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Abstract: In this paper, a condition-based scheduled maintenance model with aperiodic inspections of structures is developed. The 
structures are experiencing both a gradual degradation process and a random shock process. The former is characterized by a 
stationary gamma process (SGP), and the latter is assumed to be a homogeneous Poisson process (HPP). Two typical common 
failure modes are considered in the reliability and the condition-based maintenance model, namely: (1) soft failures caused by the 
continuous degradation process, together with sudden damage increments due to shocks with moderate impacts, and (2) hard 
failures caused by the same shock process when a severe shock occurs. A remaining useful lifetime-based (RUL-based) inspection 
policy is utilized to determine the inspection schedule. Thereafter, at each inspection point, different maintenance actions are to be 
determined to minimize the average cost rate for either an infinite or a finite time span. The developed models are demonstrated by 
a numerical example. Sensitivity analyses of the optimal solution with various model parameters are also performed. It is illus-
trated that, as compared with the pure continuous degradation process, the additional shock loads exert notable impacts on the 
optimal maintenance strategies. 
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1  Introduction 
 

Engineering structures, such as civil infrastruc-
tural facilities, are often exposed to severe operating 
conditions during their service life. Failures of a 
structure or a component may occur due to internal 
degradation or to external shocks under such circum-
stances. Failure mechanisms including wear degra-
dation, corrosion, erosion, fatigue, fracture, and 
overload are often observed for engineering struc-

tures. A system is considered to experience multiple 
dependent competing failure processes (MDCFP) 
when two or more dependent failure mechanisms are 
involved. More generally, two dependent failure 
processes are often identified: (1) soft failures caused 
by a continuous degradation and additional sudden 
damage increments due to a shock process, and (2) 
hard failures caused by the same shock process when 
a severe shock occurs. These two failure processes are 
dependent and competing, making reliability model-
ing and analysis a challenge. 

Several researchers have investigated the relia-
bility of a system experiencing MDCFP. Peng et al. 
(2010) proposed a reliability model for systems in-
volving two dependent failure processes: (1) soft 
failures caused by a linear degradation process  
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together with additional sudden damage increments 
due to a shock process, and (2) hard failures caused by 
fatal shock loads from the same shock process. Rafiee 
et al. (2014) developed a reliability model for a sys-
tem subjected to random shocks and a linear degra-
dation path with a changing degradation rate. Huang 
and Chen (2015) proposed a time-dependent reliabil-
ity model of deteriorating structures subjected to 
aging modeled as a gamma process and random 
shocks. To incorporate the effect of model uncertainty, 
Bayesian inference methods are applied to update the 
model parameters. However, in the literature men-
tioned above, an implicit assumption exists that the 
arrival of each shock will cause a sudden degradation 
regardless of the shock level. Generally, however, 
structures with high reliability possess the ability to 
resist small shocks, and thus, shock loads below a 
certain magnitude have no impacts on the degradation 
process. In (Jiang et al., 2015), only those shocks 
beyond a certain level influence the degradation 
process, which makes the deterioration model more 
realistic. An and Sun (2017) proposed a reliability 
model for a system subject to a shock load process 
and multiple linear degradation processes, by con-
sidering the immunity of the system to small shocks 
and the dependence between these processes. Without 
loss of generality, degradation of a system constitutes 
a monotone increasing process. The gamma process is 
well suited for modeling this temporal variability of 
the degradation process of structures or systems (van 
Noortwijk, 2009; Ponchet et al., 2011; Huynh et al., 
2012; Huang and Chen, 2015), and will be utilized in 
the current paper. van Noortwijk (2009) summarized 
the application of gamma processes in describing the 
degradation process of systems in detail. Methods for 
estimation, approximation, and simulation of gamma 
processes are also reviewed. 

Failures of a structure can have catastrophic 
consequences, especially for structures of great sig-
nificance to human society, such as bridges, power 
plants, or pipeline systems. In order to avoid severe 
environmental and/or economic consequences and to 
prolong the useful lifetime of a system, preventive 
maintenance (PM) actions are usually executed 
throughout its operating period. In the extant litera-
ture, perfect preventive maintenance (PPM), which 
can restore a system condition to an “as good as new” 
state but at large expense, has been studied exten-

sively. By contrast, imperfect preventive maintenance 
(IPM), with a lower cost, will restore the system 
condition to a state between “as bad as old” and “as 
good as new” after intervention (Nakagawa, 1988; 
Lin et al., 2001; Zequeira and Bérenguer, 2006; Cas-
tro, 2009; Wu and Zuo, 2010). These two kinds of PM 
will be considered in this paper. 

In maintenance optimization problems, deter-
mining the optimal maintenance times at which PMs 
are performed is a critical issue. Time-based mainte-
nance (TBM) and condition-based maintenance 
(CBM) are two basic strategies to cope with this issue. 
In TBM, it is assumed that the failure behavior of a 
system is predictable, and the intervention is executed 
based on a failure intensity function or reliability 
function (Doyen and Gaudoin, 2004; El-Ferik and 
Ben-Daya, 2006; Castro, 2009; Chen et al., 2018). In 
CBM, which is another popular maintenance tech-
nique, maintenance decisions are made based on 
system degradation information at each inspection 
instant. Currently, CBM is receiving increased atten-
tions and is more appropriate for application in cases 
where the on-line system information is taken into 
account during the maintenance decision-making 
process (Tan et al., 2010; Ahmad and Kamaruddin, 
2012; Do Van and Bérenguer, 2012; Saydam and 
Frangopol, 2015). It is worth noting that maintenance 
optimization of systems experiencing MDCFP is of 
practical importance. Peng et al. (2010) proposed a 
periodic time-based maintenance model to identify 
the optimal inspection time interval to minimize cost 
rate. Guo et al. (2013) studied two periodic time- 
based inspection/replacement models for a non- 
repairable system to minimize cost rate. Wang and 
Pham (2011) presented a periodic CBM model ig-
noring the potential hard failures caused by shocks. Li 
and Pham (2005) developed a CBM model with a 
predefined inspection time schedule. In the above 
studies, optimal maintenance policies were deter-
mined for systems over an infinite time span. How-
ever, since a system or a structure usually has a finite 
service life, determining the optimal maintenance 
strategy over a finite time span would be substantially 
more valuable. 

