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Abstract: The effect of the non-homogeneity of material properties has been considered the important variation mechanism in the 
static responses of quasicrystal structures, but the existing theoretical model for it is unable to simulate the material change format 
beyond the exponential function. In this paper, we create a new model of functionally graded multilayered 1D piezoelectric 
quasicrystal plates using the state vector approach, in which varying functionally graded electro-elastic properties can be extended 
from exponential to linear and higher order in the thickness direction. Based on the state equations, an analytical solution for a 
single plate has been derived, and the result for the corresponding multilayered case is obtained utilizing the propagator matrix 
method. The present study shows, in particular, that coefficient orders of two varying functions (the power function and the ex-
ponential function) of the material gradient provide the ability to tailor the mechanical behaviors in the system’s phonon, phason, 
and electric fields. Moreover, the insensitive points of phonon stress and electric potential under functionally graded effects in the 
quasicrystal layer are observed. In addition, the influences of stacking sequences and discontinuity of horizontal stress are ex-
plored in the simulation by the new model. The results are very useful for the design and understanding of the characterization of 
functionally graded piezoelectric quasicrystal materials in their applications to multilayered systems. 
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1  Introduction 
 

Quasicrystals (QCs) form an uncommon class of 
complex metallic alloys with quasiperiodic structures 
that result from quasiperiodic translational symmetry. 
Since QCs were first described by Shechtman et al. 

(1984), their unique structural characteristics have 
been the subject of much research. Several desirable 
properties of QCs have been investigated both ex-
perimentally and theoretically, such as high hardness, 
excellent corrosion and oxidation resistance, low 
surface energy accompanied by low friction coeffi-
cients, high wear resistance, and low electrical and 
thermal conductivity (Ding et al., 1993; Dubois, 
2005; Wang et al., 2005; Gao and Zhao, 2009; Li and 
Liu, 2012; Li et al., 2013; Yaslan, 2013; Yang et al., 
2015; Zhao et al., 2017, 2018). Based on these 
strengths, QCs have found many applications in the 
aerospace, solar power, and nuclear fuel industries 
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(Fan, 2010). Further interest in QCs has been spurred 
by the analysis of piezoelectric coupling effects 
within these structures. QCs with piezoelectric effects 
can realize better performance and higher efficiency 
when used in smart composite structures and system 
designs. Due to this significant property of QCs, 
much research has also been focused on piezoelectric 
QCs (PQCs) (Fujiwara et al., 1994; Altay and Dök-
meci, 2012; Li et al., 2014). Many signal processors 
under development, such as attenuators, transducers, 
sensors, and coatings, exploit the potential-coupling 
effects of piezoelectricity in QCs (Hu et al., 1997; 
Louzguine-Luzgin and Inoue, 2008; Xu et al., 2017; 
Sun et al., 2018; Zhou and Li, 2018). Thereafter, 
increasing attention has been devoted to studying the 
variation of material properties in PQC. 

Stress concentration may be induced by differ-
ences in the material properties within multilayered 
structures (Timoshenko and Goodier, 1970). To 
overcome this defect and meet design requirements 
for layered structures, mechanical engineers have 
developed nonhomogeneous composite materials, 
also known as functionally graded (FG) materials 
(Suresh and Mortensen, 1998). In recent years, FG 
plates and FG multilayered plates have received a 
great deal of attention. Pan and Han (2005) presented 
the exact solution for a mathematical model of a FG 
multilayered magneto-electro-elastic plate using the 
pseudo-Stroh formalism. The pure bending problem 
of simply supported transversely isotropic circular 
plates with elastic compliance coefficients in the FG 
function was analyzed by Li et al. (2006). Based on 
3D thermos-elasticity, Ying et al. (2009) studied the 
thermal-mechanical response of FG thick plates with 
one pair of opposite edges simply supported. Yang et 
al. (2012) analyzed a 3D elastic model of a FG plate 
with materials showing transverse isotropy subjected 
to transverse biharmonic loadings. Guo et al. (2016) 
studied the size-dependent behavior of a FG compo-
site plate based on the modified coupled-stress theory. 
Mikaeeli and Behjat (2016) analyzed the static be-
havior of thick FG piezoelectric plates using the  
element-free Galerkin method. Most recently, FG 
solid circular/annular plates integrated with piezoe-
lectric layers under thermo-electro-mechanical load 
were studied using the differential quadrature method 
(Alibeigloo, 2018). 

