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Abstract: To provide a theoretical basis for the flow diversion control of a bifurcate tunnel, the flow separation characteristics and 
local loss model at the tunnel bifurcation were analyzed by combining numerical simulation and theoretical derivation. The results 
showed that the sudden change of boundaries interrupts uniform flow when air flows through a tunnel bifurcation, causing changes 
in flow velocity and direction. When the diversion ratio β is small, the flow is separated on the downstream mainline tunnel 
sidewall close to the bifurcation point and the ramp sidewall away from bifurcation point; when β is large, the flow is separated on 
the downstream mainline sidewall away from bifurcation point and the ramp sidewall close to bifurcation point. The local loss on 
flow division is caused mainly by velocity gradient changes and flow deflection and separation. When the air flux ratio q of the 
downstream mainline tunnel to that of the ramp is equal to their cross-sectional area ratio ϕ, local loss coefficients are at their 
minimum; when q>ϕ, the loss coefficients decrease with the increase of β, but the loss coefficient for the ramp increases as the 
bifurcation angle rises. When q<ϕ, the loss coefficients increase with the increase of β, but the loss coefficient for the ramp de-
clines as the bifurcation angle rises. Finally, a theoretical formula to predict the dividing flow local loss coefficient of a bifurcate 
tunnel is established based on the airflow deflection angle assumption. The proposed model has a higher precision in prediction 
than other formulas. 
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1  Introduction 
 

Tunnels are an important construction applied in 
urban areas to relieve traffic congestion (Li et al., 2012; 
Du et al., 2015). As urban tunnels are always located in 

downtown areas, more and more tunnels are designed 
with multiple on/off-ramps to connect with ground 
road networks to provide multiple access points (Meng 
et al., 2011; Tan and Gao, 2015). These connections 
serve important districts along the alignment and form 
a 3D transportation system. Such a branching design 
will inevitably divert the air flux and its contaminants, 
thus changing their distribution inside the tunnel and 
directly affecting the environment inside and outside 
the tunnel (Li et al., 2015). The key to effective flow 
diversion control and ventilation design of bifurcate 
tunnels is to understand the air flow characteristics and 
local loss features at the tunnel bifurcation. 
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Studies of the flow characteristics and local loss 
features of bifurcate tunnels are quite rare. Structur-
ally, a bifurcate tunnel is similar to a bifurcate pipe-
line. When air flows through the tunnel bifurcation, 
the sudden change of the tunnel shape causes changes 
in the velocity, direction and distribution of the flow, 
the air changing from approximately 1D flow to 3D 
flow. During the change of flow pattern, intense fric-
tion and momentum exchange occur among fluid 
particles, causing local energy loss (Hager, 2010; 
Abdulwahhab et al., 2013). Li et al. (2001) conducted 
numerical and experimental studies on the flow pro-
cess of fluid in a bifurcate pipe with an angle of 64° 
and discovered that changes in the flow direction and 
velocity distribution due to centrifugal force were the 
main causes of local losses at the bifurcation. Based 
on potential flow theory, Iwanami et al. (2008) ana-
lyzed the flow field features and pressure loss 
mechanism in a bifurcate pipeline with an angle of 
90°. They showed that, after the bifurcation, pressure 
loss in the main pipe was similar to that in a sudden 
enlargement, whereas the pressure loss in the lateral 
pipe was modeled as the sum of the loss in a contrac-
tion followed by a sudden enlargement. Ghostine et 
al. (2013), Mignot et al. (2013), and Momplot et al. 
(2017) focused on the flow structures in an 
open-channel bifurcation with an angle of 90°. They 
found that, by means of the aspect ratio and Froude 
number in the upstream channel, the occurrence of 
each branch of recirculation can be predicted. 

Multiple factors affect local loss in a bifurcate 
structure, including the area ratio, flow ratio, angle 
between two branches, Reynolds number (Re), 
chamfer, and the cross-sectional shape of the channel 
(Miller, 1971; Idelchik et al., 2008). Usually, when Re 
<1.5×105, the local loss coefficient tends to decrease 
with the increase of Re. When Re≥1.5×105, the flow 
enters a region of quadratic resistance law, where the 
local loss coefficient does not vary with Re and de-
pends only on the form of the bifurcate structure (Shi 
et al., 2013). An experiment was conducted to inves-
tigate the effect of the type of chamfer at the inter-
section of two branches. Results indicated that, 
compared to a sharp chamfer, a rounded chamfer can 
enhance the turbulence along the lateral pipe, allow 
momentum to diffuse more efficiently, and reduce the 
area of the backflow zone, thereby lowering the local 
loss coefficient of the lateral pipe (Costa et al., 2006; 
Lukiyanto et al., 2016). A large radius of curvature of 

