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Geotechnical engineering deals with materials 
(e.g. soil and rock) that, by their very nature, exhibit 
varied and uncertain behavior due to the imprecise 
physical processes associated with their formation 
(Mitchell and Soga, 2005). Modeling the behavior of 
such materials in geotechnical engineering applica-
tions is complex and sometimes beyond the ability of 
most traditional forms of physically-based engineer-
ing methods. In recent years, the application of arti-
ficial intelligence (AI) in a wide range of geotechnical 
engineering has grown rapidly (Nawari et al., 1999; 
Miranda, 2007; Javadi and Rezania, 2009; Shahin, 
2013, 2016; Chen et al., 2018; Yin et al., 2018; Jin et 
al., 2019a, 2019b, 2019c; Zhang P et al., 2020a). AI 
can be very useful in solving problems where deter-
ministic solutions are not available or are excessively 
expensive in terms of computational cost but for 
which there are significant observations and data 
available (Turk et al., 2001; Man and Furukawa, 
2011; Rashidian and Hassanlourad, 2013; Makantasis 
et al., 2015; Pirnia et al., 2018; Wang and Sun, 2018; 
Wang et al., 2019; Yang et al., 2019; Gao et al., 2020). 
Due to the nature of materials, geotechnical engi-
neering deals with more uncertainties than other 
fields of civil and mechanical engineering. There is 
also much monitoring and site investigation data in 

geotechnical engineering which needs to be taken 
advantage of by using data analytic methods (Goh et 
al., 1995; Jan et al., 2002; Kung et al., 2007; Rechea et 
al., 2008; Hashash et al., 2010, 2011; Lü et al., 2012; 
Huang et al., 2014; Chen et al., 2018; van Boven et 
al., 2018; Chen et al., 2019a, 2019b; Jin et al., 2019a; 
Zhang, 2019; Zhang P et al., 2019, 2020a, 2020b). 
Therefore, AI can be a suitable and effective alterna-
tive route to solving geotechnical engineering prob-
lems and significant developments have been made in 
recent years as much attention has been given to the 
area. Unfortunately, there has been no dedicated spe-
cial issue or workshop devoted to it. 

This special issue contains original and hitherto 
unpublished works on the applications of AI in ge-
otechnical engineering. Focal points of the issue in-
clude, but are not limited to, innovative applications 
of: (1) Metaheuristics and their applications in intel-
ligent automation and global optimization including 
evolutionary algorithms, swarm intelligence, natural 
and biologically inspired metaheuristics; (2) Tradi-
tional machine learning (ML) methods, such as arti-
ficial neural networks (ANNs), genetic programming 
(GP), evolutionary polynomial regression (EPR), 
support vector machines (SVMs), and random forest 
(RF); (3) Deep learning and real world applications, 
such as deep neural networks (DNNs), convolutional 
neural network (CNN), and recurrent neural networks 
(RNNs); (4) Aspects of software engineering, e.g. 
intelligent programming environments, verification 
and validation of AI-based software, software and 
hardware architectures for the real-time use of AI 
techniques, safety, and reliability; (5) Big data ana-
lytics; (6) Industrial experience in the application of 
the above techniques, e.g. case studies or bench-
marking exercises. 

Thus, we invited prestigious scientists in the 
field to share their expertise and perspectives. The 
collected papers cover the various topics mentioned, 
such as application of long short term memory 
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(LSTM) neural network, gated recurrent unit (GRU), 
and RF to different kinds of geotechnical problems. 

Zhang DM et al. (2020) developed a non- 
parametric ensemble AI approach to calculating the 
compression modulus (Es) of soft clay in contrast to 
the traditional regression models proposed in previ-
ous studies. A gradient boosted regression tree 
(GBRT) algorithm was used to discern the non-linear 
pattern between input variables and the target re-
sponse, while a genetic algorithm (GA) was adopted 
for tuning the GBRT model’s hyper-parameters. The 
model was tested through 10-fold cross validation. A 
dataset of 221 samples from 65 engineering survey 
reports from Shanghai infrastructure projects was 
constructed to evaluate the accuracy of the new 
model’s predictions. A comparison of the perfor-
mance of empirical formulas and the proposed ML 
method for predicting foundation settlement indicated 
the rationality of the proposed ML model and its ap-
plicability to the compressive deformation of ge-
otechnical systems, solved by retraining the model 
using local data. This research provides a useful ref-
erence for future multi-parameter prediction of soil 
behavior. 