Chan et al. (2002) produced a graded nickel-QC 
composite by electro-deposition, and the pseudo- 
Stroh formalism was used to investigate FG QCs with 
material properties following an exponential distri-
bution (Li et al., 2017). However, FG QCs with gra-
dient parameters that follow a positive symmetrical 
transverse change have rarely been studied, and very 
few papers have focused on the static analysis of FG 
QCs with power function changes of the FG modulus. 
The objective of this paper is to obtain an exact solu-
tion for FG QCs whose material constants vary line-
arly or by higher-order trends. This exact solution is 
developed using the state vector approach, which is 
an effective method for investigating composite 
structures (Wang et al., 2003). 

This paper presents an exact solution for a 
symmetrical FG multilayered 1D hexagonal PQC 
plate using the state vector approach. The boundary 
value problem for this system is converted into an 
equivalent initial value problem in terms of the mixed 
formulations. After the propagator matrix and re-
sponse of the bottom surface are obtained, the exact 
solution for the corresponding multilayered case is 
derived. Numerical examples are presented to illus-
trate the electric-elastic responses of the FG multi-
layered plates with different stacking sequences sub-
jected to force, displacement, and electric displace-
ment load on their top surface. 

 
 

2  Fundamental equations 
 
Based on the linear elastic theory of 1D PQC 

(Altay and Dökmeci, 2012), the relationships among 
strains and displacements, electric field, and its po-
tential are governed by 

 

 , , 3 3, ,0.5 , ,  ,ij i j j i j j j ju u w w E         (1) 

 
where the compact repeated summation conventions 
are indicated by i, j=1, 2, 3, and a subscript comma 
represents partial differentiation with respect to the 
axis. ui and w3 represent phonon and phason dis-
placement components, respectively, εij and w3j de-
note strains in the phonon and phason fields, respec-
tively, and Ej and ϕ are the electric field intensity and 
electric potential, respectively. 

Without any body forces and electric charge 
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densities, the static equilibrium equations can be 
expressed as 

 

, 3 , ,0, 0, 0,ij j j j j jH D                       (2) 

 
where phonon stresses, phason stresses, and electric 
displacements are denoted by σij, H3j, and Dj,  
respectively. 

Referred to a coordinate system (x1, x2, x3), the 
atomic arrangement of 1D hexagonal QCs is periodic 
in the x1-x2 plane and quasi-periodic along the x3 axis. 
The coupled constitutive equations with vertically 
polarized piezoelectric effect (Li et al., 2014) take the 
following forms: 

 

11 11 11 12 22 13 33 1 33 31 3

22 12 11 11 22 13 33 1 33 31 3

33 13 11 13 22 33 33 2 33 33 3

23 32 44 23 3 32 15 2

31 13 44 13 3 31 15 1

12 21 66 12

31

,   

,   

,   

2 ,   

2 ,   

2 ,   

2

C C C R w e E

C C C R w e E

C C C R w e E

C R w e E

C R w e E

C

H

   

   

   

  

  
  

    

    

    

   

   
 

 3 13 2 31 15 1

32 3 23 2 32 15 2

33 3 12 2 33 1 33 33 3

1 15 13 15 31 11 1

2 15 23 15 32 11 2

3 31 11 22 33 33 33 33 33 3

,

2 ,

2 ,

2 + ,

2 + ,

( + )+ .

R K w d E

H R K w d E

H R R K w d E

D e d w E

D e d w E

D e e d w E





 

 

 

   













 
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    

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   

  (3) 

 

The constants involved in Eq. (3) are the phonon 
elastic moduli Cij with C66=(C11–C22)/2, the phason 
elastic moduli K1 and K2, the phonon-phason cou-
pling elastic moduli R1, R2, and R3, the dielectric 
moduli λ11 and λ33, the phonon piezoelectric moduli 
e15, e31, and e33, and the phason field piezoelectric 
moduli d15 and d33. It is noted that various uncoupled 
cases can be removed from Eq. (3) by setting the 
appropriate coefficients to be zero. For instance, the 
constitutive equations of the crystal are obtained by 
letting terms R1, R2, and R3 vanish. 