This paper first proposes a time-dependent reli-
ability model for systems involving MDCFP that 
takes into consideration the gamma degradation pro-
cess together with different shock level effects. This 
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model is generalized from those in the literature (Peng 
et al., 2010; Rafiee et al., 2014; Huang and Chen, 
2015), in which any shocks are assumed to induce 
damage in a structure or component regardless of 
their intensions. Thereafter, the proposed model is 
incorporated with a maintenance strategy optimiza-
tion as described below. For the CBM modeling, a 
remaining useful lifetime-based (RUL-based) in-
spection policy proposed by Do et al. (2015) is uti-
lized to identify the inspection schedule according to 
a reliability criterion, and a condition-based mainte-
nance optimization model is developed for minimiz-
ing the average cost rate. The cost includes inspection 
costs, maintenance costs, and downtime losses. The 
proposed CBM model in this study differs from those 
in other studies (Wang and Pham, 2011; Do et al., 
2015), in which both soft failure and hard failure 
modes are taken into account when applying the RUL 
criterion. Finally, considering that managers usually 
pay more attentions to the profits and losses of 
structures in a certain time period, optimal mainte-
nance policies for both infinite and finite time hori-
zons are investigated and compared. 

In this study, we first present the description of a 
system and its reliability analysis. Then, we introduce 
the RUL-based inspection policy and CBM modeling. 
The impacts of imperfect preventive maintenance on 
the deterioration level and on the mean deterioration 
rate are also addressed. Optimal maintenance policies 
for infinite and finite time horizons are discussed. At 
last, to illustrate the proposed reliability and mainte-
nance models, a numerical example is studied.  

 
 

2  Reliability analysis for a system subject to 
degradation and shocks 
 

Fatigue, corrosion, and erosion are examples of 
component degradation in engineering. Several sto-
chastic processes have been investigated for de-
scribing the continuous degradation process, such as 
Brownian motion with drift (Doksum and Hóyland, 
1992), the compound Poisson process (Esary et al., 
1973), and the gamma process (van Noortwijk et al., 
2007; van Noortwijk, 2009). When a system or a 
component suffers not only the gradual deterioration 
process, but also random shock loads, the degradation 
process will become increasingly complicated. Spe-

cially, the system will experience two dependent 
competing failure processes: (1) soft failure caused by 
gradual deterioration and moderate shocks, and (2) 
hard failure caused by some extreme random shock 
loads. These two failure processes are dependent 
because they share the same random shock loads. The 
system will fail once the total degradation exceeds a 
threshold H or the shock load exceeds the upper 
threshold (An and Sun, 2017). These competing fail-
ure modes may be observed, for example, in an elec-
tric device, in which the wear-out process corre-
sponds to a soft failure, while overloading stresses 
caused by voltage spikes result in a hard failure 
(Wang and Pham, 2011). Another example is a micro- 
engine application, in which the dominant failure 
mode is identified as the wear on the rubbing surface 
between the gear and the pin joint. The wear volume 
is primarily caused by the aging degradation process. 
In addition, shock tests on micro-engines demonstrate 
that shock loads may cause substantial wear debris 
between the gear and the pin joint (Peng et al., 2010; 
Rafiee et al., 2014; Jiang et al., 2015; An and Sun, 
2017). For engineering structures, various overloads 
produce shock impacts. 

Since both continuous degradation and shocks 
are responsible for failures, they are both considered 
in the reliability analysis. In particular, continuous 
degradation is characterized by a stationary gamma 
process, and the shock process is modeled by a ho-
mogeneous Poisson process (HPP). By dividing the 
shocks into three ranges and using a relationship 
between the moderate shocks and the induced sudden 
damage increments, a reliability equation is derived. 
This result is used in the RUL-based inspection policy 
for determining the next scheduled inspection time, as 
described in Section 3.1. 

2.1  Problem definition 

1. Considering a single component system and 
focusing on the most important or critical component, 
its deterioration level at time t can be observable and 
summarized by a random scalar variable XS(t). Soft 
failure occurs if the cumulative deterioration level 
XS(t) reaches a predefined threshold H, i.e. if XS(t) 
≥H. 

2. A hard failure takes place if a random shock 
load Wi greater than the upper threshold WU occurs, 
i.e. if Wi≥WU. Those that are smaller than a predefined 
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threshold WL, i.e. Wi<WL, have no effect on the  
system. For moderate shocks, i.e. WL≤Wi<WU, dam-
age will be induced to the system, and it can be added 
to XS(t). 

3. Inspections are assumed to be instantaneous, 
perfect, and non-destructive, and failures can only be 
detected by inspections. When the system fails, it is 
not immediately repaired. Hence, the system is una-
vailable from the time at which the failure occurs until 
the next scheduled inspection instant (Peng et al., 
2010; Ponchet et al., 2011). 

2.2  Continuous degradation modeling using a 
gamma process 

The gamma process is a monotone increasing 
process suitable for describing most physical degra-
dation phenomena, such as wear, fatigue, corrosion, 
erosion, crack growth, and creep. 

In mathematics, a continuous random quantity X 
follows a gamma distribution if its probability density 
function (PDF) is given by 
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where α>0 is the shape parameter, β>0 denotes the 
scale parameter, IA(x) is an indicator function with 
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     is the gamma function for x>0. 

The expectation and variance are E[X]=αβ and V[X]= 
αβ2, respectively. A gamma process with shape func-
tion α(t)>0 and scale parameter β>0 is a continuous- 
time stochastic process {X(t), t≥0} with the following 
probability density function fX(x; α(t), β), in which α(t) 
is a non-decreasing, right-continuous, and real-value 
function for t≥0 and α(0)≡0. 

A component/system is considered to fail when 
its cumulative degradation amount exceeds a prede-
fined threshold H. Let the time at which failure occurs 
be Tf, as shown in Fig. 1. The lifetime distribution and 
the reliability function can be written as: 
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the lower incomplete gamma function. The following 
relation holds: 
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Empirical studies showed that the expected de-

terioration at time t often follows a power law, 
namely, 

 

[ ( )] ( ) ,b b bE X t t ct at t                   (5) 

 
where parameters a>0 (or c>0), and b>0. Some en-
gineering knowledge is available about the parameter 
b, e.g. degradation of concrete due to corrosion of 
reinforcement (linear: b=1), sulfate attack (parabolic: 
b=2), diffusion-controlled aging (square root: b=0.5), 
creep (b=1/8), and the expected scour-hole depth 
(b=0.4) (van Noortwijk, 2009). In this study, the 
continuous degradation process is supposed to be 
stationary, i.e. b=1. 

