
Jafari et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2019 20(2):109-116

109

Effect of epistasis on the performance of genetic algorithms*

Sajad JAFARI1, Tomasz KAPITANIAK2, Karthikeyan RAJAGOPAL3,

Viet-Thanh PHAM†‡4, Fawaz E. ALSAADI5
1Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413, Iran

2Division of Dynamics, Lodz University of Technology, 90-924 Lodz, Poland
3Center for Nonlinear Dynamics, Defence University, 6020 Bishoftu, Ethiopia

4Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering,

Ton Duc Thang University, Ho Chi Minh City, Vietnam
5Department of Information Technology, Faculty of Computing and IT, King Abdulaziz University, Jeddah, Saudi Arabia

†E-mail: phamvietthanh@tdt.edu.vn

Received May 28, 2018; Revision accepted Sept. 11, 2018; Crosschecked Oct. 15, 2018; Published online Nov. 10, 2018

Abstract: In the field of genetics, it is well known that a specific genetic behavior may be influenced by more than one gene. There
is a similar concept in genetic algorithms (GAs), called epistasis, which is the interaction between genes. This study demonstrates
that, in spite of what is generally assumed, GAs are not an efficient optimization tool. This is because the main operator, mating
(crossover), cannot function properly in epistatic optimization problems. In non-epistatic problems, although a GA can possibly
provide a correct solution, it is an inefficient and time-consuming algorithm. As proof, we used conventional test functions and
introduced new ones and confirmed our claim with simulation results.

Key words: Genetic algorithm (GA); Epistasis; Crossover; Superposition; Optimization; Cost function
https://doi.org/10.1631/jzus.A1800399 CLC number: O31

1 Introduction

Genetic algorithms (GAs) are an optimization
method that have been widely used for many appli-
cations, including vehicle routing problems (Kara-
katič and Podgorelec, 2015), sequence planning
(Tseng et al., 2018), train-set circulation plan prob-
lems (Zhou et al., 2017), genetic code adaptability (de
Oliveira et al., 2018), feature selection (Dong et al.,
2018), business process monitoring (di Frances-
comarino et al., 2018), damage identification (Greco
et al., 2018), cryptosystems (Jain and Chaudhari,

2017), and detection systems of public security events
(Wang et al., 2017).

Epistasis is a phenomenon where the function of
one gene is influenced by one or several other genes.
According to William Batson (Steinberg and Cosloy,
2009), in genetics, a gene is epistatic if it influences
the operation of other genes. In GA literature, epista-
sis is used with a similar definition: the interaction
between genes (Haupt and Haupt, 2004). Although
the interaction between the parameters of a problem is
a serious issue, it has been ignored or neglected in
many optimization and GA studies. In this paper, it is
shown that in optimization problems with epistasis,
the GA algorithm faces some critical challenges and if
there is no epistasis, the GA is not efficient.

According to GA studies, some of the essential
advantages of GAs are as follows (Haupt and Haupt,
2004; Sivanandam and Deepa, 2008):

Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)

ISSN 1673-565X (Print); ISSN 1862-1775 (Online)

www.jzus.zju.edu.cn; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project supported by the Polish National Science Centre, MAESTRO
Programme (No. 2013/327 08/A/ST8/00/780)

 ORCID: Sajad JAFARI, https://orcid.org/0000-0002-6845-7539
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2018

Administrator
新建图章

http://crossmark.crossref.org/dialog/?doi=10.1631/jzus.A1800399&domain=pdf

Jafari et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2019 20(2):109-116

110

1. It can deal with a large number of variables (it
can overcome the curse of dimensionality).

2. It is capable of optimizing functions with ex-
tremely complex surfaces because of the ability to
escape from local optima. In other words, it has the
ability of finding the global optimum of objective
functions.

3. It requires no knowledge of the objective
function surface or its gradient. It only needs the value
of the objective function at some points.

It also has some disadvantages (Haupt and Haupt,
2004; Sivanandam and Deepa, 2008):

1. It requires a large number of fitness function
evaluations.

2. It is not effective for smooth unimodal cost
functions. Note that this does not mean that a GA
cannot find the optimum of these surfaces. It means
that considering the time-consuming way in which
GAs solve simple problems, it is better to use simple
methods such as gradient-based algorithms or line
search in these cases.

