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Abstract:    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide 
(NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that 
NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS 
(20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine 
expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate 
cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demon-
strated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be 
associated with the NF-κB signaling pathway. 
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1  Introduction 
 

Inflammatory bowel disease (IBD) patients 
suffer from chronic inflammation with the most 
common symptoms being weight loss, abdominal 
pain, (bloody) diarrhea, fatigue, and frequently extra- 
intestinal symptoms such as joint pain or skin and eye 
inflammation (Dubeau et al., 2013; Liu et al., 2014; 
Mileva et al., 2014; Malago et al., 2015; Xu et al., 
2016). Kaplan (2015) reported that the incidence of 
IBD in the world is continuing to rise, with increasing 
prevalence in both industrialized and developing 
countries. While the exact etiology of IBD remains 
obscure, inflammation has been identified as a factor 
contributing to disease progression (Hirai and Matsui, 

2015; Shimshoni et al., 2015). 
The nuclear factor-κB (NF-κB) signaling path-

way has been found to be involved in differentiation, 
immune response, proliferation, cell adhesion, angi-
ogenesis, oxidative stress, and apoptosis (Watanabe  
et al., 2015). Compelling evidence indicates that 
NF-κB is associated with various inflammatory dis-
eases, including ulcerative colitis and Crohn’s disease 
(Sun and Zhang, 2007). TLR4/Myd88, an upstream 
signal of NF-κB, can be activated in response to 
various inflammatory and infectious diseases. After 
activation, TLR4/Myd88 mediates the inflammatory 
response by activating NF-κB (Cao et al., 2014; 
Wang et al., 2015). Inhibitors of the NF-κB signaling 
pathway have been widely used to alleviate IBD 
(Sunil et al., 2010; McCann et al., 2015).  

Hydrogen sulfide (H2S) is a gaseous molecule 
with various physiological functions, including neu-
romodulation, oxidative stress, regulation of blood 
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pressure and cardiac function, inflammatory response, 
cellular energetics and apoptosis (Kabil et al., 2014). 
The beneficial role of H2S in various inflammatory 
responses has been validated (Gemici et al., 2015; 
Howell et al., 2015; Zhang et al., 2015), but there is 
little reference to the effects of H2S, or its mecha-
nisms of action, in IBD. In this study we therefore 
evaluated the pharmacological effects of H2S from a 
sodium hydrosulfide (NaHS) source on inflammation 
and the NF-κB signal in dextran sulfate sodium 
(DSS)-induced inflammation in both in vivo and in 
vitro models of IBD. 

 
 

2  Materials and methods 

2.1  Animal model and groups 

Thirty-two male ICR mice weighing 22–24 g 
were used in the experiment. Mice were divided into 
three groups each containing 10 animals: a control 
group (Cont), a DSS group (DSS), and a NaHS+DSS 
group (NaHS). In the control group, mice were al-
lowed free access to tap water for drinking. Mice in 
the other two groups were allowed free access to a 5% 
(0.05 g/ml) DSS solution supplied as drinking water 
for 7 d to induce colonic inflammation. Mice from the 
NaHS group received freshly prepared NaHS solution 
(14 μmol/kg; Sigma-Aldrich) via intraperitoneal in-
jection twice a day. Mice in the control and DSS 
groups received the same volume of sterile saline 
alone. The NaHS dosage was according to a previous 
report (Benetti et al., 2013). All mice were housed in 
polycarbonate cages at room temperature (25±3) °C, 
humidity (50±5)%, and a 12-h cycle of light and dark. 
During the experimental period, all mice were al-
lowed free access to laboratory strip chows. 

Afterwards, each mouse was weighed to calcu-
late the average weight gain and then sacrificed. Co-
lonic length and weight were measured. In addition, 
colonic samples from each mouse were collected and 
immediately frozen in liquid nitrogen and stored at 
−70 °C for further analyses.  

2.2  Clinical evaluation of DSS colitis 

Rectal bleeding and diarrhea from each mouse 
were recorded daily. The rectal bleeding was deter-
mined using Haemoccult kits (Beckman Coulter, Inc.,  
CA, USA). The score of rectal bleeding was classified 
as follows: 0 for no blood (normal); 2 for positive 

haemoccult; and 4 for gross bleeding. The diarrhea 
score was classified as follows: 0 for well-formed 
pellets; 2 for pasty and semiformed stools; and 4 for 
liquid stools (Vlantis et al., 2015). 