Lu et al. (2020) applied the LSTM deep-learning 
technique to calculate the shaft resistance of cast-in- 
site piles. The proposed method allowed accurate 
estimation of the shaft resistance of cast-in-site piles, 
not only under the ultimate load but also under the 
working load. Comparisons with empirical methods 
confirmed the effectiveness of the proposed method 
for the shaft-resistance estimation of cast-in-site piles 
on reclaimed ground in offshore areas. 

Cheng et al. (2020) employed GP to obtain a 
simplified statistical model for formulating the rela-
tionship between field-monitored soil suction in 
drying cycles. They selected five influencing param-
eters, initial suction, relative humidity, drying time, 
the ratio of the distance from the tree to the tree 
canopy radius, and the depth from the ground surface. 
The data used for model development was collected 
from a field monitoring test in the campus of the 
University of Macau, China. The results indicated 
that the model gives a reasonable estimation for the 
spatiotemporal variations of soil suction near a tree 
with acceptable errors. 

Godoy et al. (2020) applied ML methods, such 
as logistic regression, Naive Bayes, and hidden 

Markov models, to classify quick and highly sensitive 
clays in two sites in Norway based on normalized 
cone penetration tests with pore water pressure 
measurement (CPTu). The results showed an im-
portant increase in the classification accuracy even 
with small training sets.  

Sun et al. (2020) presented two examples to 
demonstrate the capability and accuracy of the 
probabilistic estimation method proposed in their 
previous study (Yang et al., 2019) to characterize soil 
spatial variability with displacement responses. The 
first example was a soil slope subject to a surcharge 
load, in which the spatially varied field of the elastic 
modulus is estimated with displacements. The results 
showed that estimations based on horizontal dis-
placements were more accurate than those based on 
vertical displacements. The accuracy of the estimated 
field was substantially reduced by increasing the 
variance of elastic modulus. However, the estimation 
was generally acceptable as the error was not more 
than 10%, even for the high variance case (COVE 

=1.5). The accuracy of estimation was also affected 
by the type of covariance function and the correlation 
length. When the correlation length decreased, the 
accuracy of estimation was reduced. The second 
example was a validation of laboratory model tests 
where a horizontal load was applied on a layered 
ground. The estimated thicknesses of soil layers were 
close to those in the real situation, which demon-
strates the capacity of the estimation method. 

Liu et al. (2020) adopted the LSTM neural net-
work, the RF algorithm, and the GRU algorithm to 
predict landslide displacement in the Three Gorges 
Dam reservoir. Three different landslides, each with 
step-wise displacement characteristics, were mod-
elled with each of the ML algorithms. The prediction 
by each ML algorithm was validated with observa-
tions over a one-year period of three colluvial land-
slides in the Three Gorges Dam reservoir. The analy-
sis results of the three landslides demonstrated that 
“deep learning” ML approaches were well suited to 
predicting landslide displacements. The LSTM and 
GRU algorithms gave the most encouraging results 
and can be recommended for prediction of the dis-
placement of step-wise type colluvial landslides in the 
Three Gorges Dam reservoir. Such reliable predictive 
models should gradually become a component when 
implementing early warning systems and reducing 
landslide risk.  
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We believe this special issue has provided a 
special viewpoint for researchers and engineers to 
present and discuss the recent developments of AI in 
geotechnical engineering. The interdisciplinary be-
tween machine learning and geotechnics was well 
highlighted and expressed by the selected publica-
tions. We sincerely hope the new algorithms and ad-
vanced methodologies shared in this special issue will 
improve the understanding of AI technologies and 
strategies, promote the application of new technolo-
gies in the field of geotechnical engineering, and 
quickly realize the intelligent development of ge-
otechnical engineering. We expect the selected arti-
cles will arouse the discussion of the majority of 
scientific researchers, and also hope to bring new 
inspiration to readers of this journal.  
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中文概要 
 

题 目：人工智能在岩土工程中的实践 

概 要：岩土材料的复杂和不确定性致使传统理论在模拟

和预测岩土工程问题经常显得无能为力。近年

来，随着人工智能和大数据技术的快速发展，人

工智能技术在岩土工程领域有了广泛应用，例如

岩土参数的优化智能识别和预测、边坡变形的长

期预测、基坑开挖过程变形的实时监测和预测以

及盾构隧道的变形和盾构机刀盘参数的预测和

更新等。为此，本专辑收集了在该研究领域具有

代表性的研究成果，介绍了人工智能技术在岩土

工程领域的进展和未来发展潜力，希望能帮助读

者快速了解人工智能技术在岩土工程中的应用，

以及推动岩土工程的智能化发展，为实现岩土工

程智能化提供科学依据和技术支撑。 

关键词：人工智能；岩土工程；大数据 
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