As mentioned before, one significant advantage
of GAs compared to other methods is its capability to
overcome the so-called curse of dimensionality. In
fact, in the real world, a GA is not being used to solve
1D problems, for example, because according to the
first disadvantage, it would be a waste of time and
resources. Even problems that are used to educate
evolutionary algorithms with the purpose of visuali-
zation usually have two or three variables. In every
nontrivial optimization problem, there should be at
least a minor degree of epistasis; otherwise, the
problem will be trivial (Davis et al., 2012). The reason
is that, if there is no epistasis, the N-variable
non-epistatic function can be divided into N separate
functions, each with one variable. A GA is undoubt-
edly one of the last choices for optimizing such func-
tions. Considering this issue, why there is no inves-
tigation on epistasis in almost all of the references that
use a GA? Should a GA be accepted as an efficient
and useful algorithm just because it has been used in
the last four decades? This work attempts to answer
these questions.

2 Role of epistasis in benchmarks

In this section, some important benchmarks in
the GA field are investigated. There is an example in

(Haupt and Haupt, 2004), named “Word Guess”, in
which a game has been designed to examine GAs.
The following is a brief explanation of this example:
suppose we are going to find a specific 8-letter word
using a GA. The number of letters in a word is given
to the GA and it starts guessing different combina-
tions of letters which form the word until it finds the
right solution. Therefore, every chromosome is an
8-letter array. The fitness of each chromosome is
equal to the number of letters which are in the correct
place. Thus, the cost function for each solution
(chromosome) is defined as follows:

#letters

1

cost [1 sgn(guess answer)],n n
n

 (1)

where #letters is the number of letters in the word,
guessn is the nth letter in the guess chromosome, and
answern is the nth letter in the answer.

In this example, the word being tested is “colo-
rado”. To find the word, a GA with 32 chromosomes
was used, and the word was discovered in the 17th

iteration. This means that 32×17=544 evaluations of
the cost function have been done.

Haupt and Haupt (2004) stated that since the
total number of possible combinations is 268

≈2.08×1011 (8 places for letters and 26 possible letters
for each place), this is a notable accomplishment for a
GA and it proves its efficiency (544 compared to
2.08×1011). However, an important missing point is
that there is no epistasis between variables to find the
unknown word. Therefore, we just need to find the
correct letter for each place separately. In this case,
the maximum number of required evaluations of cost
function is equal to 8×(26−1) =200. Although GAs
are usually successful in finding the optimum for such
problems, it would be very costly and time-
consuming because of the large number of cost func-
tion evaluations required. Thus, there is no reason to
use a GA for this type of problem.

In (Haupt and Haupt, 2004), some test functions
have been introduced to examine the efficiency of
various optimization algorithms, especially GAs.
These functions are among the most famous test func-
tions commonly used in the literature (Guo et al., 2014;
Teimouri et al., 2014; Qu et al., 2016). However, an
interesting point about these functions is that many of
them have zero degree of epistasis (e.g. functions in
Table 1, where x and y are optimization variables).

Jafari et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2019 20(2):109-116

111

For example, we can write 2 2
1 1 2 ...F x x

2 .Nx It is obvious that to minimize F1, we can

minimize N separate functions which are not related
to each other. Although some of the test functions
(e.g. F4, shown in Fig. 1) have complex surfaces with
many local optima (here minima) in N-dimensional
space, these kinds of problems are very easy to solve
because of their non-epistatic nature. In other words,
there is no need to use a GA, since it tries to solve
problems in N-dimensional space and encounters the
curse of dimensionality. Instead, by breaking the
N-variable function into N one-variable functions, N
1D problems can be solved without encountering the
curse of dimensionality.

On the other hand, some test functions are epi-
static, such as those mentioned in Table 2. As an
example, the surface of F6 is shown in Fig. 2.

In case of F6, it can be seen that it is a highly

epistatic function and the optimum of none of the
variables could be evaluated separately. Thus, how
do GAs deal with such a problem? This question will
be answered in the next section.

3 How does a GA work?

It should be noted that binary genetic algorithm

(BGA) and continuous genetic algorithm (CGA) do
not have conceptual differences. The only difference
is how they encode and decode a problem. Consid-
ering the nature of the problem, one of the two
methods will lead to a better result. For example,
when the variables are naturally quantized, the BGA
fits better, and when the variables are continuous, it is
mostly better to use a CGA. We continue the dis-
cussion using a CGA as it has a more sensible
demonstration and is easier to understand. The
flowchart of this algorithm is shown in Fig. 3.