a rounded chamfer is associated with a low local loss 
coefficient. The local loss coefficient of the main pipe 
is almost unaffected by the type of chamfer (Itō and 
Imai, 1973). The flow ratio and the angle between two 
branches have more significant effects on the local 
loss coefficient than the cross-sectional shape (Miller, 
1971). Through a lot of experimentation, Idelchik et 
al. (2008) found that when the angle between two 
branches fell within the range of 45°–120°, the local 
loss coefficient and flow ratio can be related by a 
second-order parabolic equation. Hager (1984), Bas-
sett et al. (2001), and Oka and Itō (2005) derived a 
theoretical formula based on the laws of conservation 
of mass, energy, and momentum, which could be used 
to calculate the local loss coefficient for any flow 
ratio and angle, and could be verified using test data 
within 45°–120°. Note that the radius of curvature at 
the intersection of the mainline tunnel and the ramp 
should not be too small, to ensure smooth traffic flow 
at the intersection and improve safety and ride com-
fort along the linear transition section (from the ramp 
nose to the starting point of the design speed control 
curve of the ramp) (MOT, 2018). Therefore, many 
bifurcate tunnels with a small bifurcation angle exist. 
For instance, the Zizhi Tunnel in Hangzhou, China 
has a bifurcation angle of 10.2° on the No. 1 west-line 
and 7.4° on the No. 3 east-line. The Chinese Qingdao 
Jiaozhou Bay subsea tunnel has a bifurcation angle of 
5°. However, the angle of a bifurcate structure ap-
pearing in most of the literature about the character-
istics of dividing flow and local loss is equal to or 
greater than 45°. Thus, the applicability of the exist-
ing formula to small angles is doubtful due to the lack 
of verification studies of local loss coefficients of 
small angles. 

Adopting the method of computational fluid 
dynamics (CFD), in this paper we build a 3D math-
ematical model of air motion in a bifurcate tunnel, and 
analyze the dividing flow characteristics and local 
loss features in the bifurcate structure with an angle 
range of 5° to 15° to determine the relationships be-
tween the dividing flow local loss coefficient and the 
flow ratio and bifurcation angle. Based on the flow 
separation mechanism, we also propose a theoretical 
formula for the dividing flow local loss coefficient of 
a bifurcate tunnel for design purposes. The present 
findings can improve tunnel ventilation design theory 
and provide a theoretical basis for the flow diversion 
control of bifurcate tunnels. 
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2  Mathematical model 

2.1  Governing equations 

The air flow in tunnels during ventilation is as-
sumed to be a steady incompressible flow with con-
stant viscosity and density and is usually turbulent 
(Nan et al., 2015). The flow process follows the 
fundamental laws of physics, i.e. the laws of conser-
vation of mass and momentum. In this paper, the 
Reynolds-averaged Navier–Stokes equations (RANS 
equations) (Versteeg and Malalasekera, 1995; Liao et 
al., 2018) are primarily used to describe turbulent 
flows. RANS equations are time-averaged equations 
of motion for fluid flow. The idea behind the equa-
tions is Reynolds decomposition, whereby an in-
stantaneous quantity is decomposed into its time- 
averaged and fluctuating quantities, an idea first 
proposed by Reynolds (1895). The governing equa-
tion can be written in the Cartesian coordinate system 
as follows: 
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where xi is the coordinate components, ui is the 

time-averaged velocity component, and iu  is the 

fluctuating component, i, j=1, 2, 3; i ju u    is the 

Reynolds stress; ρ, μ, and P are the mass density of air, 
turbulent viscosity, and static pressure, respectively; 
Si is the generalized source term. 

These equations can be used with approxima-
tions based on the knowledge of properties of flow 
turbulence to give approximate time-averaged solu-
tions to the Navier–Stokes equations. Yet, RANS 
equations are highly non-linear, with a greater number 
of independent variables than the number of dimen-
sions of the system. To close the equation system, this 
study adopts the Realizable k-ε turbulence model, 
which is able to simulate diversion, reflow, and rota-
tion (Shih et al., 1995). The generated term of the 
turbulent kinetic energy caused by buoyancy and the 
expansion and dissipation terms ascribed to the 
compressibility of the fluid are not taken into account. 
The transport equations of the turbulent kinetic en-

ergy k and turbulent dissipation rate ε in the Realiza-
ble k-ε turbulence model are shown in Eqs. (3) and 
(4). 
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where  is the coefficient of kinematic viscosity; Gk 

refers to the generated term of the turbulent kinetic 
energy caused by the mean velocity gradient; E stands 

for the strain rate; 2
t ,C k    is the turbulent vis-

cosity. The model coefficients Cμ, C1, C2, σk, and σε 
are determined by the principle of gradualism which 
proposes that simple flow results predicted by the 
model should be consistent with those from direct 
numerical simulation or experimentation. This has 
been discussed in detail in the literature. Here, the 
coefficients Cμ and C1 are not constant (for the for-
mula, please refer to Tavoularis and Corrsin (1981) 
and Shih et al. (1994)); the coefficients σk, σε, and C2 

are equal to 1.0, 1.2, and 1.9, respectively (Mohamed 
and Larue, 1990; Shih et al., 1995). Lin and Ferng 
(2016) reported that taking the model coefficients as 
above would be satisfactory for solving many fluid 
flow problems, including the flow in a tunnel. 

