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Abstract: In the field of genetics, it is well known that a specific genetic behavior may be influenced by more than one gene. There 
is a similar concept in genetic algorithms (GAs), called epistasis, which is the interaction between genes. This study demonstrates 
that, in spite of what is generally assumed, GAs are not an efficient optimization tool. This is because the main operator, mating 
(crossover), cannot function properly in epistatic optimization problems. In non-epistatic problems, although a GA can possibly 
provide a correct solution, it is an inefficient and time-consuming algorithm. As proof, we used conventional test functions and 
introduced new ones and confirmed our claim with simulation results. 
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1  Introduction 
 

Genetic algorithms (GAs) are an optimization 
method that have been widely used for many appli-
cations, including vehicle routing problems (Kara-
katič and Podgorelec, 2015), sequence planning 
(Tseng et al., 2018), train-set circulation plan prob-
lems (Zhou et al., 2017), genetic code adaptability (de 
Oliveira et al., 2018), feature selection (Dong et al., 
2018), business process monitoring (di Frances-
comarino et al., 2018), damage identification (Greco 
et al., 2018), cryptosystems (Jain and Chaudhari, 

2017), and detection systems of public security events 
(Wang et al., 2017). 

Epistasis is a phenomenon where the function of 
one gene is influenced by one or several other genes. 
According to William Batson (Steinberg and Cosloy, 
2009), in genetics, a gene is epistatic if it influences 
the operation of other genes. In GA literature, epista-
sis is used with a similar definition: the interaction 
between genes (Haupt and Haupt, 2004). Although 
the interaction between the parameters of a problem is 
a serious issue, it has been ignored or neglected in 
many optimization and GA studies. In this paper, it is 
shown that in optimization problems with epistasis, 
the GA algorithm faces some critical challenges and if 
there is no epistasis, the GA is not efficient. 

According to GA studies, some of the essential 
advantages of GAs are as follows (Haupt and Haupt, 
2004; Sivanandam and Deepa, 2008): 
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1. It can deal with a large number of variables (it 
can overcome the curse of dimensionality). 

2. It is capable of optimizing functions with ex-
tremely complex surfaces because of the ability to 
escape from local optima. In other words, it has the 
ability of finding the global optimum of objective 
functions. 

3. It requires no knowledge of the objective 
function surface or its gradient. It only needs the value 
of the objective function at some points. 

It also has some disadvantages (Haupt and Haupt, 
2004; Sivanandam and Deepa, 2008): 

1. It requires a large number of fitness function 
evaluations. 

2. It is not effective for smooth unimodal cost 
functions. Note that this does not mean that a GA 
cannot find the optimum of these surfaces. It means 
that considering the time-consuming way in which 
GAs solve simple problems, it is better to use simple 
methods such as gradient-based algorithms or line 
search in these cases. 

As mentioned before, one significant advantage 
of GAs compared to other methods is its capability to 
overcome the so-called curse of dimensionality. In 
fact, in the real world, a GA is not being used to solve 
1D problems, for example, because according to the 
first disadvantage, it would be a waste of time and 
resources. Even problems that are used to educate 
evolutionary algorithms with the purpose of visuali-
zation usually have two or three variables. In every 
nontrivial optimization problem, there should be at 
least a minor degree of epistasis; otherwise, the 
problem will be trivial (Davis et al., 2012). The reason 
is that, if there is no epistasis, the N-variable 
non-epistatic function can be divided into N separate 
functions, each with one variable. A GA is undoubt-
edly one of the last choices for optimizing such func-
tions. Considering this issue, why there is no inves-
tigation on epistasis in almost all of the references that 
use a GA? Should a GA be accepted as an efficient 
and useful algorithm just because it has been used in 
the last four decades? This work attempts to answer 
these questions. 
 
 
2  Role of epistasis in benchmarks 
 

In this section, some important benchmarks in 
the GA field are investigated. There is an example in 

(Haupt and Haupt, 2004), named “Word Guess”, in 
which a game has been designed to examine GAs. 
The following is a brief explanation of this example: 
suppose we are going to find a specific 8-letter word 
using a GA. The number of letters in a word is given 
to the GA and it starts guessing different combina-
tions of letters which form the word until it finds the 
right solution. Therefore, every chromosome is an 
8-letter array. The fitness of each chromosome is 
equal to the number of letters which are in the correct 
place. Thus, the cost function for each solution 
(chromosome) is defined as follows: 

 
#letters

1

cost [1 sgn(guess answer )],n n
n

        (1) 

 

where #letters is the number of letters in the word, 
guessn is the nth letter in the guess chromosome, and 
answern is the nth letter in the answer. 