The steps by which an optimization problem is
solved are analyzed in this section, based on the CGA
flowchart. Although defining appropriate parameters
and a suitable cost function definitely improves the
efficiency of any optimization algorithm, it is clear
that the final solution is not achieved at the step.
Surely a suitable initial population of chromosomes
increases the chance of finding the correct solution.
However, obviously it is not the core of GAs. Then,
the cost function (or fitness function) for each
chromosome is calculated. This is only an evaluation
of existing solutions. The next step (the fourth box) is

Table 1 Functions with zero degree of epistasis

Function Formula

F1
2

1

N

n
n

x

F2
1

10cos 10
N

n n
n

x x

F3 sin(4) 1.1 sin(2)x x y y

F4
2

1

10 10cos(2)
N

n n
n

N x x

Table 2 Epistatic functions
Function Formula

F5
2 2 2

1
1

100() (1)
N

n n n
n

x x x

F6
 2 2 2

2 2

sin 0.5
0.5

1 0.1()

x y

x y

Fig. 1 Surface of function F4 for N=2

y
x

Fig. 2 Surface of function F6

Jafari et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2019 20(2):109-116

112

natural selection. In this step, it is decided which
chromosomes should survive and be transferred to
the next level or be used to generate new offspring.
The selection process is important and influences the
operation of the algorithm; however, a new solution
is still not generated. The fifth box, which is essential
to this study, is discussed in more detail in the next
paragraph. The sixth box, which belongs to mutation,
is important as it increases the variety (diversity) of
the chromosomes by making random changes in
some solutions. Although in this step some new so-
lutions, which did not exist before, are generated, it
should not be considered as the main operator. Since
increasing the mutation rate in a GA leads to a ran-
dom search, the rate of mutation is very low in most
cases. Finally, the last box is related to the conditions
of the algorithm’s completion and has no effect on
the solution.

By inspecting the GA closely, it is clear that it is

the mating (crossover) operator that plays the main
role in finding the optimum solution. With the hope
of finding new and better solutions, the mating op-
erator generates new children from current parents.
Although several main strategies and secondary

methods have been introduced for mating in different
studies, the main operation of mating is based on the
random replacement of variables between the exist-
ing good solutions, with the hope of generating a new
solution with “better genes” than the parents. By
using this operator, we automatically accept that the
current value of each variable can be good, normal,
bad, or negligible. This means that we suppose a set
of variables in which the superposition theorem ap-
plies (while in the real world this is mostly not the
case). In other words, the total is more than the sum
of components and the difference between them is
the extra information which exists in the structure.

To present a proper example for the above dis-
cussion, a new test is introduced in Section 4.

4 Clover: a function to challenge GA

Consider the following objective function
(Eq. (2)) in which θ is a definite parameter. We have
named this function as “Clover” because of its special
shape.

2 2(cos sin) (cos sin)(,) (e e).x y x yF x y (2)

Changing θ does not make any changes to the

surface shape of this function and just rotates it
around the F axis. In fact, it gives a θ-radian rotation
to the function around the F axis. Figs. 4a–4d show
this function’s schema for θ=0, θ=π/12, θ=π/6, and
θ=π/4, respectively.

This function is analytical, continuous, and
unimodal. It has just one minimum (Eq. (3)) which
can be obtained easily by differentiation:

min((,)) (0,0) 2.F x y F (3)

The function can be rewritten for θ=0 as

2 2

1 2(,) (e e) () ().x yF x y f x f y (4)

In this case, there is no epistasis between x and y

variables; so Eq. (5) is true:

1 2opt((,)) opt(()) opt(()).F x y f x f y (5)

Fig. 3 Flowchart of CGA

Yes No

Jafari et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2019 20(2):109-116

113

To solve this problem using a GA for a deter-

mined range of variables, for example, −L/2x, yL/2,
the search space is equivalent to L2. On the other
hand, to find the optimum set of variables in this
example, F(x, y)=f1(x)+f2(y), just the optimum of each
variable separately in its own range needs to be found.
In fact, the search space for this case is equivalent to
2L, the same as the word search example in Section 2
in which the real search space was eight 1D spaces not
one 8-dimensional space. Therefore, if there is no
epistasis between variables, it is clear that a GA or
other algorithms, which search the N-dimensional
space, are useless, especially when the number of
variables or their ranges increase.