 
 

3  Problem description and state vector 
formulation 

 

A simply supported FG multilayered 1D PQC 
plate is assumed to be of total thickness z=H in the 

vertical direction and horizontal dimensions x×y= 
Lx×Ly in the region of the plane as depicted in Fig. 1. 
The relationship between the local material coordi-
nate system and the global Cartesian coordinate sys-
tem of the plate is assumed as (x1, x2, x3)=(x, y, z). One 
of the four corners of the bottom surface is used as the 
origin of the Cartesian coordinate system, and the 
plate occupies the positive region. The jth layer is 
denoted by j in the layered plate, and its lower and 
upper surfaces are defined as zj–1 and zj, respectively, 
with thickness hj=zj–zj–1. It is assumed that the dis-
placements and z-direction tractions are continuous 
across the layer interface, and the homogeneous ma-
terial is at rest and unstressed in its original natural 
reference state. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The basic Eqs. (1)–(3) consisting of 17 un-

knowns and 17 equations are constructed, where the 
17 unknowns are composed of three phonon dis-
placements, one phason displacement, six phonon 
stresses, three phason stresses, three electric dis-
placements, and one electric potential. 

According to the mixed formulation of solid 
mechanics (Wang et al., 2003), the state vector ap-
proach sets out-of-plane unknowns (ux, uy, uz, σzz, Dz, 
Hzz, σxz, σyz, ϕ, and wz) as basic variables, which are 
defined as primary variables θ1. Furthermore, the 
in-plane unknowns (σxx, σyy, σxy, Dx, Dy, Hzx, and Hzy) 
are incorporated into additional variables, which are 
called the secondary variables θ2. Then, the state 
vector equations for 1D PQC can be established by 
combining the basic unknowns of three governing 
equations in Eqs. (1)–(3), which are expressed as 

Fig. 1  FG multilayered 1D PQC plate 
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1
1 2 1,    ,

z


 


θ

Kθ θ Lθ                          (4) 

 

where θ1=[ux  uy  Dz  Hzz  σzz  σxz  σyz  ϕ  wz  uz]
T, θ2=[σxx  

σyy  σxy  Dx  Dy  Hzx  Hzy]
T, in which the superscript T 

denotes transpose, and 
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            (5) 

 
The submatrices K1, K2, L1, and L2 in Eq. (5) are 
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where 2 2 2 2/ / ,Δ x y       and Sym represents a 

symmetric matrix. The coefficients are shown as 
follows: 
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In addition, the following FG model concerning 

the material properties’ non-homogeneity along the z 
axis is assumed: 

 

F ( ),M MF z                                (9) 

 
where F(z) is the non-homogeneous function, and M 
denotes the values of the arbitrary material constants. 
It should be noted that diversified formats (such as the 
power function and exponential function) of the FG 
coefficient can be simulated by simply changing the 
form of the coefficient function. Substitution of MF 
from Eq. (9) into the original Eq. (5) yields the fol-
lowing FG submatrices KF and LF: 
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(10) 

 
where the symbol * is defined as the multiplication of 
two matrix corresponding elements for the matrix 
Hadamard product, and the submatrices F11, F12, F21, 
and F22 are matrices related to F(z). 
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4  Analytical solutions for FG multilayered 1D 
PQC plate 

 
The theoretical solutions of multilayered plates 

under various boundary conditions have been ob-
tained by using the state vector approach (Sheng et 
al., 2007; Hu and Liu, 2015; Qing et al., 2017). For 
free/clamped boundary conditions, related compo-
nents of displacement or stress are assumed as zero at 
edges. To satisfy these conditions, the boundary 
functions need to be added to the expressions of un-
knowns, which are introduced into the state equation 
as non-homogeneous terms. Therefore, the total state 
equation is non-homogeneous. 

In this section, the state vector equations are 
used to obtain an analytical solution for simply sup-
ported FG multilayered 1D PQC plates. This bound-
ary condition is not only concise in expression, but 
also avoids non-homogeneous terms in the derivation 
process compared with other boundary conditions 
(Levinson and Cooke, 1983). Li et al. (2017) and Sun 
et al. (2018) presented the simply supported boundary 
conditions of multilayered QCs plates. Similarly, the 
simply supported boundary conditions of the devel-
oped model can be presented as 

 
0 and : 0;

0 and : 0.
x y z z xx

y x z z yy
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 
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  (11) 

 
In the absence of body forces and electric charge 

density, the state variables for a FG multilayered 1D 
PQC plate under simply supported lateral boundary 
conditions are assumed to be 
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where p=mπ/Lx, q=nπ/Ly, in which m and n are the 
superposition numbers. 