2.3  Effects of shock processes 

Random shocks may frequently occur when  
devices/systems are exposed to external shock envi-
ronments, such as unexpected usage and overloads. In 
the literature, there are four categories of random 

Fig. 1  Illustration of gradual degradation 
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shock models (Peng et al., 2010; Rafiee et al., 2014). 
(1) Extreme shock model: failure occurs when the 
magnitude of any shock exceeds a specified threshold; 
(2) Cumulative shock model: failure occurs when the 
cumulative damage from shocks exceeds a critical 
value; (3) Run shock model: failure occurs when there 
is a run of k shocks exceeding a critical magnitude; (4) 
δ-shock model: failure occurs when the time lag be-
tween two successive shocks is shorter than a 
threshold δ (Wang and Zhang, 2005). Both the ex-
treme shock model and the cumulative shock model 
are utilized in this research. 

Let Wi be independent and identically distributed 
(i.i.d) random variables with density function fW(w), 
and cumulative distribution function FW(w). It is as-
sumed that the random shock arrival time follows an 
HPP {N(t), t≥0} with intensity λ. Let N(t) be the total 
number of shock loads occurring in (0, t]. The prob-
ability that the shock occurrence number equals n 
becomes: 

 

( )
Pr{ ( ) } e , 0, 1, 2, .

!

n
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According to the properties of the HPP, the in-

terval between the ith and the (i−1)th shocks, i.e. 
Δτi=τi−τi−1 (i=1, 2, …), follows an exponential dis-
tribution with parameter λ. Thus, the expected value 
of Δτi (i=1, 2, …) is 1/λ, i.e. E[Δτi]=1/λ (i=1, 2, …) as 
shown in Fig. 2.  

Shock loads can be classified into three levels: (1) 
small shock loads (also called first class loads), which 
fall below a certain level WL, i.e. Wi<WL, and have no 
impact on the system; (2) moderate shock loads (also 
called second class loads), which fall in the extent of 
WL≤Wi<WU, and influence the system degradation 
process and induce a sudden degradation increment; 
(3) fatal shock loads (also called third class loads), 
which will cause sudden failure of the system with a 
magnitude larger than the shock threshold WU, i.e. 
Wi≥WU.  

Let p1, p2, and p3 represent, respectively, the 
occurrence probability of the three kinds of shock 
loads (p1+p2+p3=1), and let N1(t), N2(t), and N3(t) be 
the occurrence number of these three kinds of loads. 
According to the decomposition theorem of a Poisson 
process, the arrival time of these three shock loads is 

also a Poisson process with intensities λp1, λp2, and 
λp3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
For the extreme shock load model, as shown in 

Fig. 2, a system failure occurs when the shock load 
exceeds the shock threshold WU. Then, the survival 
probability for the ith shock is 
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The cumulative shock load model is used to 

evaluate the effects of moderate shock loads. The 
instantaneous increases in the total degradation are 
assumed to be i.i.d random variables, and take the 
following form: 
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It can be seen that the degradation S(t) is a 

compound Poisson process, and the probability of 
survival becomes 
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Fig. 2  Illustration of a possible random shock process 
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2.4  Reliability analysis considering both a con-
tinuous degradation and shocks 

For a system experiencing gradual degradation 
and shocks, the total damage for the system deterio-
ration is the cumulative effect of both continuous 
degradation and those moderate shocks, i.e. 
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To keep the system in good condition without 

failure, it is required that no fatal shocks occur and 
that the total deterioration is lower than the predefined 
failure threshold H. Reliability of the system over 
time t can be derived as in Eq. (13):  
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where Pf is the failure probability, fX(x; α(t), β) is the 
probability density function of the gamma distributed 

random variable as shown in Eq. (1), and ( )
kSF   de-

notes the cumulative distribution function of the sum 
of k i.i.d Yi variables. Let Wi follow a normal distri-

bution (An and Sun, 2017), i.e. 2( , ),i W WW N    and 

consequently the sudden damage sizes Yi also follow 
a normal distribution. A numerical integration ap-
proach can be utilized in calculating the reliability 
(Eq. (13)). The reliability model constitutes the basis 
of the RUL-based inspection policy application in 
formulating the CBM optimization in Section 3. 

For illustration purposes, parameters for a sys-
tem experiencing a gamma process and a random 
shock process are provided in Table 1. Based on 
Eq. (13) and Table 1, the survival probability of the 
system is calculated and plotted in Fig. 3. A sensitiv-
ity analysis can be performed to investigate the effects 
of model parameters on R(t). The results are shown in 
Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 3 shows that the random shock process 

greatly influences the reliability. Systems experienc-
ing a gamma process, as well as a random shock 
process, are much more vulnerable to failure as 
compared to the case involving only continuous 
degradation.  

Fig. 4 shows that all of the studied model pa-
rameters have significant effects on the reliability 
function. For example, when the intensity of shock 
loads increases, which implies that shock loads occur 

Table 1  Parameters for a system experiencing a gamma 
degradation process and a random shock process 

Parameter Value Parameter Value 

H (mm) 20 WU (kN) 4.0 

c* 1 μW (kN) 3.0 

b* 1 σW (kN) 0.5 

β (kN) 1.0 λ 0.5 

WL (kN) 1.0 κ (mm/kN) 0.5 
* c and b are the parameters contained in Eq. (5) 
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more frequently, the reliability of the system de-
creases, as shown in Fig. 4d. 

 
 

3  Condition-based maintenance modeling 
 

In order to avoid severe environmental and/or 
economic consequences and prolong the useful life-
time of a system, preventive maintenance actions are 
usually performed throughout its operating period. In 
the framework of CBM optimization, system infor-
mation is usually employed to make decisions about 
both the inspection time and maintenance action. 

In this study, both soft and hard failure modes are 
taken into account in the CBM model. In addition, a 
remaining useful lifetime-based (RUL-based) in-
spection policy is adopted to determine the inspection 
schedule based on a reliability criterion. Thereafter, at 
each inspection time, different maintenances are to be 
determined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

3.1  RUL-based inspection 

Different inspection policies, which aim to op-
timize the time interval between two successive in-
spection points, have been widely studied in the ex-
tant literature. The RUL-based inspection seems to be  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Sensitivity analysis of R(t) on different model parameters: (a) WL; (b) WU; (c) κ; (d) λ 
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very promising, especially in the context of CBM 
optimization problems. 

The remaining useful lifetime of a system is de-
fined as a residual duration for which the system fails 
with a given probability (Si et al., 2011). 