2.3  Histomorphometry determination 

Haematoxylin and eosin (HE) staining (Yin et al., 
2015b) was used for morphological evaluation after 
DSS treatment. Briefly, colon samples (0.5 cm) were 
kept in 4% neutral buffered 10% formalin, processed 
using routine histological methods and mounted in 
paraffin blocks. Then 6-μm-thick sections were cut 
and stained with HE. All specimens were examined 
under a light microscope (Nikon, Japan).  

The histological examination was performed in a 
blinded fashion using a scoring system previously 
validated and described: severity of inflammation 
(0–3: none, slight, moderate, severe), depth of injury 
(0–3: none, mucosal, mucosal and submucosal, trans-
mural), crypt damage (0–4: none, basal 1/3 damaged, 
basal 2/3 damaged, only surface epithelium intact, 
entire crypt and epithelium lost), and percentage of 
the involved area (0–4: 0%, 1%–10%, 10%–25%, 
25%–50%, 50%–100%). Total scores, including the 
individual parameters added together, could range 
from 0 to 14. 

2.4  Serum immunoglobulins 

Orbital blood was collected and centrifuged at 
3000 r/min for 10 min after 4 h clotting at 4 °C. Serum 
was separated and stored for further analyses. Assay 
kits for the analysis of serum immunoglobulins were 
obtained from Nanjing Jiancheng (China). Serum 
immunoglobulin A (IgA), IgG, and IgM were deter-
mined using an Automatic Biochemistry Radiometer 
system (Au640, Olympus). 

2.5  Cell culture and treatment 

Human colorectal adenocarcinoma-derived in-
testinal epithelial cells (Caco-2) (ATCC, Manassas, 
VA, USA) were grown in DMEM/F12 supplemented 
with 1 mmol/L sodium pyruvate, 20% fetal bovine 
serum, and 50 U/ml penicillin-streptomycin. Cells 
were treated with 2% (0.02 g/ml) DSS for 4 d to 
induce inflammation (Nighot et al., 2013). Cell vi-
ability was determined by the CKK-8 assay (Sigma- 
Aldrich, MO, USA) according to the manufacturer’s 
instructions. Briefly, 8×103 cells were seeded in 96- 
well plates. In the following day, cells were incubated 



Chen et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2016 17(3):209-217 211

with 1, 5, 10, 20, 50, and 100 μmol/L NaHS for 2 d 
and then assayed. 

2.6  NF-κB activity 

Cellular NF-κB activity after DSS and NaHS 
treatment was measured via an ELISA kit (Cell Bi-
olabs, USA). 

2.7  Complementary DNA (cDNA) synthesis and 
quantification of mRNA by real-time PCR analysis 

RNA was isolated from colon and cell tissues 
with TRIZOL reagent according to the manufacturer’s 
instructions. Synthesis of the first strand (cDNA) was 
conducted using oligo (dT) 20 and Superscript II 
reverse transcriptase (Invitrogen, USA). 

Primers were designed with Primer 5.0 accord-
ing to the gene sequence of mouse; the sequences are 
shown in Table 1. Real-time PCR analysis was con-
ducted according to previous studies (Yin et al., 
2013a; 2014). The relative expression of different 
genes was normalized and presented as a ratio to their 
expression in the control group. 

2.8  Nuclear protein extraction and Western blot 
analysis 

Nuclear proteins were extracted using nuclear 
and cytoplasmic extraction reagents in accordance 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

with the manufacturer’s instructions (Thermo Fisher 
Scientific Inc., USA). Western blot was performed 
(Yin et al., 2015a) and NF-κBp65 (Abcam, Inc., USA) 
was used as the primary antibody. Rabbit proliferat-
ing cell nuclear antigen (PCNA) antibody (Sigma) 
was used as the nuclear protein loading control. The 
expression ratio of NF-κB was normalized against 
PCNA. 

2.9  Statistical analysis 

All statistical analyses were performed using 
SPSS 17.0 software. Group comparisons were per-
formed using analysis of variance (ANOVA) and 
followed with Tukey’s multiple comparison test.  

 
 

3  Results 

3.1  Effects of NaHS on clinical indices in DSS- 
induced colitis  

DSS treatment significantly reduced final body 
weight, daily weight gain, and colonic length, and 
increased colonic weight, rectal bleeding score, and 
diarrhea score (P<0.05; Fig. 1). Although NaHS ad-
ministration failed to alleviate DSS-dysregulated 
body weight, colonic length, and colonic weight 
(P>0.05), it markedly decreased scores for rectal 
bleeding and diarrhea (P<0.05). HE staining results 
revealed that DSS caused colonic histological injury 
which was mitigated by NaHS (P<0.05). 