The Realizable k-ε model as a turbulence model 
for high Re numbers is not applicable to the near-wall 
area where the flowing Re number is low. Therefore, 
the Realizable k-ε model should be used with wall 
functions. Wall functions are the semi-empirical 
formula which can relate the physical quantities on 
the wall with the solution variables in the turbulent 
core area with high Re numbers. Because of their 
capability to partly account for the effects of pressure 
gradients, the non-equilibrium wall functions are 
recommended for use in complex flows involving 
separation, reattachment, and impingement where the 
mean flow and turbulence are subjected to pressure 
gradients and rapid changes (Nazif and Tabrizi, 2011). 
Thus, non-equilibrium wall functions were selected to 
be used with the Realizable k-ε model in this study.  
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2.2  Numerical algorithm 
 
The finite volume method is used to discretize the 

governing equations. For the discretization of deriva-
tives, the skewness-corrected linear upwind interpola-
tion scheme (second-order accuracy) is applied to the 
convective terms, and the second-order linear interpo-
lation is used with a non-orthogonal correction scheme 
for diffusive terms (Hong et al., 2017). The solution of 
the velocity field and pressure field is conducted 
through a fully coupled block algorithm. Due to the 
simultaneous solution of momentum and continuity 
equations, implicit block coupling of pressure and 
velocity variables leads to a faster convergence than 
with conventional loosely coupled and segregated 
algorithms of the semi-implicit method for pressure 
linked equations (SIMPLE) family of algorithms 
(Mangani et al., 2014). 

2.3  Model description and boundary conditions 

The mock object is a bifurcate tunnel with an 
off-ramp with a rectangular cross-sectional shape. 
The upstream mainline tunnel, the downstream 
mainline tunnel, and the ramp are a three-lane 
highway, a two-lane highway, and a one-lane high-
way with corresponding cross-sectional dimensions 
of 13.55 m×7 m, 9.75 m×7 m, and 7.55 m×7 m, re-
spectively. Three bifurcation angles, namely 5°, 10°, 
and 15° are considered separately. The whole domain 
is meshed by non-uniform hexahedral grids. Due to 
the application of wall functions, it is not necessary 
to refine the grids in the near-wall domain. Instead, 
only the near-wall node should be arranged in the 
log-law regions of a turbulent wall layer. That is, the 
y+ value should be distributed between 30 and 300. y+ 
is defined as a dimensionless parameter of distance 
which can be used to describe the flow in the viscous 
sublayer and log-law layer. The expression is as 
follows: 

 
*
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u y
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                                  (5) 

 
where u* refers to the friction velocity near the wall, 
and y refers to the distance of the near-wall node to 
the solid surface.  

According to y+, the distance of the near-wall 
node to the solid surface is calculated, which is also 

corrected continuously through computational simu-
lation. Ultimately, it can be determined that y+ can be 
ensured to be between 33 and 280 under all compu-
tation conditions when the first layer grid thickness is 
0.024 02 m.  

The tunnel entrance adopts the Dirichlet bound-
ary condition, with an air velocity directly given. The 
mainline tunnel and ramp exits adopt the Neumann 
boundary conditions with outflow. The tunnel walls 
and pavement are taken as impenetrable and non-slip 
boundaries.  

2.4  Grid dependence study 

Grid density has a tremendous impact on the 
numerical simulation results. When the grid number 
is relatively small, the dispersion error will be quite 
large; when the grid number is large, not only does the 
rounding error increase, but also the calculation 
quantity. Fig. 1 shows the velocity profile of the 
downstream mainline tunnel 0.8 m away from the 
bifurcation surface under different grid orders of 
1.2×105, 4.3×105, 2.32×106, and 8.01×106. The 
number of grids greatly influences the velocity profile. 
When the number of grids reaches 2.32×106, the ve-
locity profile no longer changes with increasing grid 
number. Therefore, the grid density of this number 
was adopted in this study.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.5  Validation 

The mathematical model was validated by the 
test results of a reduced scale tunnel (Wu et al., 2017) 
with a length of 29.46 m and a cross-sectional scaling 
ratio of 1/20 (Fig. 2). The cross-sections of the  
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upstream mainline tunnel, the downstream mainline 
tunnel, and the ramp were rectangular with dimen-
sions of 0.6775 m×0.35 m, 0.4875 m×0.35 m, and 
0.3775 m×0.355 m, respectively. The bifurcation 
angle θ could be adjusted within the range of 5°–30°. 
To satisfy resistance similarity, the tunnel model was 
made of galvanized steel sheet with a relative 
roughness of about 0.001 08, which is the same as the 
relative roughness of the real tunnel. When the air 
velocity of the model tunnel was greater than 2.5 m/s, 
it could synchronously meet the similarity criteria for 
resistance (Re), inertial force (Sr), and pressure (Eu).  