In an RUL-based inspection, the next inspection 
time is chosen, such that the failure probability of a 
system prior to the next inspection remains lower than 
a limit Q, 0<Q≤1, i.e. the next inspection time is de-
termined by 

 

1 S 1( ( ), ),i i it t m X t Q
                      (14) 

where 

S 1

S 1 S 1

( ( ), )

= min{Δ : Pr{ ( Δ ) | ( )} },

0,1, 2, .

i

i i i i

m X t Q

t X t t H X t Q

i




 
   

 
 (15) 

 
The probability in the brace is calculated based 

on Eq. (13) in which H is replaced with 

S 1( )iH X t
  and α(t) is replaced with αi−1(t), where 

αi−1(t) is the shape function of the gamma process in 
(ti−1, ti], and the superscripts “−” and “+” represent the 
state immediately before and after a maintenance 
action, respectively. Note that 

 

S S 1 1 1( ) ( ) Δ ( , ) Δ ( , ),i i i i i iX t X t X t t S t t 
          (16) 

 

where S ( )iX t  is the total degradation amount at ti, 

ΔX(ti−1, ti) represents the continuous degradation 
increment over (ti−1, ti], and ΔS(ti−1, ti) denotes the 
cumulative sudden damage increments caused by the 
random shocks occurring over (ti−1, ti] (Eq. (9)). 

3.2  Selection rules for maintenance actions 

In CBM modeling, based on the magnitudes of 
shock loads occurring in (ti−1, ti] and the total deteri-

oration level S ( )iX t  at inspection time ti, the fol-

lowing maintenance decision rules are applied. 
If any Wj>WU, j=1, 2, …, Ni, where Ni is the 

occurrence number of shocks occurring in the ith 
interval, i.e. t(ti−1, ti], a hard failure occurs, and a 
corrective replacement action is performed at time ti. 
After the replacement, the deterioration level is reset 
to 0, and the mean deterioration speed is reset to the 
initial value v0=α(t)·β/t.  

If S ( ) ,iX t M   the system is in a working state, 

and no maintenance action is performed. M  is called 
the preventive maintenance threshold, and it is a de-
cision variable to be optimized. 

If S ( ) ,iM X t H   although the system is still 

functioning, its deterioration level is considered as a 
“warning”. Hence, a preventive maintenance action is 
performed. Without loss of generality, it is assumed 
that this preventive maintenance action is the kth 
preventive maintenance action since the last perfect 
maintenance or replacement. If k=K (K is called the 
perfect preventive threshold, which is also a deci-
sion variable to be optimized), the kth preventive 
maintenance action takes a perfect one. The dete-

rioration level of the system S ( )iX t  after mainte-

nance is reset to 0, and the mean deterioration 
speed is restored to v0. In contrast, if k<K, the kth 
preventive maintenance action is an imperfect one. 
This imperfect preventive maintenance action can 
restore the system to a state between “as bad as old” 
and “as good as new” (for more details, please refer 
to Section 3.3). 

If S ( ) ,iX t H   a soft failure occurs, and then a 

corrective replacement action is performed at time ti. 
After the replacement, the system is “as good as 
new”. 

In addition, it is assumed that all of the mainte-
nance durations are neglected. 

3.3  Effects of imperfect maintenance 

Suppose that imperfect maintenance actions on a 
system produce impacts on both the deterioration 
level and the deterioration rate. 

It is assumed that the kth intervention gain Zk is a 

continuous random variable, 0 ( ),k S iZ X t   and 

follows a truncated normal distribution with density 
(Do Van and Bérenguer, 2012; Do et al., 2015): 

 

, , , [ , ]

1

( ) ( ),TN
a b a b

x

g x I x
b a 


 
  

 

 
 
 

       
   

    (17) 

 
where I[a, b](x)=1 if a≤x≤b and I[a, b](x)=0 otherwise. 
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21 1
( ) exp

22π
      

 
 is the probability density 

function of a standard normal distribution, and Φ(·) is 
its cumulative distribution function. 
 

S ( ) / 2,iX t     S ( ) / 6,iX t   

3 0,a        S3 ( ).ib X t      

 
Due to the imperfect maintenance model, the 

deterioration level of the system immediately after the 
kth maintenance becomes: 

 

S S( ) ( ) .i i kX t X t Z                         (18) 

 
The imperfect maintenance action may acceler-

ate the speed of a deterioration process, for example, 
welding can reduce crack length but it may damage 
some physical properties of materials (El-Ferik and 
Ben-Daya, 2006; Coria et al., 2015; Do et al., 2015). 
A non-negative continuous random variable εk is used 
to describe this effect, which follows an exponential 
distribution:  

 

{ 0}( ) e .x
xh x I 
                           (19) 

 
The mean value of εk is E[εk]=1/γ (γ>0). 
The kth maintenance action will result in a 

change in the mean deterioration rate: 
 

1 .k k kv v                                (20) 

 
It is also assumed that εk is measurable. For 

example, the mean deterioration rate after the first 

IPM becomes 1 1
1 0 1 1 1

1 1

[ ( )]
= + = + .

bE X t ct
v v

t t


  


   

In particular, for the stationary gamma process, i.e. 
b=1, then v1=cβ+ε1. 
 
 
4  Optimization of maintenance strategies 

4.1  Cost modeling 

Each maintenance action will incur a cost. For an 
IPM, this cost is usually dependent on the interven-
tion gain Zk. It is assumed that the kth imperfect 

maintenance action at inspection time ti requires a 
cost expressed below: 

 

0IP P ( ) ,
k iC C u t                           (21) 

 
where u(ti)≤1 is the degradation improvement factor 

defined as S ( ) ,k iZ X t  
0PC  is the imperfect mainte-

nance cost incurred when the deterioration level is 
reduced to zero, and η is a non-negative real constant 
number representing the imperfect preventive 
maintenance characteristic of the system. Different 
kinds of maintenance cost functions can be found 
depending on the value of η (Do Van and Bérenguer, 
2012; Do et al., 2015).  

A cost of CP is incurred when a perfect preven-
tive maintenance action is performed on the system. 
For a corrective replacement action, it is necessary to 
pay a cost, CC. Moreover, for each inspection, it costs 
CI. Since failure is not repaired immediately, an ad-
ditional downtime cost Cd is incurred. The total 
maintenance cost can be expressed as (Do et al., 
2015) 

 
IP ( )

I I IP P P
1

C C d

( , ) ( ) ( )

( ) ( ),

i

N t
t

i

C M K C N t C C N t

C N t C D t


    

   


       (22) 

 
where M and K are the decision parameters mentioned 
in Section 3.2; NI(t), NIP(t), NP(t), and NC(t) are the 
numbers of inspections, of imperfect and perfect 
maintenance, and of replacement in [0, t], respec-
tively; D(t) denotes the total downtime in [0, t]. 