3.2  Effects of NaHS on inflammatory cytokines in 
DSS-induced colitis 

Colonic interleukin-1β (IL-1β), IL-6, IL-10, 
IL-17, interferon-γ (IFN-γ), and tumor necrosis  
factor-α (TNF-α) mRNA were measured by reverse 
transcription (RT)-PCR to evaluate the inflammatory 
response after DSS treatment in mice (Fig. 2). The 
results showed that adding 5% DSS to drinking water 
induced colonic inflammation in mice evidenced by 
the upregulation of IL-1β, IL-6, IL-10, IL-17,  
and TNF-α expression (P<0.05). Compared with  
the DSS group, NaHS administration significantly 
down-regulated colonic IL-1β, IL-17, and TNF-α  
expression (P<0.05), which indicated an anti- 
inflammatory function for NaHS. 

 

Table 1  PCR primer sequences: the forward (F) pri-
mers and the reverse (R) primers 

Gene Nucleotide sequences of primers (5'–3') 

β-Actin F: GTCCACCTTCCAGCAGATGT 
R: GAAAGGGTGTAAAACGCAGC 

IL-1β F: CTGTGACTCGTGGGATGATG 
R: GGGATTTTGTCGTTGCTTGT 

IL-6 F: TGCAAGAGACTTCCATCCAGT 
R: GTGAAGTAGGGAAGGCCG 

IL-10 F: ACAGCCGGGAAGACAATAAC 
R: CAGCTGGTCCTTTGTTTGAAAG 

IL-17 F: TACCTCAACCGTTCCACGTC 
R: TTTCCCTCCGCATTGACAC 

IFN-γ F: ATGAACGCTACACACTGCATCTTGGCTT
R: CCTCAAACTTGGCAATACTCATGAATGC

TNF-α F: AGGCACTCCCCCAAAAGAT 
R: TGAGGGTCTGGGCCATAGAA 

TLR4 F: TTCAGAACTTCAGTGGCTGGATT 
R: CCATGCCTTGTCTTCAATTGTTT 

Myd88 F: GCATGGTGGTGGTTGTTTCTG 
R: GAATCAGTCGCTTCTGTTGG 
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3.3  Effects of NaHS on serum immunoglobulins in 
DSS-induced colitis 

As shown in the Table 2, DSS treatment signifi-
cantly reduced serum IgG and IgA (P<0.05). Although 
NaHS injection tended to alleviate DSS-induced in-
hibition of IgG and IgA levels, the difference was 
insignificant (P>0.05). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Serum immunoglobulins after DSS exposure 

Group IgG (g/L) IgM (g/L) IgA (g/L) 
Cont 12.93±1.71a 12.15±2.07 8.16±1.30a 
DSS 8.70±1.56b 10.67±1.29 5.12±0.36b 

NaHS 9.15±2.04ab 11.17±1.13 6.29±0.50ab

Data are expressed as mean±standard deviation (SD) 
(n=10). Values in the same column with different superscripts 
are significant (P<0.05) 

Cont DSS NaHS

(a) (b) (c) 

(d) (e) (f) 

(g) (h)

Fig. 1  Effects of NaHS on clinical parameters in DSS-induced colitis in mice 
(a) Final body weight; (b) Average daily weight gain; (c) Colon length; (d) Colon weight; (e) Rectal bleeding score;
(f) Diarrhea score; (g) HE staining; (h) Histological score. Data are expressed as mean±SD (n=10). Different letters above
the columns are significant (P<0.05) 

(a) (b) (c) 

(d) (e) (f) 

Fig. 2  Effects of NaHS on pro-inflammation cytokine expression in DSS-challenged mice 
Expression of colonic IL-1β (a), IL-6 (b), IL-10 (c), IL-17 (d), IFN-γ (e), and TNF-α (f). Data are expressed as mean±SD (n=10).
Different letters above the columns are significant (P<0.05)
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3.4  Effects of NaHS on inflammatory cytokines in 
DSS-challenged Caco-2 cells 

We examined the role of NaHS in DSS-induced 
inflammatory response in a cell culture model. Cell via-
bility was measured after treatment with different con-
centrations of NaHS (1, 5, 10, 20, 50, and 100 μmol/L). 
The 2% DSS inhibited cell viability (P<0.05; Fig. 3), 
whereas 20 μmol/L NaHS markedly reversed this in-
hibition in Caco-2 cells (P<0.05). Therefore, 20 μmol/L 
was used as the experimental dose for other tests.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DSS significantly enhanced IL-1β, IL-6, IL-10, 
IL-17, and TNF-α mRNA abundances in Caco-2 cells 
(P<0.05), whereas NaHS alleviated DSS-induced 
inflammation by downregulating IL-1β, IL-17, and 
TNF-α expression (P<0.05). The in vitro results fur-
ther validated the anti-inflammatory effect of NaHS.  