Substituting Eq. (12) into Eq. (4), a system of 
ordinary differential equations is obtained in the fol-
lowing matrix forms: 
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jth layer in Eq. (13) is found to be 
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where the exponential matrix exp[K
——

F(z−zj−1)] is the 
(10×10) propagator matrix. For each layer of FG 
multilayered 1D PQC plates, we also use the follow-
ing equations to determine the other variables: 
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The continuity conditions at the interface be-

tween the jth and (j+1)th layers are assumed, and then 
the computational equation of the physical quantities 
on the top surface is 
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For FG multilayered 1D PQC plates, the primary 
variables can be divided into a displacement vector 
and a traction vector. We rewrite Eq. (16) as follows: 
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where 
T

,mn xmn ymn mn zmn zmnu u w u   U  mn T  

T
.zmn zzmn zzmn xzmn yzmnD H       Nkl is a recombined 

matrix corresponding to mnU  and ,mnT  which are 

rearranged variables of 1mnθ  in Eq. (16). 

Three loads (σzz, Dz, and uz) are separately ap-
plied on the top surface (z=H) of the plate with the 
bottom surface traction free. We can expand them 
into an infinite double Fourier series, and then add the 
responses together by term: 

 

0 0

4
sin( )sin( )d d .

x y

zzmn zz
L L

zmn z
x y

zmn z

D D px qy x y
L L

u u

    
      
      

    (19) 

 
Solving the above equations, the results of 

Eq. (18) are 
 

1 1
12 11 21 22 11 21

1
21 22

( ) ( ) (0) ( ),

(0) [ ( ) (0)].

mn N mn mn N

mn mn N mn

z z

z

 



  

 

U N N N N T N N T

U N T N T

 (20) 
 
By employing Eqs. (15) and (16), the solutions 

of the generalized displacements and tractions of the 
interior layer are evaluated, and those of the second-
ary variables are obtained by Eq. (13). 

 
 

5  Numerical examples 
 
Based on the formulations presented above, the 

responses of a simply supported FG multilayered 1D 
PQC plate with embedded and/or surface-banded 
piezoelectric layers are studied in this section. Both 
side lengths (Lx, Ly) of the model are 1 m and the total 
thickness H is taken as 0.3 m. The piezoelectric 
crystal material BaTiO3 and QCs material Al-Ni-Co 
are transversely isotropic solids abbreviated as B and 
A, respectively, and their material constants are 
shown in Tables 1 and 2 (Fan, 2013; Sladek et al., 
2013). Note that the coefficients K1, K2, R1, R2, and R3 
in the crystal BaTiO3 layer are assumed to have very 
small values (about 10−10 of the interrelated values in 
the Al-Ni-Co layer), which are able to meet the re-
quirements for completeness of the system matrices. 
The factors influencing the mechanical behaviors are 

discussed below. They are the FG coefficient, and the 
loading and stacking sequences, respectively. The 
given non-homogeneous formats of the FG coeffi-
cients (Chen and Lee, 2003; Li et al., 2017) are con-
sidered as follows: 

 

1 2( ) ,       ( ) exp( ),
f

H z
F z F z z

H
   

 
         (21) 

 
where F1(z) simulates power function changes, and 
exponential change is modeled as F2(z). The non- 

homogeneity factor or gradient index is indicated by f 
and η in Eq. (21), respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Meanwhile, we only investigate two three-layer 

sandwich plates and two four-layer multilayered 
plates, whose stacking sequences can be expressed as: 
(a) A/B/A (QCs-skin-layer); (b) B/A/B (QCs-core- 
layer); (c) A/B/B/A; (d) B/A/A/B. The thickness of 
each layer in one kind of structure is equal. The 
thickness is 0.1 m in the three-layer plates (a) and (b) 
and 0.075 m in the four-layer plates (c) and (d). The 
material properties of the middle two layers in (c) are 
the same in order to compare them with structure (d). 