In the experiment, θ=10°. The #1 jet fan in the 
upstream mainline tunnel was opened to ensure the air 
flow at the start of the model tunnel entered into a 
region of quadratic resistance law. The jet velocities 
of the #2 and #3 jet fans located at the downstream 
mainline tunnel and ramp, respectively, were adjusted 
to change the diversion ratio β, defined as a ratio 
between the air flux in the ramp and the air flux in the 
upstream mainline tunnel, from 0.2 to 0.8. To guar-
antee data reliability, the selected measuring cross- 
sections, including 1-1, 2-2, and 3-3, were at a dis-
tance of more than 20 times the hydraulic diameter 
away from the bifurcation surface of the tunnel to 
ensure that the flow on each measuring cross-section 
had developed into turbulent flow. When turbulent 
flow had fully developed in the cross-section the 
static pressure was evenly distributed, while the mean 
air velocity uave of the cross-section was linear with 
the maximum air velocity umax (McKeon et al., 2004; 
Song et al., 2016), i.e. uave=aumax, in which the com-
pensation coefficients a of the cross-sections 1-1, 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

2-2, and 3-3 were 0.81, 0.80, and 0.79, respectively. 
Therefore, the measuring points of the air velocity 
and the static pressure were located at the center of the 
cross-section and at a position of d=0.1 m, respec-
tively (Fig. 3). The air velocity and pressure data of 
each measuring point were obtained using a Pitot tube 
anemometer with precision of ±0.1 m/s and a Dwyer 
differential pressure transmitter with precision of 
±0.5 Pa, respectively. 

Based on the experimental data, the dividing 
flow local loss coefficients of the downstream main-
line tunnel and ramp, ξ12 and ξ13, were obtained ac-
cording to the definition formula of local loss coeffi-
cients (Miller, 1971). The structural size of the nu-
merical model constructed for validation was con-
sistent with that of the scale model, and the relevant 
mesh density was the same as that stated in Section 3. 
A comparison of results from the scale test and the 
numerical simulation is shown in Fig. 4. The CFD 
simulation results were in accordance with the trend 
of the experimental data. The maximum relative error 
was only 6.2%, which indicates that the mathematical 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Arrangement of velocity and pressure measuring 
points in a cross-section 

Velocity point

Pressure point

d

Fig. 2  Schematic diagram of the scale model 
(a) Bifurcation section; (b) Jet fan simulator; (c) Realistic scene 
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model is capable of simulating the local loss for flow 
division. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Results and discussion 

3.1  Flow characteristics 

When air flows through a tunnel bifurcation the 
flow is diverted, hence, changing the air flux distri-
bution inside the tunnel. The ratio of the air flux in the 
downstream mainline tunnel to the air flux in the 
ramp is denoted as q. Fig. 5 shows the flow field 
structure at the bifurcation with an angle of 10° under 
different diversion ratios, β. When β is small, most of 
the air flows into the downstream mainline tunnel, 
and the cross-sectional area ratio ϕ (1.3) of the 
downstream mainline tunnel to the ramp is far smaller 
than their air flux ratio q (if β=0.1, q=9). Therefore, 
the velocity of the airflow entering the downstream 
mainline tunnel will be increased, and a positive ve-
locity gradient will be generated. However, the ve-
locity of the airflow entering the ramp will be de-
creased, and a negative velocity gradient will be 
generated. The positive velocity gradient will cause a 
streamline convergence, while the negative velocity 
gradient will cause a streamline divergence. As a 
result, the airflow at the bifurcation will deflect to-
wards the downstream mainline tunnel such that air 
flowing into it will undergo flow separation on the 
side wall close to the bifurcation point, while air 
flowing into the ramp will undergo flow separation on 
the side wall away from the bifurcation point. The 
smaller the value of β, the more pronounced will be 
the flow separation. 

As β gradually increases, the air flux in the 
downstream mainline tunnel declines, while the air 
flux in the ramp increases so that q gradually ap-
proaches ϕ. At this time, the velocity gradient at the 
bifurcation will be decreased, the streamline will tend 
to be smooth, and the area of flow separation zone 
will be reduced. Fig. 4 shows that the local loss coef-
ficient for flow division will decline as β increases 
during this process. When β has increased to about 
0.43, q1.3, and q is equal to ϕ. At this time, the local 
loss coefficient for flow division will be minimized. 
Afterwards, with further increases of β, the flow 
separation zone will gradually enlarge and the local 
loss coefficient for flow division will increase. 
However, in this process, the flow field structure will 
present characteristics obviously different from those 
found when β is smaller.  

Fig. 5 shows that when β is large, most of the air 
will flow into the ramp, and ϕ will be much larger 
than q (if β=0.9, q=0.1). At this time, the velocity of 
the airflow entering the downstream mainline tunnel 
will be decreased, and a negative velocity gradient 
will be generated, causing a streamline divergence. 
However, the velocity of the airflow entering the 
ramp will be increased, and a positive velocity gra-
dient will be generated, resulting in a streamline 
convergence. Therefore, airflow at the bifurcation 
will deflect towards the ramp such that air in the 
downstream mainline tunnel will undergo flow sep-
aration on the side wall away from the bifurcation 
point. The air in the ramp will undergo flow separa-
tion on the side wall close to the bifurcation point. 
The larger the value of β, the more obvious will be the 
flow separation. 

From the above, it can be seen that as β changes, 
the mismatch between the downstream mainline 
tunnel-ramp air flux ratio q and the cross-sectional 
area ratio ϕ will increase the velocity gradient, the 
degree of airflow deflection, and the area of the sep-
aration zone at bifurcation, thus generating a greater 
local loss. 