A simple way to find the optimum of such
functions is to start from an arbitrary initial condition.
Then, by choosing the variables one by one and
keeping the other variables frozen, we can search the
defined range for each variable separately with any
desired resolution and find the optimum value for
each variable independently (generalized form of line
search).

Now, suppose that in the Clover function for
θ=π/6:

 2 2() /2 () /2(,) e e .x y x yF x y (6)

Eq. (7) should then be true:

1 2(,) () ().F x y f x f y (7)

In this case, the optimum cannot be obtained by

finding each variable’s optimum separately. Thus,
finding an optimum for a variable is not meaningful.
In the previous status (θ=0), we saw that using a GA
is not efficient. However, if the use of a GA is insisted
upon, it can find the optimum solution (in a very
inefficient way). However, when θ=π/4, GAs usually
cannot arrive at the correct solution. To make this
clearer, assume we have the chromosomes in Table 3.

Chromosomes Nos. 1, 2, and 3 are quite not-bad

solutions for this problem. However, it can be seen
that by mating them, some chromosomes with lower
fitness are generated. On the other hand, despite not
being suitable solutions, chromosomes Nos. 4 and 5
can generate the global minimum (0, 0) by mating,
which is the global optimum. This issue is against the
theory of mating which says that parents with high

Table 3 Selected chromosomes for clarifying the mating
problem

Chromosome x y Chromosome x y

1 0.8 0.75 4 7 0

2 2 −2 5 0 3

3 −4 −4

a

dc

b

Fig. 4 Clover function for θ=0 (a), θ=π/12 (b), θ=π/6 (c), and θ=π/4 (d)

Jafari et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2019 20(2):109-116

114

fitness have a greater chance of generating better
offspring in the next generations. In epistatic cases,
parents with good interactions between their variables
(variables with appropriate order) have higher fitness
values than the other parents. In such cases, the mat-
ing operator destroys these orders.

One of the points that the supporters of GAs
mention is that “This algorithm works”. Table 4
shows the simulation results of applying a GA on
Clover function for θ=0 and θ=π/4. To avoid possible
programming mistakes, MATLAB Optimization
Toolbox has been used for these simulations. In this
case, an initial population with 20 chromosomes is
formed and a random and monotonous initial distri-
bution of variables is done between −D and +D
(where D is an arbitrary range for optimization vari-
able, D=20). Other parameters are the default pa-
rameters of the toolbox. The algorithm was run for 50
repeats and the results are represented in Table 4.

A simple comparison between simulation results

shows that applying GAs on the Clover function for
two different values of θ leads to two different results
with a significant difference in the efficiency of the
algorithm. In Section 1, where some of the main ad-
vantages of GAs were listed, it was mentioned that
one of the important advantages of GAs is that they
do not require the system’s formula, and the values of
the objective function in some points are enough for
them to work. If so, why does the GA’s efficiency
notably decrease by such a simple change of a pa-
rameter which only leads to a rotation of the cost
function surface? Bear in mind that this is a very
simple 2D problem without any complexity, discon-
tinuity, or local minima.

5 Other examples

Suppose an objective function as shown in

Eq. (8) in which 2 2r x y and arctan(/).y x

2()(,) e .rF x y r (8)

We have named this the “Spiral Channel” func-

tion. Like the Clover function, this is an epistatic
function. Although it is not differentiable for the
positive values on the x axis, starting from any arbi-
trary point and using a gradient would easily lead to
its only minimum at (2π, 0) with the cost equal to −2π.
The function surface is shown in Fig. 5 and the result
of applying the GA on this function is presented in
Table 5.

Now, consider the following new objective
function (named here as the “Zagros” function):

2 2

cos() cos()
(,) ,

[()] [()]m m

ax by cx dy
F x y

ax by k cx dy k

 (9)

where a=2, b=1, c=2, d=−1, m=0.2, and k=1. This is a
highly epistatic function in which the variables are not
important separately. In addition, it has a lot of local
minima that make its optimization very difficult. The
function is depicted in Fig. 6. By applying a GA on
this function, the results in Table 6 are obtained.