We present the standard of numerical conver-
gence of the results, which are obtained by the mth 
and nth superposition of the Fourier series. If the 
relative error of the result is less than a certain value 

Table 2  Material constants of BaTiO3  
Parameter Sladek et al. (2013)’s value 

Phonon elastic 
(×109 N/m2) 

C11=166, C12=77, C13=78, C33=162, 
C44=43, C66=44.5 

Piezoelectric 
(C/m2) 

e15=11.6, e 
31=−4.4, e 

33=18.6, d15=0, 

d 
33=0 

Dielectric 
(×10−9 F/m) 

λ11=11.2, λ33=12.6 

Table 1  Material constants of Al-Ni-Co 

Parameter Fan (2013)’s value 

Phonon elastic 
(×109 N/m2) 

C11=234.3, C12=57.4, C13=66.6, 
C33=232.2, C44=70.2, C66=88.5 

Phason elastic 
(×109 N/m2) 

K1=122, K2=24 

Phonon-phason 
(×109 N/m2) 

R1=8.85, R2=8.85, R3=8.85 

Piezoelectric 
(C/m2) 

e15=−0.138, e 
31=−0.160, e 

33=0.347,  
d 

15=−0.160, d 
33=0.350 

Dielectric  
(×10−12 F/m) 

λ11=82.6, λ33=90.3 
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when m and n are large enough, the numerical result is 
convergent (Móricz, 1989). The numerical results 
indicate that when m≥11 and n≥11, the relative error 
of the result is less than 0.01%. Corresponding charts 
are omitted for brevity. Thus, the results are shown to 
converge. 

In addition, the research in this section is classi-
fied into three types of vertical loading in Eq. (19) 
applied on the top surface of the plate (z=H). These 
loads are assumed as single sinusoidal loads, such as 

sin( / )sin( / ),zz zz x yx L y L     so we can obtain 

static responses by taking the first item of the Fourier 
series (m=n=1). The initial values of loading are 

 
2

2

3

Load I: 1 N/m ,

Load II: 1 C/m  

Load I

( )

( ) ,

(II: 1 1) m0 ,

zz

z

z

H

D H

u H





 






 

             (22) 

 
where phonon stress, electric displacement, and 
phonon displacement in the thickness direction are 
expressed as ,zz  ,zD  and ,zu  respectively, while all 

other traction components are set to zero on the top 

and bottom surfaces, e.g. 0,xz   0,yz   0,zzH   

and 0.zD   

5.1  Mechanical load 

In this part, two numerical examples of rectan-
gular plates are carried out to verify the accuracy of 
the proposed method and the numeric solution. Under 
the top surface Load I, the phonon and phason re-
sponses of the plate along the z-direction are consid-
ered by showing the results on the vertical line with 
fixed horizontal coordinates at (x, y)=(0.75Lx, 0.25Ly). 
Firstly, by neglecting the phason field effect, we ob-
tain the phonon displacements ux and uz in the single- 
layer plate with different gradient factors η in F2(z). In 
the numerical calculation, the dimensions of the plate 
are Lx:Ly:H=3:3:1, and the material properties are 
taken from Guo et al. (2016). The results of the state 
vector approach have a good accordance with those of 
Guo et al. (2016) in Fig. 2. In particular, Fig. 2b 
demonstrates that uz decreases with the increasing 
gradient factor η. Secondly, phonon stress σzz and 
phason stress Hzz in the multilayered PQC plates 
without gradient factor η are obtained by using mate-
rials properties and geometry sizes presented by Sun 

et al. (2018). Fig. 3 presents the results with those by 
Sun et al. (2018), which are also consistent with the 
thickness direction for the A/B/A and B/A/B models. 
More specially, as shown in Fig. 3a, σzz at the top and 
bottom surfaces meets the requirements of the 
boundary conditions. Hzz is non-zero in the QCs layer, 
and it becomes exactly zero in the crystal layer in 
Fig. 3b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

The focus of our analysis is on static behavior in 
which the variation of QCs material properties is 
linear and of higher order in F1(z). Similarly, static 
responses are calculated in the thickness direction, 
with fixed horizontal coordinates (x, y)=(0.75Lx, 
0.75Ly). The crystal layers are utilized as sensors 
whose material properties are homogeneous. The 
symmetrical variations of the physical quantities 
along the thickness direction of the layered plates are 
shown for five values of f in Figs. 4a and 4b, where 
f=1, 2 can stimulate the linear and second-order 
changes of the FG coefficient separately. For z rang-
ing from 0.225 to 0.3 m in Fig. 4a, for example, the 
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Fig. 2  Variation of the phonon displacement components 
in the simple plate under different gradient factors η in 
F2(z)  
(a) ux in single-layer plate; (b) uz in single-layer plate 
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coefficient is the non-homogeneous factor: 

  1( ) ( 0.225) / ,
f

F z H z H    and other factors 

can be calculated in a similar way.   
Figs. 5a and 5b show, respectively, the variation 

of the phonon displacements uz along the thickness 
direction in the A/B/B/A and B/A/A/B plates. uz in-
creases with decreasing gradient factor f in the 
B/A/A/B plate, while the opposite trend occurs in the 
A/B/B/A plate. These features illustrate that some 
relations exist between the gradient factor and the 
stiffness of the plate. Figs. 5c and 5d give variation of 
the phonon stress σzz for both the A/B/B/A and 
B/A/A/B plates, respectively. The material non- 
homogeneity only has a small influence on σzz in the 
PQC field. For a multilayered plate, Li et al. (2017) 
also reported that there was almost no difference of σzz 
between two stacking schemes. 