Eq. (22) cannot be evaluated for an infinite 
horizon, where the operating time of the system is 
undefined. In such a case, the average long-run total 
maintenance cost per unit time is alternatively com-
puted for determining the optimal maintenance policy. 
From the basic renewal theory (Ross, 1996; Li and 
Pham, 2005), the average long-run total maintenance 
cost per unit of time is (Do et al., 2015) 

 

( , ) [ ( , )]
MC( , ) lim ,

[ ]

t L

t

C M K E C M K
M K

t E L
      (23) 

 
where L is the length of a cycle, and E[·] represents 
the mathematical expectation. A cycle is defined as 
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either a time interval since the installation of a system 
to the first replacement or a time interval between two 
consecutive replacements (Peng et al., 2010). The 
successive cycles together with the costs incurred in 
each cycle constitute a renewal process.  

4.2  Formulation and solution algorithm for 
minimizing the cost rate 

A maintenance optimization model is proposed 
as  

 
*

,

max

+1 S +1 S

0

Find: MC = min MC( , ),

s.t.  (0, ];

[1, ], and is integer;

( ) 1 , [0, ];

Δ : Pr{ ( Δ ) | ( )} ,

                                        0,1, 2, , 0.

M K

i i i i

M K

M H

K K K

R t Q t L

t X t t H X t Q

i t

 




  

  

 

   (24) 

 
In Eq. (24), Kmax is the maximum value of K. The 

model features the constraint that an RUL-based in-
spection policy is applied according to the reliability 
requirement, taking into consideration both soft fail-
ure and hard failure, as mentioned in Section 3.1. The 
third constraint means that the system reliability 
should not be lower than the predefined threshold at 
any time t during its operation process. 

In determining the decision parameters (M, K) 
that minimize the cost rate, particle swarm optimiza-
tion (PSO) (Ge et al., 2008; Nickabadi et al., 2011; de 
Fátima Araújo and Uturbey, 2013) is used in this 
study. For a given set of (M, K), N Monte-Carlo sim-
ulations (MCSs) are executed to evaluate the fitness 
function MC(M, K). 

The optimization procedure is stated as follows. 
1. Initialize n particles (Mi, Ki), i=1, 2, …, n. 
2. Evaluate the fitness function MC(Mi, Ki) for 

each particle (Mi, Ki) via MCS: 
(2.1) For j=1 to N; 
(2.2) Determine the next scheduled inspection 

time ti; 
(2.3) Simulate the continuous degradation in-

crement and the shocks occurring over (ti−1, ti]; 
(2.4) Compare the shocks with the failure 

threshold WU; if failure occurs, go to (2.6); 
(2.5) Compare the total deterioration level with 

these two thresholds (i.e., M and H) and determine its 

maintenance cost; 
(2.6) Evaluate the mean cost rate, i.e. MCj(Mi, 

Ki); 
(2.7) End; 

(2.8) 
1

1
MC( , ) MC ( , ).

N

i i j i i
j

M K M K
N 

   

3. Determine the best solution, Pbest, of each 
particle and the best solution, Gbest, of the population. 

4. If a stopping criterion is satisfied, then stop 
and output the optimal solution (M*, K*). 

5. Update each particle in the population based 
on Pbest and Gbest, and then go to Step 2. 

The detailed descriptions for Steps (2.2) to (2.6), 
i.e. the single MCS process, will be presented in 
Sections 4.3 and 4.4. 

4.3  Single MCS process to evaluate the cost rate 
over an infinite time span 

Three methods are available for simulating a 
gamma process: (1) gamma-increment sampling, (2) 
gamma-bridge sampling, and (3) approximating a 
gamma process as a limit of a compound Poisson 
process (van Noortwijk, 2009). The gamma- 
increment sampling approach is used here to simulate 
the continuous degradation process (i.e. gamma pro-
cess), since it is straightforward that independent 
increments with respect to very small units of time are 
directly simulated. 

Let CMi be the total cost caused by the mainte-
nance actions during the time interval between the 1st 
inspection and the ith inspection, CPi be the ith 
maintenance cost and CF be the downtime cost from 
the 1st inspection to the ith inspection. These defini-
tions are also applied in the following section (Section 
4.4). The procedure to evaluate MCj(Mi, Ki) over an 
infinite time span for a given set of (Mi, Ki) is de-
scribed as follows. 

1. Initialize the decision variables: 
Given the values of H, Q, WL, WU, M, K, and cost 

parameters. 
2. Initialize the process parameters: 
i=0, ti=0, k=0, CM0=0, CF=0, Tf1=+∞, Tf2=+∞, 

+
S S( )= ( ) 0i iX t X t  , v0=cβ, and i=i+1. 

3. Compute the next scheduled inspection time 

ti=ti−1+Δti, where +
S 1Δ ( ( ), ),i it m X t Q  see Eq. (15). 

4. Simulate the random shocks occurred in 
(ti−1, ti]: 
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Generate Ni random shocks Wj (j=1, 2, …, Ni) 
occurring in (ti−1, ti] as mentioned in Section 2.4, and 
the corresponding time intervals Δτj, following an 
exponential distribution as mentioned in Section 2.3. 

5. Discretize the time intervals Δτj (j=1, 2, …, Ni) 
into smaller intervals and evaluate the total deterio-
ration level at each time instant including the time at 
which shock loads occur. 

6. Check whether a soft failure occurred in (ti−1, ti] 
or not: 

If S ( ) ,iX t H   soft failure occurs before ti and 

the failure time f1 1( , ]i iT t t  is determined. 

7. Check whether a hard failure occurred in (ti−1, 
ti] or not: 

Suppose the kth (1≤k≤Ni) shock is the first one 
larger than WU. Then, the failure time is Tf2= 

1
1

Δ .
k

i j
j

t 


  

8. If a failure occurred, then compute the failure 
time Tf=min{Tf1, Tf2} and CF=Cd·(ti−Tf). Compute 

the cost rate I 1MC ( CM CP CF)/i i ii C t      with 

CPi=CC. Stop and output MC. 

9. Compare the deterioration level S ( )iX t  with 

M to determine the corresponding maintenance  
action: 

(9.1) If S ( ) ,iX t M   then k=k+1. For k<K, an 

imperfect PM is applied, 
0P SCP ( ( ), ( )) ,i i iC u X t Z t    

CMi=CMi−1+CPi, S S( ) ( ) ( )i i iX t X t Z t    and i=i+1, 

vi=vi−1+εi (Eqs. (18) and (20)), and then go to Step 3; 
otherwise, a perfect PM is applied, CPi=CP, CMi= 

CMi−1+CPi, 
+
S ( ) 0,iX t   and i=i+1, vi=v0, k=0, and 

then go to Step 3. 

