; net Framework 4.0; 
Access 2010 

Table 10  Time consumptions of simulation in different 
stages 

Stage 
Time consumption (s) 

Traditional method Proposed method

I 485 485 
II 1298 763 
III 934 527 
IV 761 356 

Fig. 8  Results contrast graph of different simulation 
methods 
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5  Conclusions 
 
In this paper, a new method for RCC dam con-

struction simulations based on real-time monitoring 
has been presented. In traditional construction simu-
lation methods, the parameters and boundary condi-
tions were determined based on the average value of 
the mechanical construction efficiency or according 
to experts’ experience. The proposed simulation 
method uses real-time positioning and data acquisi-
tion technologies to collect real-time data of the con-
struction process. The obtained data were analyzed to 
obtain the parameters, including the intensity of con-
crete placing, paving productivity, rolling productiv-
ity, quality inspection duration, and rainfall influence 
factors. These parameters are simulation parameters 
and must be updated for the simulation model. The 
proposed method can avoid the situation, in which the 
simulation model cannot reflect the changes in the 
construction conditions over time and effectively 
compensates for the defects of the existing construc-
tion simulation methods. The feasibility and practi-
cability of this method have been verified by appli-
cation to the LDL project. Through comparisons of 
the results of actual construction and our study, the 
following conclusions were obtained: 

1. Real-time monitoring technology has been 
used to obtain the actual construction data in real time 
and to provide a solid database for the construction 
simulation. 

2. The data dynamic analysis technique was used 
to analyze the mass data collected by the real-time 
monitoring technology, and the simulation parame-
ters were obtained.  

3. With the use of Bayesian updating technolo-
gy, the construction simulation parameters were up-
dated in real time to ensure that the simulation pa-
rameters have a better fit with the actual situation.  

4. Based on the meteorological data, the fuzzy 
mean generating function method was used to predict 
the weather, and the time series of the corresponding 
data was produced as a construction simulation  
parameter. 

At present, the construction of RCC dams is in-
creasing, and the construction simulation method 
based on real-time monitoring of RCC dams should 
be developed further. This method can be used for the 

establishment of a more intelligent real-time data 
acquisition and processing mechanism and can even 
be used to create an online integrated model and 
simulation platform, which is better for construction 
schedule control management services. 
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中文概要 
 

题 目：基于实时监控的碾压混凝土坝施工仿真 

目 的：碾压混凝土坝施工过程中施工仿真参数会随着施

工现场环境变化而变化。本文探讨实时监控方法

获取的施工信息对施工进度仿真的影响，研究碾

压混凝土坝施工仿真参数自适应更新方法，提高

施工仿真的精度。 

创新点：1. 通过碾压混凝土坝施工信息实时获取技术，分

析计算碾压混凝土坝施工仿真参数；2. 利用贝叶

斯更新技术对施工仿真参数进行更新；3. 利用模

糊均生函数对坝区短期降雨量进行预测；4. 建立

基于实时监控的碾压混凝土坝施工仿真模型，对

碾压混凝土坝施工过程进行仿真并与实际施工

进度对比。 

方 法：1. 通过实地采集，获取碾压混凝土坝施工过程中

实时施工信息（图 2）；2. 通过理论推导，构建施

工仿真参数先验分布均值和方差与后验分布均

值和方差之间的关系，得到施工仿真参数更新方

案（公式(16)和(17)）；3. 通过理论推导，利用已

知坝区降雨量数据预测未来短期内的降雨情况 

（图 5）；4. 通过仿真模拟，得到施工仿真参数更

新后的仿真成果并将其与实际施工进行对比，验

证本方法的有效性和准确性。 

结 论：1. 施工仿真参数的准确性对碾压混凝土坝施工仿

真结果准确性有很大影响；2. 可以利用贝叶斯更

新技术对施工仿真中的仿真参数进行更新，利用

模糊均生函数对坝区短时期内降雨量进行预测；

3. 运用基于实时监控的碾压混凝土坝施工仿真

方法对碾压混凝土坝施工过程进行仿真，仿真结

果与实际施工进度之间的偏差明显减少，仿真准

确性明显提高。 

关键词：碾压混凝土坝；施工仿真；实时监控；贝叶斯更

新；模糊均生函数 

 
 
 