The variations of phason displacements wz and 
phason stress Hzz in the z-direction for different 
structures are plotted in Figs. 6a–6d, respectively. The  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

magnitudes of phason quantities are very small in the 
piezoelectric BaTiO3 layers, owing to the fact that the 
phason coefficients are almost zero for piezoelectric 
crystal materials. As for wz in Figs. 6a and 6b, its 
absolute value increases with the gradient factor f in 
the QCs layers. It is also interesting to note from 
Fig. 6d that the phason stresses are positive when f<0, 
while they are negative by setting f to a positive value 
in the QCs layer.  

Another easily observed example of electric 
potential ϕ in Fig. 7 (p.142) is that ϕ is insensitive for 
the FG effect at the middle plane of the plate. Despite 
the discontinuities of different material properties, 
that situation is between the upper and lower parts of 
the same material. It can be defined as the insensitive 
point of ϕ under the FG effect due to the particular 
nature of the structure. It is indicated that ϕ is almost 
constant at that point within the layer where the ma-
terial properties of QCs may change differently owing 
to external influences, which can be regarded as a 
good interface in engineering design. 
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5.2  Electric load 
 
Under the top surface Load II, the variations of 

electric displacement Dz and electric potential ϕ along 
the thickness direction for a range of values of f are 
presented in Figs. 8a and 8b as well as in Figs. 8c and 
8d, respectively. ϕ is completely different between the 
two structures, which in A/B/B/A is roughly two 
orders larger than in B/A/A/B. ϕ is also not affected 
much by f in the BaTiO3 layer. Moreover, Figs. 8b  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and 8c show that Dz and ϕ are very small from the 
second to the fourth layers. Because the dielectric 
constants in the QCs layer are much smaller than 
those in the BaTiO3 layers, Dz and ϕ are close to zero 
at the bottom of the first layer. 

Figs. 9a–9d show, respectively, the variations of 
phonon displacement ux and phonon stress σxx in the 
z-direction for the two multilayered plates. By com-
parison with the structural parameters of piezoelectric 
FG materials on in-plane displacement and stress  
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components in the B/A/A/B plate, the larger influence 
is induced in the A/B/B/A plate. Such a phenomenon 
is similar to that shown in Figs. 8c and 8d, indicating 
that ux, σxx, and ϕ are more sensitive to the stacking 
sequence. In addition, the in-plane stresses σxx in 
Figs. 9c and 9d are discontinuous across the inter-
faces. While only partial stresses presented in state 
equations are considered based on classical laminate 
theory, in fact, the stress state also includes interlayer 
stresses, which are usually strong between the inter-
faces. High inter-laminar stress is regarded as one of 
the specific failure mechanisms of composite materi-
als in engineering applications. Abrupt changes in the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

surface of z=0.225 m in Fig. 9c and 9d between two 
adjacent layers may result in delamination of the ones 
under vertical loading. In engineering practice, the 
way to restrain delamination between layers is to 
enhance the bonding at the interface and increase the 
number of layers. Also, the insensitive point of σzz 

occurs at z=0.250 m in the QCs layer in Fig. 9f, where 
a stable situation for σzz can be observed. 