(9.2) If S ( ) ,iX t M   then CPi=0, CMi=CMi−1+ 

CPi, S S( ) ( ),i iX t X t   and i=i+1, vi=vi−1, and then go 

to Step 3. 

Fig. 5 presents the corresponding flowchart.  

4.4  Single MCS process to evaluate the cost rate 
over a finite time span 

For a finite horizon, the average maintenance 
cost per unit of time becomes MC(M, K)=CT(M, K)/T, 
where CT denotes the total maintenance cost, and T is 
the time span of the system, specified by the user. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The procedure to evaluate MCj(Mi, Ki) over a 

finite time span T for a given set of (Mi, Ki) is de-
scribed as follows. 

1–3. Steps 1–3 are the same as the Steps 1–3 in 
Section 4.3, respectively.  

4. Check whether the stop condition ti>T is sat-
isfied. If it is, set ti=T and evaluate the cost of the last 
interval (ti−1, T] as with other intervals. Then, stop and 
output MC=(i·CI+CMi−1+CPi+CF)/T; otherwise, go 
to Step 5. 

5–8. Steps 5–8 are the same as the Steps 4–7 in 
Section 4.3, respectively. 

9. If a failure occurred, then compute the failure 
time Tf=min{Tf1, Tf2} and CFi=Cd·(ti−Tf). CPi=CC, 

CMi=CMi−1+CPi, CF=CF+CFi, +
S ( ) 0,iX t   and i= 

i+1, vi=v0, k=0. Then, go to Step 3. 

10. Compare the deterioration level S ( )iX t  with 

M to determine the corresponding maintenance  
action: 

(10.1) If S ( ) ,iX t M   then k=k+1. If k<K, then 

imperfect PM is applied 
0P SCP ( ( ), ( )) ,i i iC u X t Z t    

CFi=0, CMi=CMi−1+CPi, CF=CF+CFi, S ( )iX t   

S ( ) ( ),i iX t Z t   and i=i+1, vi=vi−1+εi (Eqs. (18) and 

Fig. 5  Flowchart of evaluating MCj(Mi, Ki) over an infi-
nite horizon 



Zhang et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2019 20(4):272-289 283

(20)). Then, go to Step 3; otherwise, perfect PM is 
applied. CPi=CP, CFi=0, CMi=CMi−1+CPi, CF= 

CF+CFi, 
+
S ( ) 0,iX t   and i=i+1, vi=v0, k=0. Then, go 

to Step 3.  

(10.2) If S ( ) ,iX t M   then CPi=0, CFi=0, CMi= 

CMi−1+CPi, CF=CF+CFi, S S( ) ( ),i iX t X t   and i=i+1, 

vi=vi−1. Then, go to Step 3. 
Fig. 6 presents the corresponding flowchart. One 

of the differences between Figs. 5 and 6 lies in the 
stopping condition. For the infinite horizon case with 
application of the renewal theory, once the first failure 
occurs, the procedure is terminated. On the other hand, 
for the finite horizon, the stopping condition is based 
on whether or not the inspection time reaches the 
predefined operating time T. Moreover, the length of 
the cycle L in Eq. (23) is a random variable for the 
infinite time span, and it is replaced by the predefined 
lifecycle T for the finite horizon. 
 
 
5  A numerical example 
 

This section demonstrates how the proposed re-
liability model and the preventive maintenance model 
can be used in maintenance optimization of a deteri-
orating system experiencing MDCFP. 

Suppose that the continuous degradation process 
follows a stationary gamma process (i.e. b=1 in 
Eq. (5)) with shape parameter c=1 and scale param-
eter β=1, respectively, and suppose too that the scale 
parameter is constant and the shape parameter is 
modified after each repair. That is to say, after the ith 
inspection, the shape parameter in Eqs. (1) and (5) is 
changed following the three criteria: (1) αi=αi−1 
(ci=ci−1) for doing nothing; (2) αi=αi−1+εi/β=αi−1+εi 
(ci=ci−1+εi) for imperfect preventive maintenance; (3) 
αi=α0 (ci=c0=c) for perfect preventive maintenance or 
replacement. Random shock loads can be character-
ized by a homogeneous Poisson process with inten-
sity λ=0.5. Failure occurs when the total deterioration 
level due to the continuous degradation process and 
the random shocks exceeds a prescribed failure 
threshold H, or a severe shock (Wi≥WU) takes place, 
whichever occurs first. Parameters used in the 
time-dependent reliability analysis, as well as the 
maintenance optimization, are summarized in Table 1 
of Section 2.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is noted that the deterioration level and the 

degradation rate are altered by imperfect preventive 
maintenance actions, as mentioned in Section 4. Both 
the perfect preventive maintenance and the corrective 
replacement can restore the deterioration level to an 
“as good as new” state and reset the deterioration rate 
to the nominal speed v0=cβ. In applying the RUL- 
based inspection policy, the failure probability 
threshold Q is set to be 0.1 in Eq. (24). The maximum 
number of IPM actions either between the system 
installation and the first replacement or between any 
two consecutive replacements is set to Kmax=10 in 
Eq. (24). Table 2 shows the parameters of mainte-
nance costs (all costs are given in arbitrary units for 
illustrative purpose) and IPM (Eqs. (19) and (21)). 
Besides, the sample size of the Monte-Carlo simula-
tion is 104, and the population size and the maximum 
iterations of the PSO are 20 and 50, respectively, in 
this study. 

The performance of imperfect PM actions is 
characterized by η in the cost function (Eq. (21)). 
Optimal maintenance policies of the deteriorating 

Start

Initialize M, K, and 
cost parameters

Compute the next 
scheduled inspection time 

ti (Eqs. (14) and (15))

Simulate shocks 
occurring in (ti−1, ti]

ti>T?

Hard failure 
occurs?

Discretize time and evaluate the 
total deterioration level at each 

time instant

Soft failure 
occurs?

End

Compute the 
cost rate MC

Evaluate the 
cost of the ith 

interval 

Yes

No

Set ti=T
Evaluate the 

cost of the last 
interval (ti−1, T]

Fig. 6  Flowchart for evaluating MCj(Mi, Ki) over a finite 
horizon
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system with an infinite horizon for different values of 
η are reported in Table 3. 

The following conclusions can be drawn from the 
results in Table 3 and Fig. 7.  