Fig. 6 shows the dividing flow local loss coeffi-
cients and flow field structure of the bifurcate tunnel 
at different bifurcation angles, θ. Figs. 6a and 6b show 
that the airflow deflection and flow separation of the 
downstream mainline tunnel are almost free from the 
influence of θ. Thus, variation in the local loss coef-
ficient ξ12 with β remains much the same at different 
values of θ (Fig. 6b). 
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Fig. 4  Comparison of local loss coefficients from simula-
tion and experimental data 
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The airflow deflection and flow separation in the 
ramp are influenced by both θ and β. Fig. 6a suggests 
that at a small diversion ratio (β<0.43), airflow at the 
bifurcation will deflect towards the downstream 
mainline tunnel. Since the airflow deviates from the 
ramp, the higher the value of θ, the stronger will be 
the restriction on airflow deflection of the bifurcation 
structure. Moreover, the more significant the flow  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

separation near the ramp wall, the larger will be the 
value of ξ13 (Fig. 6c). Fig. 6d reveals that the airflow 
at the bifurcation will deflect towards the ramp at a 
large diversion ratio (β>0.43). At this point, a larger θ 
will lead to a better synergy effect between the bi-
furcation structure and the airflow deflection and 
separation, and ξ13 will be smaller in this case 
(Fig. 6c).  

Consequently, the mismatch between θ and air-
flow deflection will strengthen the flow separation 
and increase the local loss in the ramp. This explains 
why ξ13 is generally greater than ξ12 at the same β 
(Fig. 4). 

3.2  Local loss coefficients for dividing flow 

The sudden change of boundaries interrupts the 
uniform flow of the fluid when air flows through a 
tunnel bifurcation, forcing its flow velocity, direction, 
and distribution to change abruptly. During the 
change of flow pattern, intense friction and momen-
tum exchange occur among fluid particles, causing 
local energy loss. Flow field analysis shows that the 
local losses from flow division are caused mainly by 
velocity gradient changes and flow deflection and 
separation. The dividing flow local loss coefficient of 
the downstream mainline tunnel ξ12 is influenced 
mainly by β, while that of the ramp ξ13 is influenced 
by both θ and β. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Local loss coefficients and flow field structure of the bifurcate tunnel with angles of 5°, 10°, and 15° 
(a) Flow structure at β=0.1; (b) Change law of ξ12; (c) Change law of ξ13; (d) Flow structure at β=0.9 
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Fig. 5  Flow field structure of the bifurcate tunnel at dif-
ferent values of β 
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3.2.1  Mainline tunnel 

 
When β is small, the airflow at the bifurcation 

will deflect towards the downstream mainline tunnel, 
such that air flowing into the tunnel will undergo flow 
separation (the region defined by the points N-M-B) 
on the side wall close to the bifurcation point (Fig. 7a). 
When β is large, the airflow at the bifurcation will 
deflect towards the ramp, such that air in the down-
stream mainline tunnel will undergo flow separation 
on the side wall away from the bifurcation point 
(Fig. 7b). This separation zone causes a restriction of 
the flow in the downstream mainline tunnel. The 
dashed line M′-M represents the points in the mainline 
tunnel where this restriction is greatest. The free flow 
area of the downstream mainline tunnel is equal to FM 

at this point.  
Thus, to evaluate the loss coefficient ξ12, it is 

necessary to consider two distinct control volumes 
(Bassett et al., 2001). The first is the region defined by 
the points N-N′-M′-M, denoted region I. The second is 
bounded by the points M-M′-B′-B, denoted region II. 
Matthew (1975) argued that as flow converges (in 
region I), the total pressure remains almost constant, 
and that pressure loss ΔPB occurs only as the flow 
encounters a divergence (in region II). Thus, the total 
pressure of the flow between N-N′ and M-M′ is as-
sumed to be constant. 

The Bernoulli equations for regions I and II, 
respectively, can be written as 

 
2 20.5 0.5 ,N N M MP u P u                     (6) 
2 20.5 0.5 ,M M B B BP u P u P              (7) 

 
where the subscripts N, M, and B represent the 
cross-sections N-N′, M-M′, and B-B′, respectively. 
The momentum equation applied respectively to re-
gions I and II, parallel to the mainline, yields 

 
( )

                   co ,s
N N M M MN B M

M M N N

P F P P F

m u

F F

m u 
  

  
            (8) 

( )

                    ,
M M MB B M B B

B B M M

P F P F F P F

m u m u

  
  

                    (9) 

 
where m  refers to the mass flow rate; F stands for the 

cross-sectional area; γ is the deflection angle, i.e. the 
angle that deviates from the horizontal when the air 
flows into the downstream mainline tunnel; PMN and 
PMB are the pressures along the lines M-N and M-B, 
respectively. The term ( )MN B MP F F  represents the 

force of static pressure along the line M-N on the 
control volume I (region I), parallel to the mainline. 
Hager (1984) argued that the pressure in the separa-
tion region can be assumed to be uniform and equal to 
the static pressure along the line M-M′, i.e. PMN= 
PMB=PM.  