Then, we define two new variables as shown in
Eq. (10) to eliminate epistasis of this function:

,

.

u ax by

v cx dy

 (10)

Table 4 Simulation results of applying a GA on Clover
function for θ=0 and θ=π/4

θ
Number of

successes in finding
the optimum

Number of
failures in finding

the optimum

Average of
solutions

0 50 0 −2

π/4 26 24 −1.543

Table 5 Simulation results of applying a GA on the Spiral
Channel function

Number of successes
in finding the

optimum

Number of failures
in finding the

optimum

Average of
solutions

21 29 −4.66

Fig. 5 Surface of the Spiral Channel function

f(
x,

 y
)

x

y

Jafari et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2019 20(2):109-116

115

By this change of variables, the problem is

converted to Eq. (11), which is clearly non-epistatic:

2 2

cos() cos()
(,) .

() ()m m

u v
F u v

u k v k

 (11)

By applying a GA on the F(u, v), the results in

Table 7 are obtained.
Comparing the results in Table 6 and Table 7, as

expected, the GA shows a very poor performance in a
highly epistatic condition, but on removing the epi-
stasis, the GA does find the solution (though it does
not do it in an optimized way). As mentioned before,
in non-epistatic conditions, simple algorithms can
lead to the correct solution with much less computa-
tional cost compared to GAs.

6 Conclusions

In this paper, the genetic algorithm technique
was challenged and criticized. We claim that, in spite

of the generally positive assumption, a GA is not an
efficient and useful optimization algorithm. It seems
that this algorithm cannot converge successfully in
the real-life problems and if it converges to an ac-
ceptable solution, it is not computationally efficient.
The cost functions can be classified into two groups:
epistatic and non-epistatic. In this paper, it was shown
that if the cost function is non-epistatic, the problem
can be solved using GAs. However, it would be more
efficient to use simple algorithms instead of GAs,
since the N-dimensional function can be divided into
N 1D functions. Further, in most epistatic cost func-
tions, GAs cannot find the correct solution. In addi-
tion to some commonly used benchmarks, our claim
was evaluated and confirmed by three new test func-
tions which were designed in this study. These test
functions were designed in a way that could be em-
ployed in both epistatic and non-epistatic conditions.
Closer inspection shows that the main obstacle in a
GA is the main operator, crossover. Disconnecting
the suitable relations between variables by destructing
the existing appropriate structures, crossover plays a
negative role in the GA evolution. We encourage
interested readers, especially those who use GAs, to
investigate our claim in some real-world optimization
problems. In this paper, our discussion on the degrees
of epistasis is qualitative. We encourage those readers
who are interested in this area to propose a proper
method for measuring the degrees of epistasis.

Acknowledgements

The authors would like to thank Dr. Mansour Rasoulza-
deh DARABAD and Dr. Pegah T. HOSSEINI (Department of
Electronic and Computer Sciences, University of Southamp-
ton, UK) for their kind help and support in enhancing the
quality of this paper.

References
Davis LD, de Jong K, Vose MD, et al., 2012. Evolutionary

Algorithms. Springer, New York, USA.
https://doi.org/10.1007/978-1-4612-1542-4

de Oliveira LL, Freitas AA, Tinós R, 2018. Multi-objective
genetic algorithms in the study of the genetic code’s
adaptability. Information Sciences, 425:48-61.
https://doi.org/10.1016/j.ins.2017.10.022

di Francescomarino C, Dumas M, Federici M, et al., 2018.
Genetic algorithms for hyperparameter optimization in
predictive business process monitoring. Information
Systems, 74:67-83.
https://doi.org/10.1016/j.is.2018.01.003

Table 6 Simulation results of applying a GA on the Zagros
function

Number of successes
in finding the

optimum

Number of failures
in finding the

optimum

Average
of

solutions
1 49 −1.57

Table 7 Simulation results of applying a GA on the Zag-
ros function with new variables

Number of successes
in finding the

optimum

Number of failures
in finding the

optimum

Average
of

solutions
50 0 −2

Fig. 6 Surface of the Zagros function

Jafari et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng) 2019 20(2):109-116

116

Dong HB, Li T, Ding R, et al., 2018. A novel hybrid genetic
algorithm with granular information for feature selection
and optimization. Applied Soft Computing, 65:33-46.
https://doi.org/10.1016/j.asoc.2017.12.048

Greco A, D’Urso D, Cannizzaro F, et al., 2018. Damage
identification on spatial Timoshenko arches by means of
genetic algorithms. Mechanical Systems and Signal
Processing, 105:51-67.
https://doi.org/10.1016/j.ymssp.2017.11.040

Guo LH, Wang GG, Gandomi AH, et al., 2014. A new
improved krill herd algorithm for global numerical
optimization. Neurocomputing, 138:392-402.
https://doi.org/10.1016/j.neucom.2014.01.023

Haupt RL, Haupt SE, 2004. Practical Genetic Algorithms.
John Wiley & Sons, Hoboken, New Jersey, USA.