In this example, the word being tested is “colo-
rado”. To find the word, a GA with 32 chromosomes 
was used, and the word was discovered in the 17th 

iteration. This means that 32×17=544 evaluations of 
the cost function have been done. 

Haupt and Haupt (2004) stated that since the 
total number of possible combinations is 268 

≈2.08×1011 (8 places for letters and 26 possible letters 
for each place), this is a notable accomplishment for a 
GA and it proves its efficiency (544 compared to 
2.08×1011). However, an important missing point is 
that there is no epistasis between variables to find the 
unknown word. Therefore, we just need to find the 
correct letter for each place separately. In this case, 
the maximum number of required evaluations of cost 
function is equal to 8×(26−1) =200. Although GAs 
are usually successful in finding the optimum for such 
problems, it would be very costly and time- 
consuming because of the large number of cost func-
tion evaluations required. Thus, there is no reason to 
use a GA for this type of problem. 

In (Haupt and Haupt, 2004), some test functions 
have been introduced to examine the efficiency of 
various optimization algorithms, especially GAs. 
These functions are among the most famous test func-
tions commonly used in the literature (Guo et al., 2014; 
Teimouri et al., 2014; Qu et al., 2016). However, an 
interesting point about these functions is that many of 
them have zero degree of epistasis (e.g. functions in 
Table 1, where x and y are optimization variables). 
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For example, we can write 2 2
1 1 2 ...F x x    

2 .Nx  It is obvious that to minimize F1, we can 

minimize N separate functions which are not related 
to each other. Although some of the test functions 
(e.g. F4, shown in Fig. 1) have complex surfaces with 
many local optima (here minima) in N-dimensional 
space, these kinds of problems are very easy to solve 
because of their non-epistatic nature. In other words, 
there is no need to use a GA, since it tries to solve 
problems in N-dimensional space and encounters the 
curse of dimensionality. Instead, by breaking the 
N-variable function into N one-variable functions, N 
1D problems can be solved without encountering the 
curse of dimensionality. 

On the other hand, some test functions are epi-
static, such as those mentioned in Table 2. As an 
example, the surface of F6 is shown in Fig. 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In case of F6, it can be seen that it is a highly 

epistatic function and the optimum of none of the 
variables could be evaluated separately. Thus, how 
do GAs deal with such a problem? This question will 
be answered in the next section.  

 
 

3  How does a GA work? 
 
It should be noted that binary genetic algorithm 

(BGA) and continuous genetic algorithm (CGA) do 
not have conceptual differences. The only difference 
is how they encode and decode a problem. Consid-
ering the nature of the problem, one of the two 
methods will lead to a better result. For example, 
when the variables are naturally quantized, the BGA 
fits better, and when the variables are continuous, it is 
mostly better to use a CGA. We continue the dis-
cussion using a CGA as it has a more sensible 
demonstration and is easier to understand. The 
flowchart of this algorithm is shown in Fig. 3. 

The steps by which an optimization problem is 
solved are analyzed in this section, based on the CGA 
flowchart. Although defining appropriate parameters 
and a suitable cost function definitely improves the 
efficiency of any optimization algorithm, it is clear 
that the final solution is not achieved at the step. 
Surely a suitable initial population of chromosomes 
increases the chance of finding the correct solution. 
However, obviously it is not the core of GAs. Then, 
the cost function (or fitness function) for each 
chromosome is calculated. This is only an evaluation 
of existing solutions. The next step (the fourth box) is 

Table 1  Functions with zero degree of epistasis 

Function Formula 

F1 
2

1

N

n
n

x

  

F2  
1

10cos 10
N

n n
n

x x


  

F3 sin(4 ) 1.1 sin(2 )x x y y  

F4 
2

1

10 10cos(2 )
N

n n
n

N x x


      

Table 2  Epistatic functions  
Function Formula 

F5 
2 2 2

1
1

100( ) (1 )
N

n n n
n

x x x


      