Considering the mass flow rates through the 
cross-sections M-M′, N-N′, and B-B′ are equal, and the 
cross-sectional areas of sections N-N′ and B-B′ are the 
same, i.e. ,M N Bm m m     FN=FB, Eqs. (8) and (9) 

can be rewritten as 
 

s ,coN B M B B M B NP F P m uF m u               (10) 

.M B B B B B B MP F P F m u m u                       (11) 

 
By the definition of the mass flow rate, 

,B B Bm F u  a rearranged expression for ΔPB can be 

obtained after combining Eqs. (6), (7), (10), and (11): 
 

2 20.5 cos 0.5 .B B B N NP u u u u         (12) 

 
According to the definition of the local loss co-

efficient for flow division, ξ12 can be written as 
 

212 ,
0.5

B

A

P

u



                                (13) 

 

where the subscript A represents the cross-section 
A-A′. 

Experiments by Hager (1984) indicated that the 
velocity of the flow entering the downstream main-
line tunnel uN is approximately equal to uE, where the 
subscript E represents the end of the transition section 
E′-E″. According to the conservation of mass, the 
mass flow rates through sections A-A′ and E′-E″ are 
equal, as are the mass flow rates through sections E′-E 
and B-B′. As the flow is incompressible, the applica-
tion of the mass conservation equations gives  

 

(1 )
, ,

cos
A A

B A E A
B EF

F F
u u u u

F





          (14) 
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where δ is the deflection angle of the air flowing 
through the cross-section E′-E″. Upon substituting 
Eqs. (12) and (14) into Eq. (13), Eq. (13) can be re-
written as  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2
2

12

2

2 cos
(1 ) (1 )

cos

.
cos

A A

B B E

A

E

F F

F F F

F

F

  




 
    
 

 
  
 

     (15) 

 
Bassett et al. (2001) indicated that airflow en-

tering the downstream main branch keeps horizontal 
with the flow direction of the upstream main branch, 
since the main branches have the same cross-sectional 
area throughout. However, in a bifurcate tunnel, when 
the air flows through cross-sections E′-E″ and N-N′, 
the flow directions are clearly shifted. The angles of 
deflection δ and γ are affected by β according to the 
flow field structure, due to the different sectional 
areas of the mainline tunnel before and after the di-
version. Based on the velocity component data of the 
cross-section N-N′ (E′-E″), an inverse trigonometric 
function is used to calculate the angle of the flow 

entering the cross-section N-N′ (E′-E″) deviating from 
the horizontal at each grid node. Then, the arithmetic 
average of those angles is taken as the deflection 
angle γ (δ). The change rule of δ and γ with β is shown 
in Fig. 8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
With the least square method, the expressions of 

γ and δ with β can be fitted (the goodness of fit R2 is 
0.99 for both) as follows: 

 
2.241.3e +11.4,                            (16) 

20.3 10.2.                                  (17) 

 
Upon substituting Eqs. (16) and (17) into 

Eq. (15), Eq. (15) can be rewritten as  
 

2 2
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

   (18) 

 

3.2.2  Ramp 

The process for deriving the equation for the 
dividing flow local loss coefficient of ramp ξ13 is 
analogous to that for the loss coefficient ξ12. The re-
gion (Z-Z′-C′-C) where the flow separation occurs is 
taken as the control volume for deriving ξ13, and in-
cludes regions III (Z-Z′-R′-R) and IV (R-R′-C′-C), as 
shown in Fig. 9. The momentum, Bernoulli’s, and 
mass conservation equations that are parallel to the 
ramp direction are applied to regions III and IV. After 
combining and solving, ξ13 can be expressed as  
follows: 
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Fig. 8  Change laws of δ and γ with β 

Fig. 7  Control volume used to calculate ξ12 
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where ω is the deflection angle of the airflow entering 
the ramp (i.e. flowing through the cross-section Z-Z′). 
Bassett et al. (2001) considered that the deflection 
angle of the flow entering the lateral branches is θ/4. 
However, according to the flow field structure, the 
deflection angle ω is affected greatly by the changes 
in θ and β. Based on the CFD simulation results, the 
change law of ω with β is shown in Fig. 10, under 
different values of θ. The process of obtaining the 
value of ω is analogous to that of obtaining the value 
of γ. With the least square method, the expression of 
ω can be fitted (the goodness of fit R2 is 0.99) as 
follows: 
 

1.837.3 0.4 +5.3.                       (20) 
 

Upon substituting Eqs. (20) and (17) into 
Eq. (19), then 
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3.3  Comparison of predicted loss coefficients with 
measured results 

The north-south direction tunnel is 4797 m long, 
having two one-way traffic tunnels. An off-ramp on 
the east line is 490 m long, and forms an angle of 12° 
with the mainline tunnel. An off-ramp on the west line 
is 485 m long, and forms an angle of 7° with the 
mainline tunnel. The upstream mainline, the down-
stream mainline and the ramp are a three-lane high-
way, a two-lane highway, and a one-lane highway 
with corresponding cross-sectional dimensions of 
13.55 m×7 m, 9.75 m×7 m, and 7.55 m×7 m, respec-
tively. Field measurements were carried out on the 
dividing flow local loss coefficient of this tunnel. To 
ensure data reliability, the selected measuring 
cross-sections, including 1-1, 2-2, and 3-3, were at a 
distance of more than 20 times the hydraulic diameter 
from the bifurcation surface (Fig. 11). A real image of 
the bifurcation surface of the west line of the tunnel is 
shown in Fig. 12. 