3.5  Effects of NaHS on the NF-κB signal in DSS- 
challenged in vivo and in vitro models 

In the mouse model, DSS significantly activated 
the TLR4/Myd88 signal compared with the control  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4  Effects of NaHS on the NF-κB signal in DSS-induced inflammation in in vivo and in vitro models 
(a) TLR4 expression; (b) Myd88 expression; (c) NF-κB activity; (d) Western blot result; (e) NF-κB abundance in mice; (f) NF-κB
abundance in Caco-2 cells. Data are expressed as mean±SD (n=10). Different letters above the columns are significant (P<0.05)
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Fig. 3  Effects of NaHS on pro-inflammation cytokine expression in DSS-challenged Caco-2 cells 
(a, b) Cell viability; (c) IL-1β expression; (d) IL-6 expression; (e) IL-10 expression; (f) IL-17 expression; (g) IFN-γ expression; 
(h) TNF-α expression. Data are expressed as mean±SD (n=10). Different letters above the columns are significant (P<0.05) 
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group (P<0.05; Fig. 4). Although NaHS failed to 
down-regulate TLR4 expression, the Myd88 mRNA 
result demonstrated that DSS markedly enhanced the 
nuclear translocation of NF-κB and NaHS inhibited 
level in the NaHS group was significantly lower than 
that in the DSS group (P<0.05). The Western blotting 
result demonstrated that DSS markedly enhanced 
nuclear translocation of NF-κB and NaHS inhibited 
NF-κB activation (P<0.05). The ELISA and Western 
blotting results in Caco-2 cells further revealed that 
NaHS alleviated DSS-induced inflammation by in-
hibiting the NF-κB signal in vivo and in vitro.  

 
 

4  Discussion 
 

Accumulating evidence suggests that H2S may 
serve as an important biological gasotransmitter. H2S 
at physiological concentrations has been shown to 
protect cells in retinal neurons and act as a potential 
therapeutic target for retinal degeneration (Mikami  
et al., 2011; Eastep and Chen, 2015). H2S also regu-
lates cellular Ca2+ homeostasis in microglial cells 
(Lee et al., 2006) and protects neurons from oxidative 
stress injury (Kimura and Kimura, 2004). In immune 
and inflammatory responses, H2S has been demon-
strated to exhibit anti-inflammatory effects in various 
pathological situations (Bhatia, 2015; Pozsgai et al., 
2015). However, some reports suggest that sulfur- 
containing compounds, including H2S released from 
the bacterial metabolism of non-absorbed sulfate, 
may be the injurious agents in the development of 
colitis, while Furne et al. (2000) confirmed that 
blocking fecal release of H2S via bismuth subsalicy-
late failed to alleviate intestinal inflammation. Alt-
hough other sources of H2S have been reported in 
various types of inflammation, this study focused on 
the effect of NaHS-H2S on the DSS-induced colonic 
inflammatory response in in vivo and in vitro models 
to estimate the beneficial function of H2S. 

We found that H2S, using NaHS as its source, 
had a clinically protective effect against DSS-induced 
colonic injury in mice. H2S markedly decreased rectal 
bleeding and diarrhea, and alleviated colonic histo-
logical injury. A previous study had shown that a 
marked increase in H2S generation contributes to 
ulcer healing and inflammation resolution in experi-
mental colitis (Flannigan et al., 2014). Inhibition of 

endogenous H2S generation after cystathionine 
γ-lyase inhibitor treatment, a primary synthetase of 
H2S in the gastrointestinal tract, significantly exac-
erbated DSS-induced colitis (Hirata et al., 2011; 
Flannigan et al., 2014). These results indicate that 
H2S serves a beneficial role in DSS-induced colitis. 