F6 
 2 2 2

2 2

sin 0.5
0.5

1 0.1( )

x y

x y

 


 
 

Fig. 1  Surface of function F4 for N=2

y
x

Fig. 2  Surface of function F6 
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natural selection. In this step, it is decided which 
chromosomes should survive and be transferred to 
the next level or be used to generate new offspring. 
The selection process is important and influences the 
operation of the algorithm; however, a new solution 
is still not generated. The fifth box, which is essential 
to this study, is discussed in more detail in the next 
paragraph. The sixth box, which belongs to mutation, 
is important as it increases the variety (diversity) of 
the chromosomes by making random changes in 
some solutions. Although in this step some new so-
lutions, which did not exist before, are generated, it 
should not be considered as the main operator. Since 
increasing the mutation rate in a GA leads to a ran-
dom search, the rate of mutation is very low in most 
cases. Finally, the last box is related to the conditions 
of the algorithm’s completion and has no effect on 
the solution.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By inspecting the GA closely, it is clear that it is 

the mating (crossover) operator that plays the main 
role in finding the optimum solution. With the hope 
of finding new and better solutions, the mating op-
erator generates new children from current parents. 
Although several main strategies and secondary 

methods have been introduced for mating in different 
studies, the main operation of mating is based on the 
random replacement of variables between the exist-
ing good solutions, with the hope of generating a new 
solution with “better genes” than the parents. By 
using this operator, we automatically accept that the 
current value of each variable can be good, normal, 
bad, or negligible. This means that we suppose a set 
of variables in which the superposition theorem ap-
plies (while in the real world this is mostly not the 
case). In other words, the total is more than the sum 
of components and the difference between them is 
the extra information which exists in the structure. 

To present a proper example for the above dis-
cussion, a new test is introduced in Section 4. 
 
 
4  Clover: a function to challenge GA 
 

Consider the following objective function 
(Eq. (2)) in which θ is a definite parameter. We have 
named this function as “Clover” because of its special 
shape. 

 
2 2( cos sin ) ( cos sin )( , ) (e e ).x y x yF x y                (2) 

 
Changing θ does not make any changes to the 

surface shape of this function and just rotates it 
around the F axis. In fact, it gives a θ-radian rotation 
to the function around the F axis. Figs. 4a–4d show 
this function’s schema for θ=0, θ=π/12, θ=π/6, and 
θ=π/4, respectively. 

This function is analytical, continuous, and 
unimodal. It has just one minimum (Eq. (3)) which 
can be obtained easily by differentiation: 

 
min( ( , )) (0,0) 2.F x y F                       (3) 

 
The function can be rewritten for θ=0 as 

 
2 2

1 2( , ) (e e ) ( ) ( ).x yF x y f x f y             (4) 

 
In this case, there is no epistasis between x and y 

variables; so Eq. (5) is true: 

 

1 2opt( ( , )) opt( ( )) opt( ( )).F x y f x f y          (5) 

Fig. 3  Flowchart of CGA 

Yes No 
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To solve this problem using a GA for a deter-

mined range of variables, for example, −L/2x, yL/2, 
the search space is equivalent to L2. On the other 
hand, to find the optimum set of variables in this 
example, F(x, y)=f1(x)+f2(y), just the optimum of each 
variable separately in its own range needs to be found. 
In fact, the search space for this case is equivalent to 
2L, the same as the word search example in Section 2 
in which the real search space was eight 1D spaces not 
one 8-dimensional space. Therefore, if there is no 
epistasis between variables, it is clear that a GA or 
other algorithms, which search the N-dimensional 
space, are useless, especially when the number of 
variables or their ranges increase. 

A simple way to find the optimum of such 
functions is to start from an arbitrary initial condition. 
Then, by choosing the variables one by one and 
keeping the other variables frozen, we can search the 
defined range for each variable separately with any 
desired resolution and find the optimum value for 
each variable independently (generalized form of line 
search). 

Now, suppose that in the Clover function for 
θ=π/6:  

 

 2 2( ) /2 ( ) /2( , ) e e .x y x yF x y                  (6) 

 

Eq. (7) should then be true: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2( , ) ( ) ( ).F x y f x f y                         (7) 

 
In this case, the optimum cannot be obtained by 

finding each variable’s optimum separately. Thus, 
finding an optimum for a variable is not meaningful. 
In the previous status (θ=0), we saw that using a GA 
is not efficient. However, if the use of a GA is insisted 
upon, it can find the optimum solution (in a very 
inefficient way). However, when θ=π/4, GAs usually 
cannot arrive at the correct solution. To make this 
clearer, assume we have the chromosomes in Table 3. 