In the experiment, the jet fan located in the up-
stream mainline tunnel was regulated to ensure that 
the air flow was into a region of quadratic resistance 
law. The jet fans located in the downstream mainline 
tunnel and ramp were regulated to change the diver-
sion ratio β from 0.2 to 0.8. After regulating the jet 
fans, it was necessary to wait a few minutes to make 
sure the airflow in the tunnel was in a steady state, i.e. 
the air velocity did not change significantly with time. 
Then, a Testo425 thermal anemometer (Testo AG, 
Germany) was used to record the air velocity data for 
3 min. The average of these measurements was taken 
as the final air velocity at each measuring point.  

A′

A

Z (E′′)

uEuZ

δω

E

FE′′

R′

RC′

C

Z′

FC

PC

FA

PA

ξ13

III

IV

Negative

Positive

(a) 

(b) 

Fig. 9  Control volume used to calculate ξ13 
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However, the air velocity of a single point on the 
cross-section of the tunnel cannot represent the av-
erage air velocity of the entire cross-section. Thus, 
several air velocity measuring points were set on the 
cross-section according to the fluid’s characteristics 
of velocity distribution on the cross-section of the 
tunnel, with the distribution of the serial numbers and 
the effective areas as shown in Fig. 13. The weighted 
average value of the effective areas covered by the air 
velocities at the measuring points was the average air 
velocity V of the cross-section of the tunnel. In other 

words, ,j j

j

V F
V

F

 



 where ΔFj and Vj represent the 

area of each part and the air velocity of the measuring 
point within each area, respectively 

With a pitot tube and a differential pressure 
gauge being connected to each other with a rubber 
tube, the differential pressure between the cross- 
sections was measured. Fig. 14 shows how a pressure 
test was conducted on the cross-section. Each  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
pressure measuring point was 2 m above the ground 
on the central axis of the tunnel. Since the distance 
between two measuring cross-sections was long, 
rubber tubes were placed inside the tunnel one day 
before the test to allow the air pressure to equilibrate. 
Joints of the rubber tubes were connected firmly and 
tightly without air leakage, and the entrance of water 
and other foreign bodies was prevented. Based on the 
measured air velocity and differential pressure, the 
dividing flow local loss coefficients of the tunnel, ξ12 
and ξ13, could be calculated according to the follow-
ing formulas: 

Fig. 12  Bifurcation surface of the tunnel Fig. 13  Distribution of velocity measuring points 

12°
1-1

3-3

2-2
West-line

1-12-2

3-3 7°

East-line

1′-1′

1′-1′

 Fig. 11  Schematic diagram of the tunnel structure 

Fig. 14  Pressure tests at different cross-sections  
1: pitot tube; 2: rubber tube; 3: differential pressure gauge 
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where the subscripts 1, 2, and 3 represent the 
cross-sections 1-1, 2-2, and 3-3, respectively; P12 is 
the differential pressure between cross-sections 1-1 
and 2-2; P13 is the differential pressure between 
cross-sections 1-1 and 3-3. ΔP is the linear loss 
pressure drop between the measuring cross-section 
and the bifurcation surface. The expression is as  
follows: 
 

2 / (2 ), 1, 2, 3,i i i i iP L u D i                (24) 

 
where λ is the linear loss coefficient, D is the equiva-
lent diameter, and the value of λ is determined by a 
field test. Taking the upstream mainline tunnel as an 
example, its λ can be obtained according to the for-

mula 11 1

1
1 2

11

2P D

l u







 , based on measuring the differen-

tial pressure P1′1 between cross-sections 1′-1′ and 1-1; 
l1′1 is the distance between 1′-1′ and 1-1; L refers to 
the distance from the measuring cross-section to the 
bifurcation surface.  

Local loss coefficients for flow division under 
different values of β were predicted according to the 
theoretical formula derived in this study, and ac-
cording to the formula proposed by Bassett et al. 
(2001).  

The prediction and test results are shown in 
Fig. 15. Each data point shown in Fig. 15 is the av-
erage value of the loss coefficients obtained from 
three tests. Obviously, as β increased, ξ12 and ξ13 
calculated by measured data both showed a changing 
pattern of an initial decline followed by an increase. 
Because the cross-sectional area ratio of the down-
stream mainline tunnel and the ramp ϕ was equal to 
1.5, when β was approximately equal to 0.38, the air 
flux ratio q≈ϕ, and thus ξ12 and ξ13 in this case were 
the smallest. However, the values of ξ12 and ξ13 pre-
dicted according to Bassett et al. (2001)’s formula 
were the smallest when β was approximately equal to 
0.25 and 0.52, respectively, much different from the 
measured values. The value of ξ12 predicted according 
to Bassett et al. (2001)’s formula was fairly consistent 