5.3  Initial displacement 

Some physical components are calculated for 
applying Load III (the initial displacement uz on its 
top surface), which is the same for different gradient  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Variation of elastic components along thickness direction under Load II  
(a) ux (=uy) in A/B/B/A plate; (b) ux (=uy) in B/A/A/B plate; (c) σxx (=σyy) in A/B/B/A plate; (d) σxx (=σyy) in B/A/A/B plate; (e) σzz 
in A/B/B/A plate; (f) Insensitive point of σzz in Fig. 9e
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factors. Table 3 compares the maximum values of 
horizontal physical quantities on the vertical line in 
the A/B/B/A plate for the variations of gradient factor 
f from −2 to 2, separately. As can be seen, a positive 
effect of the gradient parameter is shown, in which the 
maximum absolute values of the horizontal physical 
components decrease with increasing factor f. The 
horizontal stress components (σxx, σxy, and σyz) change 
obviously with f. However, the influence of f is slight 
on ux. Moreover, Fig. 10a depicts the variations of ϕ 
under uz loading in the B/A/A/B plate. Under the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

initial displacement, there is an insensitive point of ϕ 
in Fig. 10b resembling those in Fig. 7a and Fig. 8d, 
which indicates that insensitive points of ϕ are pre-
dicted in phonon and electric fields. 

 
 
6  Conclusions 

 
In this paper, the static response of a FG multi-

layered 1D PQC simply-supported plate subjected to 
mechanical and electrical load and initial displace-
ment on its top surface is studied by the state vector 
approach. By introducing ten state variables in the 
phonon, phason, and electric fields, tenth-order state 
equations are derived. After a general solution is 
obtained for each layer, the states of the correspond-
ing multilayered structures can be accurately mod-
elled using the propagator matrix method. Analytical 
solutions gained by the application of the proposed 
method and results given in the literature are in rela-
tively good agreement with each other. 

It is constructive to analyze FG multilayered 
plate models using the state vector approach, since the 
approach can be generalized to investigate other ma-
terials that are non-homogeneous in the thickness 
direction. In addition, the FG coefficients in the for-
mulations can be designed in different forms as de-
sired, so that the model can give solutions for the 
variations of other material properties. 

In numerical examples, two multilayered plates 
made of crystals and QCs are analyzed, with the ma-
terial properties varying in the thickness direction 
within the QCs layers. Different FG coefficients lead 
to various effects in the phonon, phason, and electric 
fields. With the higher-order coefficients in power 
function, the feasible ranges of the component values  
 

 
 
 
 
 
 
 
 
 

Table 3  Maximum absolute values of horizontal physical components along the z direction for Load III 
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Hzx 

(×106 N/m2)
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Fig. 10  Variation of elastic components along thickness 
direction under Load III  
(a) ϕ in A/B/B/A plate; (b) Insensitive point of ϕ in Fig. 10a 
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are extended. More specifically, the absolute values 
of phason displacement increase as the gradient factor 
in the QCs layers increases under mechanical load. 
The insensitive points of phonon field stress and 
electric potential are observed in the QCs layer. Fur-
thermore, the changes of the quantities along the 
thickness direction also are affected by the stacking 
sequence. When the top surface is subjected to an 
electric displacement, in particular, the amplitudes of 
physical components in a QCs-core-layer plate are 
smaller than those in a QCs-skin-layer plate. This is 
valuable for the practical design of FG PQC structures 
that feature heterogeneous material properties. 
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中文概要 
 

题 目：基于状态向量法分析功能梯度一维六方压电准晶

层合板的静态响应 

目 的：功能梯度准晶材料有助于减缓层合板界面处的应

力集中现象，提高层间粘接强度，从而提升层合

板表面的耐磨性。本文旨在建立功能梯度压电准

晶层合板的力学模型，并研究功能梯度变化和叠

放顺序对层合板的影响。 

创新点： 1. 首次将状态向量法推广到功能梯度压电准晶板

的分析中；2. 假设功能梯度函数的变化形式为幂

函数和指数函数；3. 在准晶层中观察到声子场应

力和电势的不敏感点。  

方 法：1. 通过联立三大基本方程，推导出准晶板的状态

方程，并求解该微分方程，得到单层准晶板的解

析解；2. 通过引入功能梯度函数，使解析解中的

描述各材料特性的值能够沿厚度方向呈现梯度
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变化；3. 采用传递矩阵法，求出多层准晶板的解

析解；4. 通过仿真模拟，将所得结果与已有文献

进行对比，验证所提方法的可行性和有效性。 

结 论： 1. 准晶层合板中的功能梯度效应随着梯度参数的

增加而增大，且材料参数的变化对声子场、相位

子场以及电场的响应均产生影响。2. 在功能梯度 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

效应下，从准晶层中观察到了声子场应力和电势

的不敏感点。3. 与准晶作为中间层相比，准晶作

为表层时机械载荷引起的位移响应更小。研究结

果可以为压电准晶元器件的设计提供理论参考。 

关键词：状态向量法；功能梯度准晶；压电；板 