 
 
 
 
 
 
 

 
Chromosomes Nos. 1, 2, and 3 are quite not-bad 

solutions for this problem. However, it can be seen 
that by mating them, some chromosomes with lower 
fitness are generated. On the other hand, despite not 
being suitable solutions, chromosomes Nos. 4 and 5 
can generate the global minimum (0, 0) by mating, 
which is the global optimum. This issue is against the 
theory of mating which says that parents with high 

Table 3  Selected chromosomes for clarifying the mating 
problem 

Chromosome x y Chromosome x y 

1 0.8 0.75 4 7 0 

2 2 −2 5 0 3 

3 −4 −4    

a

dc

b

Fig. 4  Clover function for θ=0 (a), θ=π/12 (b), θ=π/6 (c), and θ=π/4 (d)
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fitness have a greater chance of generating better 
offspring in the next generations. In epistatic cases, 
parents with good interactions between their variables 
(variables with appropriate order) have higher fitness 
values than the other parents. In such cases, the mat-
ing operator destroys these orders. 

One of the points that the supporters of GAs 
mention is that “This algorithm works”. Table 4 
shows the simulation results of applying a GA on 
Clover function for θ=0 and θ=π/4. To avoid possible 
programming mistakes, MATLAB Optimization 
Toolbox has been used for these simulations. In this 
case, an initial population with 20 chromosomes is 
formed and a random and monotonous initial distri-
bution of variables is done between −D and +D 
(where D is an arbitrary range for optimization vari-
able, D=20). Other parameters are the default pa-
rameters of the toolbox. The algorithm was run for 50 
repeats and the results are represented in Table 4. 

 

 
 
 
 
 
 
 
 
A simple comparison between simulation results 

shows that applying GAs on the Clover function for 
two different values of θ leads to two different results 
with a significant difference in the efficiency of the 
algorithm. In Section 1, where some of the main ad-
vantages of GAs were listed, it was mentioned that 
one of the important advantages of GAs is that they 
do not require the system’s formula, and the values of 
the objective function in some points are enough for 
them to work. If so, why does the GA’s efficiency 
notably decrease by such a simple change of a pa-
rameter which only leads to a rotation of the cost 
function surface? Bear in mind that this is a very 
simple 2D problem without any complexity, discon-
tinuity, or local minima. 
 
 

5  Other examples 
 

Suppose an objective function as shown in 

Eq. (8) in which 2 2r x y   and arctan( / ).y x   

2( )( , ) e .rF x y r                          (8) 

 
We have named this the “Spiral Channel” func-

tion. Like the Clover function, this is an epistatic 
function. Although it is not differentiable for the 
positive values on the x axis, starting from any arbi-
trary point and using a gradient would easily lead to 
its only minimum at (2π, 0) with the cost equal to −2π. 
The function surface is shown in Fig. 5 and the result 
of applying the GA on this function is presented in 
Table 5. 

Now, consider the following new objective 
function (named here as the “Zagros” function): 

 

2 2

cos( ) cos( )
( , ) ,

[( ) ] [( ) ]m m

ax by cx dy
F x y

ax by k cx dy k

 
  

   
 (9) 

 
where a=2, b=1, c=2, d=−1, m=0.2, and k=1. This is a 
highly epistatic function in which the variables are not 
important separately. In addition, it has a lot of local 
minima that make its optimization very difficult. The 
function is depicted in Fig. 6. By applying a GA on 
this function, the results in Table 6 are obtained. 

Then, we define two new variables as shown in 
Eq. (10) to eliminate epistasis of this function: 

 

,

.

u ax by

v cx dy

 
  

                               (10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Simulation results of applying a GA on Clover 
function for θ=0 and θ=π/4 

θ 
Number of  

successes in finding 
the optimum 

Number of  
failures in finding 

the optimum 

Average of 
solutions

0  50 0 −2 

π/4 26 24 −1.543 

Table 5  Simulation results of applying a GA on the Spiral 
Channel function 

Number of successes
in finding the  

optimum 

Number of failures 
in finding the  

optimum 

Average of 
solutions

21 29 −4.66 

Fig. 5  Surface of the Spiral Channel function 

f(
x,

 y
) 

x  

y 
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By this change of variables, the problem is 

converted to Eq. (11), which is clearly non-epistatic: 
 

2 2

cos( ) cos( )
( , ) .