with the measured data when β>0.38, but when 
β<0.38 it showed a changing pattern of an initial de-
cline and then a slight increase as β decreased, which 
is inconsistent with the changes in the measured value 
of ξ12. When β=0.31, the prediction error was up to 
240%.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In addition, as for the effect of θ on the loss co-
efficients, the measured results show that for the 
downstream mainline tunnel, the change of θ had 
almost no effect on ξ12. For the ramp, when β<0.38, 
ξ13 increased with increasing values of θ, and de-
creased with increasing values of θ. However, the 
value of ξ13 predicted according to Bassett et al. 
(2001)’s formula increased with increasing values of 
θ when β>0.38, again inconsistent with the changes in 
the measured values. Obviously, Bassett et al. 
(2001)’s formula is not suitable for bifurcate tunnels 
with small bifurcation angles. However, the values of 
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Fig. 15  Comparison of predicted loss coefficients with 
measured results:ξ12 (a);ξ13 (b) 
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ξ12 and ξ13 predicted according to the theoretical 
formula derived in this study were both in line with 
the measured changing patterns, with the predicted 
values quite consistent with the measured ones. 

 
 

4  Conclusions 
 

This paper proposes a theoretical calculation 
model which can effectively predict the dividing flow 
local loss coefficient at a tunnel bifurcation. By 
combining numerical simulation and theoretical der-
ivation, the dividing flow characteristics, and local 
loss mechanism at a tunnel bifurcation were analyzed 
and a theoretical formula for calculating the dividing 
flow local loss coefficient in a bifurcate structure with 
a small angle was deduced and constructed based on 
the characteristics of flow separation. The following 
conclusions can be drawn:  

1. When the diversion ratio β is small, the flow is 
separated on the downstream mainline tunnel side-
wall close to the bifurcation point and the ramp 
sidewall away from the bifurcation point; when β is 
large, the flow is separated on the downstream main-
line tunnel sidewall away from the bifurcation point 
and the ramp sidewall close to the bifurcation point. 

2. The dividing flow local loss coefficient of the 
downstream mainline tunnel ξ12 is influenced mainly 
by β, while the loss coefficient of the ramp ξ13 is af-
fected by both the bifurcation angles θ and β. When 
the air flux ratio q of the downstream mainline tunnel 
to the ramp is equal to their cross-sectional area ratio 
ϕ, ξ12 and ξ13 are at their minimum; when q>ϕ, ξ12 and 
ξ13 decrease with increasing β, but ξ13 increases with 
increasing θ. When q<ϕ, ξ12 and ξ13 increase with 
increasing β, but ξ13 declines with increasing θ.  

3. A theoretical formula which can be used to 
predict the dividing flow local loss coefficient of a 
bifurcate tunnel is established based on an airflow 
deflection angle assumption. Compared to existing 
formulas, the proposed formula has a higher precision 
in prediction. 

4. Note that the expanding section (cross-section 
area variation near the split) exists to avoid traffic 
jams near the tunnel bifurcation. The effects of the 
structural form and parameters (e.g. the length and 
form of the change in cross-sectional area) of the 
expanding section on loss coefficients cannot be ig-

nored. More in-depth research and further discussion 
of this will be conducted in the future. 
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中文概要 
 
题 目：小夹角分叉隧道分流局部损失模型 

目 的：掌握分叉隧道的空气流动特征与阻力损失特性是

进行分叉隧道通风设计和控制的关键。本文旨在

探讨小角度分叉结构中的流动特征及局部损失

机制，并基于流动分离机制构建可供设计使用的

分叉隧道分流局部损失系数的理论公式。 
创新点：1. 揭示气流在小角度分叉结构中的流动分离特征

及损失机制；2. 提出流向偏转角假设，建立可供

设计使用的分叉隧道分流局部损失预测模型。 

方 法：1. 通过数值模拟，获得隧道分叉处的流动特征（图

5、6a 和 6d），以及分流局部损失系数随分流比及 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

夹角的变化规律（图 6b 和 6c）；2. 通过理论推导，

构建小夹角分叉结构的分流局部损失系数预测公

式（公式（18）和（21））；3. 通过现场实测，验

证预测公式的可靠性（图 15）。 

结 论：1. 空气在隧道分叉处的分流将导致流速和流向的

变化；当分流比 β较小时，流动分离出现在靠近

分叉点一侧的主线边壁和远离分叉点一侧的匝

道边壁；当 β较大时，流动分离出现在远离分叉

点一侧的主线边壁和靠近分叉点一侧的匝道边

壁。 2. 当分流后主线与匝道的流量比 q 等于两者

的面积比 ϕ时，主线及匝道的分流局部损失系数

ξ12和 ξ13最小；当 q>ϕ时，ξ12和 ξ13均随 β的增大

而减小，且 ξ13随着 θ的增大而增大；当 q<ϕ时，

ξ12和 ξ13均随 β的增大而增大，且 ξ13随着 θ的增

大而减小。3. 基于隧道分叉处的流动分离机制，

提出了空气流向偏转角假设，构建了可用于预测

分叉隧道分流局部损失系数的理论公式，与已有

文献公式相比，具有更好的预测精度。 

关键词：分叉隧道；分流；局部损失机制；流动分离特征；

计算流体动力学；理论公式 

 