Jain A, Chaudhari NS, 2017. An improved genetic algorithm
for developing deterministic OTP key generator.
Complexity, 2017:7436709.
https://doi.org/10.1155/2017/7436709

Karakatič S, Podgorelec V, 2015. A survey of genetic
algorithms for solving multi depot vehicle routing
problem. Applied Soft Computing, 27:519-532.
https://doi.org/10.1016/j.asoc.2014.11.005

Qu BY, Liang JJ, Wang ZY, et al., 2016. Novel benchmark
functions for continuous multimodal optimization with
comparative results. Swarm and Evolutionary Computation,
26:23-34.
https://doi.org/10.1016/j.swevo.2015.07.003

Sivanandam SN, Deepa SN, 2008. Introduction to Genetic
Algorithms. Springer, Berlin, Heidelberg, Germany.
https://doi.org/10.1007/978-3-540-73190-0

Steinberg ML, Cosloy SD, 2009. Biotechnology and Genetic
Engineering. Infobase Publishing, New York, USA.

Teimouri R, Baseri H, Rahmani B, et al., 2014. Modeling and
optimization of spring-back in bending process using
multiple regression analysis and neural computation.
International Journal of Material Forming, 7(2):167-178.
https://doi.org/10.1007/s12289-012-1117-4

Tseng HE, Chang CC, Lee SC, et al., 2018. A block-based
genetic algorithm for disassembly sequence planning.
Expert Systems with Applications, 96:492-505.
https://doi.org/10.1016/j.eswa.2017.11.004

Wang H, Zhao ZZ, Guo ZW, et al., 2017. An improved
clustering method for detection system of public security
events based on genetic algorithm and semisupervised
learning. Complexity, 2017:8130961.
https://doi.org/10.1155/2017/8130961

Zhou Y, Zhou LS, Wang Y, et al., 2017. Application of
multiple-population genetic algorithm in optimizing the
train-set circulation plan problem. Complexity, 2017:
3717654.
https://doi.org/10.1155/2017/3717654

中文概要

题 目：上位效应对遗传算法可靠性的影响

目 的：探讨遗传算法的局限性和实用性，并分析基于相

互作用产生的上位效应对遗传算法可靠性的影

响。

创新点：1. 指出遗传算法缺陷的根源；2. 基于测试样本函

数定义目标函数，以判断遗传算法的适用性。

方 法：1. 基于非上位效应函数（表 1）和上位效应函数

（表 2），以及非上位效应函数 F4 和上位效应函

数 F6的结构图来验证遗传算法可靠性；2. 通过计

算样本函数（公式（1））和遗传算法流程（图 3）

表达遗传算法的工作原理。3. 利用克洛弗函数

（公式（2））和计算不同结构角下的函数分布（图

4），进一步判断匹配度（表 3）和计算效率（表

4）；定义新的目标函数（公式（9））和一组新的

变量（公式（10））来实现变量相关性解离。

结 论：1. 对当前遗传算法存在的不足给出了独到见解，

并认为正定性的假设并非可以保证遗传算法实

际的有效性和优化性。2. 定义成本代价函数用以

判断遗传算法可靠性，并分别考虑上位性和非上

位性效应两种情形。当成本代价函数在非上位性

效应下时，遗传算法是有效的；否则，可以把 N

维函数降级为 N 个一维函数，从而采用更简单的

算法来判断。 基于一些通用的基准，进一步设计

三类样本函数来证实以上判断，且这些样本函数

适合于上位性效应情形和非上位效应情形。3. 遗

传算法的瓶颈在于主算子和相干匹配性；可以通

过破坏某些结构来实现变量关系的解离，从而抑

制相干匹配性对遗传算法的影响。希望相关读者

在处理实际优化问题时能验证作者关于上位效

应的定性结论，并给出更可靠的方法来表征这种

效应。

关键词：上位性效应；遗传算法；相干匹配性；叠加性；

优化；成本代价函数