1. When η≤1, for case 2 in which the deteriora-
tion process is induced by the continuous degradation 
process only, the optimal preventive maintenance 
corresponds to the perfect one, i.e. K=1. For case 1, in 
which the system experiences a shock process and a 
degradation process simultaneously, the optimal 
preventive maintenance is also the perfect one, except 
for η=1. For η>1, however, the imperfect preventive 
maintenance is preferred over the perfect one. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

2. In both case 1 and case 2, the optimal pre-
ventive maintenance threshold M and cost rate MC 
are insensitive to η when η<1. In the region where η>1, 
the optimal maintenance threshold M decreases 
greatly with the increase of η for both cases. In addi-
tion, the cost rate MC decreases with η, since the 
single IPM cost decreases with η for the same inter-
vention gain. 

3. For a given value of η, case 1 costs more than 
case 2 (the two dashed lines in Fig. 7). The presence 
of shocks makes the system become more vulnerable, 
and consequently it must be maintained more fre-
quently, resulting in the higher cost. In addition, the 
first failure of case 1 will occur earlier than case 2, 
leading to a smaller mean cycle length L and greater 
cost rate. 

Optimal maintenance strategies over a finite 
time span (T=50) for different values of η are inves-
tigated and presented in Table 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Data of costs and impact of IPM (Do et al., 2015) 

CI CC CP  
0PC  Cd η γ 

10 100 90 70 20 3.0 0.2 

Table 3  Optimal maintenance planning for different 
values of η with an infinite time span 

η Case M K MC 

0.3 Case 1 17.1962 1 12.1665 

Case 2 16.4163 1   6.7527 

0.5 Case 1 17.1224 1 12.1629 

Case 2 16.3407 1   6.7474 

1.0 Case 1 16.7549 4 11.9307 

Case 2 16.2092 1   6.7327 

2.0 Case 1 13.8248 10 10.5591 

Case 2 14.2260 5   6.3936 

3.0 Case 1 11.5145 10   9.8365 

Case 2 13.3556 8   5.9669 

Case 1: gamma process and shocks; Case 2: gamma process only 
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M

M (case 1)
M (case 2)
MC (case 1)
MC (case 2)

5

6

7

8

9
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13

M
C

η

Fig. 7  Optimal maintenance threshold M and cost rate 
MC with respect to η (infinite time span) 

Table 4  Optimal maintenance planning for different values of η with T=50 

η Case M K NF NPM NPPM NIPM MC 

0.3 Case 1 17.0817 1 1.0350 2.7052 2.7052 0 9.8905 

Case 2 17.0134 1 0.4883 1.7069 1.7069 0 5.4079 

0.5 Case 1 17.0097 1 1.0244 2.7248 2.7248 0 9.8884 

Case 2 17.0127 1 0.4841 1.7106 1.7106 0 5.4034 

1.0 Case 1 16.4994 2 1.2136 3.6874 1.4764 2.2110 9.7048 

Case 2 17.0034 1 0.4792 1.7135 1.7135 0 5.4020 

2.0 Case 1 14.8950 10 1.6546 4.9903 0.0028 4.9876 8.3035 

Case 2 15.2259 10 1.0284 2.7710 0 2.7710 4.9037 

3.0 Case 1 12.7674 10 1.6282 5.6742 0.0060 5.6682 7.4857 

Case 2 14.3712 10 1.0264 2.9120 0 2.9120 4.4758 

Case 1: gamma process and shocks; Case 2: gamma process only. NF, NPM, NPPM, and NIPM are the expected numbers of failures, PM, PPM, 
and IPM, respectively 
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From the results reported in Table 4 and Fig. 8, 
the following can be determined: 

1. When η≤1, the perfect preventive mainte-
nances (K=1, NIPM=0) should be chosen for case 1. 
When taking the effects of shocks into consideration, 
the optimal preventive maintenance is still the perfect 
one, except for η=1. For η>1, imperfect maintenances 
are preferable (K=10) for both case 1 and case 2. The 
reason for this is that for η>1, the imperfect preven-
tive maintenance cost function is convex, i.e. for the 
same intervention gain, the imperfect one corre-
sponds to a lower cost as compared to the perfect one. 

2. For η≤1, the optimal preventive maintenance 
threshold and the cost rate in case 1 are insensitive to 
η. On the other hand, when η>1, M and MC are highly 
dependent on η for both cases, exhibiting the same  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

tendency as in the infinite time span (Table 3 and 
Fig. 7). The threshold M decreases as η increases for 
η>1, indicating that the earlier PM should be executed. 
Although it will lead to more maintenance actions 
(e.g., when η changes from 0.3 to 3.0, NPM increases 
from 2.7052 to 5.6742 for case 1, and NPM increases 
from 1.7069 to 2.9120 for case 2), a smaller cost rate 
can be achieved for larger η due to the low cost of a 
single IPM action. 

For a given η, the cost rate of case 1 is larger 
than that of case 2 (the two dashed lines in Fig. 8). 
The reasons for this can be explained as follows. On 
one hand, shocks may accelerate the deterioration 
process, and more preventive maintenance actions 
have to be implemented to ensure safety throughout 
the time span T. Taking η=3.0 as an example, 
NPM=5.6742 for case 1 and NPM=2.9120 for case 2. 
On the other hand, the random shocks may result in a 
higher occurrence probability of hard failures that 
have catastrophic consequences on the structure, 
hence leading to a higher cost. For example, when 
η=3.0, NF=1.6282 for case 1 and NF=1.0264 for  
case 2.  

Impacts of time span T on the optimal mainte-
nance policy, as well as the cost rate, are investigated 
using the parameters given in Table 2. The results are 
shown in Table 5 and depicted in Fig. 9. 