( ) ( )m m

u v
F u v

u k v k
  

 
             (11) 

 
By applying a GA on the F(u, v), the results in 

Table 7 are obtained. 
Comparing the results in Table 6 and Table 7, as 

expected, the GA shows a very poor performance in a 
highly epistatic condition, but on removing the epi-
stasis, the GA does find the solution (though it does 
not do it in an optimized way). As mentioned before, 
in non-epistatic conditions, simple algorithms can 
lead to the correct solution with much less computa-
tional cost compared to GAs. 

 
 
 
 
 
 
 
 

6  Conclusions 
 

In this paper, the genetic algorithm technique 
was challenged and criticized. We claim that, in spite 

of the generally positive assumption, a GA is not an 
efficient and useful optimization algorithm. It seems 
that this algorithm cannot converge successfully in 
the real-life problems and if it converges to an ac-
ceptable solution, it is not computationally efficient. 
The cost functions can be classified into two groups: 
epistatic and non-epistatic. In this paper, it was shown 
that if the cost function is non-epistatic, the problem 
can be solved using GAs. However, it would be more 
efficient to use simple algorithms instead of GAs, 
since the N-dimensional function can be divided into 
N 1D functions. Further, in most epistatic cost func-
tions, GAs cannot find the correct solution. In addi-
tion to some commonly used benchmarks, our claim 
was evaluated and confirmed by three new test func-
tions which were designed in this study. These test 
functions were designed in a way that could be em-
ployed in both epistatic and non-epistatic conditions. 
Closer inspection shows that the main obstacle in a 
GA is the main operator, crossover. Disconnecting 
the suitable relations between variables by destructing 
the existing appropriate structures, crossover plays a 
negative role in the GA evolution. We encourage 
interested readers, especially those who use GAs, to 
investigate our claim in some real-world optimization 
problems. In this paper, our discussion on the degrees 
of epistasis is qualitative. We encourage those readers 
who are interested in this area to propose a proper 
method for measuring the degrees of epistasis.  
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中文概要 
 
题 目：上位效应对遗传算法可靠性的影响 

目 的：探讨遗传算法的局限性和实用性，并分析基于相

互作用产生的上位效应对遗传算法可靠性的影

响。 

创新点：1. 指出遗传算法缺陷的根源；2. 基于测试样本函

数定义目标函数，以判断遗传算法的适用性。 

方 法：1. 基于非上位效应函数（表 1）和上位效应函数

（表 2），以及非上位效应函数 F4 和上位效应函

数 F6的结构图来验证遗传算法可靠性；2. 通过计

算样本函数（公式（1））和遗传算法流程（图 3）

表达遗传算法的工作原理。3. 利用克洛弗函数

（公式（2））和计算不同结构角下的函数分布（图

4），进一步判断匹配度（表 3）和计算效率（表

4）；定义新的目标函数（公式（9））和一组新的

变量（公式（10））来实现变量相关性解离。 

结 论：1. 对当前遗传算法存在的不足给出了独到见解，

并认为正定性的假设并非可以保证遗传算法实

际的有效性和优化性。2. 定义成本代价函数用以

判断遗传算法可靠性，并分别考虑上位性和非上

位性效应两种情形。当成本代价函数在非上位性

效应下时，遗传算法是有效的；否则，可以把 N

维函数降级为 N 个一维函数，从而采用更简单的

算法来判断。 基于一些通用的基准，进一步设计

三类样本函数来证实以上判断，且这些样本函数

适合于上位性效应情形和非上位效应情形。3. 遗

传算法的瓶颈在于主算子和相干匹配性；可以通

过破坏某些结构来实现变量关系的解离，从而抑

制相干匹配性对遗传算法的影响。希望相关读者

在处理实际优化问题时能验证作者关于上位效

应的定性结论，并给出更可靠的方法来表征这种

效应。 

关键词：上位性效应；遗传算法；相干匹配性；叠加性；

优化；成本代价函数 
 