Compelling evidence in human and animal 
models has demonstrated that the generation of in-
flammatory cytokines and the inflammatory response 
in the gastrointestinal tract are involved in the pro-
gression of IBD (Beloqui et al., 2013; Sánchez- 
Fidalgo et al., 2013; Scharl et al., 2013; McCann et al., 
2015). In this study, we found that DSS exposure 
significantly up-regulated IL-1β, IL-6, IL-10, IL-17, 
and TNF-α expression both in vivo and in vitro, 
whereas NaHS treatment alleviated this dysregulation; 
DSS treatment also decreased serum IgG and IgA, 
which was not alleviated by NaHS administration in 
our experiments. This may be because circulating 
immunoglobulins play an important role in the im-
mune response: changes in immunoglobulins have 
been observed during the inflammatory response, 
suggesting their use as a potential therapy (Novokmet 
et al., 2014). Intransplantation-induced lung injury, 
NaHS injection has been demonstrated to inhibit the 
production of IL-1β and improve pulmonary function 
(Wu et al., 2013). Xu et al. (2015) reported that 
pre-treatment with NaHS ameliorates high glucose- 
induced inflammation in H9c2 cardiac cells, evi-
denced by the inhibition of IL-1β, IL-6, and TNF-α 
expression. Furthermore, treatment with an H2S do-
nor in a rat model of non-erosive esophagitis mark-
edly alleviated the inflammatory response and regu-
lated serum IL-17 concentration (Zayachkivska et al., 
2014). Thus, we speculate that H2S may serve as an 
anti-inflammatory agent in DSS-induced inflamma-
tion in vivo and in vitro.  

NF-κB has been considered to be a key pro- 
inflammatory transcription factor involved in the 
expression of various genes, including cytokines 
(Shori and Baba, 2015; Yin et al., 2015b). Under 
normal conditions, NF-κB is sequestered in the cyto-
plasm via its inhibitory proteins, IκBs (Yin et al., 
2013b). Various reports have revealed the relation-
ship between IκBs and inflammation (Shin et al., 
2012). Phosphorylation of IκBs is associated with its 
degradation and NF-κB activation (Yan and Polk, 
1999). Compelling evidence suggests that NF-κB is 
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activated in IBD and other inflammatory diseases 
(Cheon et al., 2006; Vinod and Guruvayoorappan, 
2014; Rashti and Koohsari, 2015). Thus, inhibition of 
the NF-κB signaling pathway has been considered to 
be a potential target for IBD therapy. In this study, 
both in vivo and in vitro data showed that DSS ex-
posure activated the NF-κB signal and NaHS treat-
ment significantly inhibited this activation. Similarly, 
Zhou et al. (2014) reported that H2S exerts anti- 
inflammatory effects by inhibiting NF-κB signaling 
in high glucose-induced inflammation (McCann et al., 
2015). As an upstream signal of NF-κB, TLR4/ 
Myd88 is also activated by DSS exposure and 
down-regulated by NaHS treatment, further demon-
strating the anti-inflammatory effect of H2S.  

In conclusion, the present study provides in vivo 
and in vitro evidence that H2S derived from NaHS 
ameliorates the negative effects of DSS exposure in 
mice and Caco-2 cells and that this beneficial role 
may be associated with inhibition of the NF-κB sig-
naling pathway.  
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中文概要 
 
题 目：硫化氢通过抑制 NF-κB 信号通路对葡聚糖硫酸

钠（DSS）诱导的炎症反应起到缓解效果 
目 的：硫化氢（H2S）具有抗氧化和抗炎反应的作用，

但是在 DSS 诱导的结肠炎模型中的研究鲜有报

道。因此，本文采用小鼠和人结肠上皮细胞系

Caco-2 为实验模型，研究了 H2S 在 DSS 诱导的

炎症模型中的缓解效果。 
创新点：（1）本研究采用体内和体外模型分别对 H2S 对

DSS 诱导的炎症缓解效果进行了验证，结果发现

H2S 具有抗炎作用；（2）本研究发现 H2S 能够抑

制核转录因子 κB（NF-κB）信号通路，从而对炎

症起到缓解作用。 
方 法：采用 DSS 建立小鼠结肠炎模型，腹腔注射 H2S

供体硫化氢钠（NaHS）；采用 DSS 诱导 Caco-2
炎症，然后处理 H2S 供体 NaHS。收集小鼠结肠

组织和细胞，进行反转录聚合酶链反应

（RT-PCR）和蛋白质免疫印迹法（Western blot）
分析炎症基因和 NF-κB 表达情况。 

结 论：H2S 对 DSS 诱导的体内和体外炎症反应具有一定

的缓解作用，其机制可能是通过影响了 NF-κB
信号通路。 

关键词：硫化氢（H2S）；炎症反应；核转录因子 κB（NF-κB）；
葡聚糖硫酸钠（DSS） 