The results presented in Table 5 and Fig. 9 in-
dicate that the optimal maintenance policy is largely 
dependent on the design life T. When T changes from 
30 to 60, the optimal PM threshold M decreases as T  
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Fig. 8  Optimal maintenance threshold M and cost rate 
MC with respect to η (T=50) 

Table 5  Optimal maintenance planning for different values of T with η=3.0 

T Case M K NF NPM NPPM NIPM MC 

30 Case 1 13.1545 8 0.8266 3.2586 0 3.2586 6.8717 

Case 2 15.0120 7 0.4377 1.6340 0 1.6340 3.6348 

40 Case 1 12.8720 9 1.2385 4.4737 0.0035 4.4702 7.2570 

Case 2 14.3154 7 0.7388 2.3344 0 2.3344 4.1821 

50 Case 1 12.7674 10 1.6282 5.6742 0.0060 5.6682 7.4857 

Case 2 14.3712 10 1.0264 2.9120 0 2.9120 4.4758 

60 Case 1 12.2990 10 2.0037 7.0445 0.0119 7.0326 7.5995 

Case 2 13.7962 10 1.3040 3.6293 0 3.6293 4.6248 

70 Case 1 12.5702 10 2.3958 8.1360 0.0154 8.1206 7.7457 

Case 2 13.8406 10 1.5657 4.3096 0 4.3096 4.7746 

90 Case 1 12.6832 9 3.1577 10.4835 0.0513 10.4322 7.8395 

Case 2 13.9882 10 2.1376 5.5490 0.0004 5.5486 4.9251 

100 Case 1 13.0806 9 3.5376 11.5066 0.0600 11.4466 7.8857 

Case 2 14.0781 8 2.4141 6.1506 0.0089 6.1417 4.9812 

Case 1: gamma process and shocks; Case 2: gamma process only 
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increases, meaning that PM should be executed more 
frequently within the time interval [0, T] to maintain 
system safety. For T≥60, opposite trends are observed, 
which are attributed to the balance among the cost 
terms of Eq. (22) in an optimal maintenance strategy.  
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For small value of M, more frequent interventions are 
involved, leading to a large maintenance cost. On the 
other hand, if M is large, failure occurrence is more 
frequent, which increases the corresponding cost. 
Similar variation trends are noted for K. To determine 
the sensitivity of MC to M, the case where T=100 is 
taken as an example, where M*=13.0806, and K*=9. 
Cost rates and expected numbers of various actions 
for different values of M are presented in Table 6 and 
depicted in Fig. 10. 

The optimal maintenance thresholds of case 1 
are smaller than those of case 2 (Fig. 9), which means 
that PM should be applied earlier when random 
shocks are involved in the deterioration process, 
leading to more PM actions and a higher cost rate. 
Taking T=100 as an illustration, M=13.0806, 
NPM=11.5066, and MC=7.8857 for case 1, while for 
case 2, M=14.0781, NPM=6.1506, and MC=4.9812. It 
is noted that the possible hard failures in case 1 are 
responsible for a part of the total costs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6  Cost rates and expected numbers of various actions for different values of M (K=9) 

M NF NPM NPPM NIPM MC 

8 3.5710 13.4548 0.0778 13.3770 8.0781 

13 3.5376 11.5066 0.0600 11.4466 7.8857 

18 4.0872   7.6537 0.0111   7.6427 8.9016 

Fig. 9  Optimal maintenance threshold M and cost rate 
MC with respect to T 

Fig. 10  Cost rates and expected numbers of various actions for different values of M (K=9) 
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Overall, as anticipated, the mean cost rate in-
creases with the increase of T for both case 1 and case 
2, as shown in Fig. 9, since the expected numbers of 
inspections, preventive maintenances, and failures 
increase as T increases.  

Considering (WL=1.0) or ignoring (WL=0) the 
structural resistance against small shock loads, the 
immunity of the system to small shocks produces 
differences in MC and maintenance actions, as shown 
in Fig. 11. The first reason for this is that when WL=0, 
every shock induces sudden damage to the system, 
making the system more vulnerable and therefore 
increasing the expected number of failures NF. Sec-
ond, to ensure that the system is able to fulfill the 
predefined function, more PMs have to be executed 
when WL=0, resulting in an increased cost. 

 
 

6  Conclusions 
 

In this paper, a reliability model for a single 
component system experiencing a continuous degra-
dation process and a random shock process is devel-
oped. The cumulative and extreme shock models, 
corresponding to soft failures and hard/catastrophic 
failures, respectively, are considered in the reliability 
model. In addition, the degradation process is char-
acterized by a stationary gamma process and the 
random shock process is assumed to be a homoge-
neous Poisson process. Based on the reliability  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

analysis, a CBM model with aperiodic inspections, in 
which the inspection time is determined based on the 
RUL-based inspection policy, is developed. The op-
timal maintenance policy aims to minimize the av-
erage maintenance cost rate for a system over an in-
finite and/or a finite time span. In the proposed CBM 
model, the random shocks, causing hard failures, or 
sudden damage increments to structures, are also 
taken into account, except for the impact of gradual 
degradation. 

Numerical results demonstrate that the shock 
loads exert notable impacts on the optimal mainte-
nance strategy. In addition, optimal solutions of a 
finite time span differ greatly from those of an infinite 
time span. Thus, it is essential to investigate the op-
timal CBM policy of a system within a finite horizon, 
since engineering structures usually have finite ser-
vice lives and optimal maintenance policies are 
highly dependent on their lives. 

Analyses of time-dependent reliability and of 
maintenance planning optimization for multi- 
components systems, for example, long-life infra-
structures, subject to MDCFP will constitute a topic 
of our future work. 
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Fig. 11  Cost rates and expected numbers of various actions (T=50, η=3.0) 
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中文概要 
 

题 目：连续退化和随机冲击下基于状态的结构维修策略

优化 

目 的：结构在使用过程中，其性能往往发生劣化而导致

其安全性能（可靠度）不断降低。本文旨在探讨

结构在连续退化和冲击荷载共同作用下，其可靠

度随时间的变化情况。此外，研究结构的最佳维

修策略，使其在满足可靠度约束条件的同时，将

平均费用降到最低。 

创新点：1. 在连续退化和冲击荷载的共同影响下，建立结

构时变可靠度计算模型。2. 在前述可靠度分析的

基础上，建立基于状态维修的非周期检测模型；

基于剩余使用寿命检测策略，确定检测时间，并

确定系统的最优维护策略，旨在将平均维护成本

率降至最低。3. 针对无限时间域和有限时间域，

分别确定对应的最佳维修策略。 

方 法：1. 通过理论推导，构建结构时变可靠度计算公式

（公式（13）），分析各参数与可靠度之间的变化

关系（图 4）。2. 通过仿真模拟，运用蒙特卡洛法

确定结构在使用过程中的最佳维修策略（图 5 

和 6）。 

结 论：1. 与仅考虑连续退化的情况相比，随机冲击荷载

的存在，使得系统的可靠度降低，更容易发生失

效。2. 冲击载荷的存在，对最佳维修策略具有显

著影响。3. 有限时间域的最优解与无限时间域的

最优解之间存在很大的不同，因此，有必要对这

两种情况分别进行研究。 

关键词：软失效；硬失效；剩余寿命；可靠度；维修；成

本率；有限时域 

 


