
Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260

249

A relative feasibility degree based approach for
constrained optimization problems*

Cheng-gang CUI, Yan-jun LI, Tie-jun WU†‡

(Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China)
†E-mail: tjwu@zju.edu.cn

Received Feb. 10, 2009; Revision accepted June 20, 2009; Crosschecked Mar. 1, 2010

Abstract: Based on the ratio of the size of the feasible region of constraints to the size of the feasible region of a constrained
optimization problem, we propose a new constraint handling approach to improve the efficiency of heuristic search methods in
solving the constrained optimization problems. In the traditional classification of a solution candidate, it is either a feasible or an
infeasible solution. To refine this classification, a new concept about the relative feasibility degree of a solution candidate is
proposed to represent the amount by which the ‘feasibility’ of the solution candidate exceeds that of another candidate. Relative
feasibility degree based selection rules are also proposed to enable evolutionary computation techniques to accelerate the search
process of reaching a feasible region. In addition, a relative feasibility degree based differential evolution algorithm is derived to
solve constraint optimization problems. The proposed approach is tested with nine benchmark problems. Results indicate that our
approach is very competitive compared with four existing state-of-the-art techniques, though still sensitive to the intervals of
control parameters of the differential evolution.

Key words: Constrained optimization, Evolutionary computation, Relative feasibility degree (RFD), Evolution differential

algorithm
doi:10.1631/jzus.C0910072 Document code: A CLC number: TP18

1 Introduction

Evolutionary computation (EC) techniques have
been used to effectively solve constrained optimiza-
tion problems (COPs) recently. However, EC tech-
niques are normally used as ‘blind heuristics’ in the
sense that no specific domain knowledge is used or
required (Back et al., 1997). Several researchers have
proposed different mechanisms to incorporate con-
straints into the fitness function of an EC technique.

Penalty functions, popular in conventional
methods for constrained optimization, are most
common approaches to handling constraints with
evolutionary algorithms (Back et al., 1997). There are
different types of penalty functions, some of which

are discussed as follows. In the static penalty method,
the penalty is a weighted sum of the constraint viola-
tions where the weights are called penalty factors.
Therein the penalty factors are independent of the
current generation number and remain constant dur-
ing the entire search process. In contrast, the success
of the static penalty method depends on the proper
penalty factors. In the dynamic penalty method, the
penalty assigned to each individual relies on the
generation number, but the difficulty of tuning pa-
rameters for the dynamic penalty method has sig-
nificantly limited its applicability. Hadj-Alouane and
Bean (1997) developed a penalty function which
takes a feedback from the search process; however,
the choice of the generational gap that provides rea-
sonable information to guide the search is very dif-
ficult in this method. Runarsson and Yao (2000) in-
troduced a stochastic ranking method to combine the
objective and penalty functions, which could produce

 Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project (No. 2006AA04Z184) supported by the National High-Tech
Research and Development Program (863) of China
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2010

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 250

only feasible solutions in some problems. Farmani
and Wright (2003) proposed a self-adaptive penalty
function, which uses a two-stage penalty function to
replace the explicit definition of any parameter. Wang
et al. (2008) developed an adaptive tradeoff model to
determine the penalty function; however, the per-
formance of this method is determined by the reduc-
tion of the initial step size in evolution strategies.

The methods based on the preference of feasible
solutions over infeasible ones are another category of
constraint handling techniques (Powell and Skolnick,
1993; Hinterding and Michalewicz, 1998; Deb, 2000).
Accordingly, a heuristic rule was proposed to process
infeasible solutions. However, iterations in the search
process may stagnate in the infeasible region if the
region is very small compared with the size of its
search space.

The methods based on multi-objective optimi-
zation techniques are also a category of constraint
handling techniques. Coello (2000) proposed a
method using multi-objective optimization tech-
niques to handle each of the constraints of COPs as an
objective; however, this method tends to generate
trade-off solutions, and is hard to reach the global
optimum efficiently. Cai and Wang (2006) proposed a
method based on multi-objective optimization tech-
niques; however, the performance depends on the
parameters of the crossover operator.

From the analyses of the algorithms previously
proposed to solve COPs, we notice that no specific
domain knowledge is used. However, the constraints
provide cheap specific domain knowledge which can
be used to augment domain independent search
methods in COPs (Coello, 2002). Therefore, incor-
porating domain knowledge can considerably im-
prove the performance of an EC technique and ac-
celerate evolution by reducing the search space.
Several researchers have proposed different mecha-
nisms to use domain knowledge to solve COPs. Ko-
walczyk (1997) proposed a method based on con-
straint consistency to avoid the generation of variable
instantiations that are not consistent with the con-
straints of a COP. The main drawback of this method
is the extra computational cost of constraint propaga-
tion, which may become more expensive than the
optimization. Schoenauer and Xanthakis (1993) han-
dled constraints sequentially (one by one), but did not
bring out how to order the constraints of a problem.

The performance of this method is affected greatly by
the particular order of processed constraints
(Michalewicz, 1996). Chung and Reynolds (1996)
proposed a cultural algorithm with GENOCOP (Mi-
chalewicz and Nazhiyath, 1995) to solve COPs. As
required to build a map of the search space, this ap-
proach is sensitive to high dimensionality.

According to the relationship between the fea-
sible region of a COP and that of constraints, a rela-
tive feasibility degree (RFD) based approach is pro-
posed in this paper to solve COPs. The RFD of a
constraint and the RFD of a solution candidate are
defined to guide the search process of searching for
feasible solutions. The former RFD represents the
probability of a solution candidate that satisfies this
constraint being a feasible solution and the latter RFD
represents the amount by which the ‘feasibility’ of the
solution candidate exceeds that of another candidate.
According to these concepts, a set of RFD based se-
lection rules are proposed to make solution candidates
accelerate the search process of reaching the feasible
region.

The proposed constraint handling approach is a
generic framework for solving COPs, suitable for all
EC techniques. In this paper, only a differential evo-
lution (DE) algorithm is implemented as an example
of this constraint handling approach.

2 Feasibility degree of a solution candidate

In general, a constrained optimization problem
can be expressed as follows:

1 2min (), (, ,...,) ,
 s.t. () 0, 1,2,..., ,

n
n

j

f x x x
g j m

= ∈

≤ =

x x
x

 (1)

where f(x) is the objective function, and m is the
number of inequality constraints. Let S⊂ún represent
the search space bounded by the parametric con-
straints ,i i ix x x≤ ≤ i∈{1,2,…,n}, where ix and ix
are the lower bound and the upper bound of xi, re-
spectively. We define the feasible region of the jth
constraint gj(x)≤0 by Fj={x∈ún|gj(x)≤0}, and then the
feasible region of the problem Eq. (1) can be ex-

pressed by
1

m
jj

F F
=

=∩ . Thus, a vector x∈F is a

feasible solution of the problem Eq. (1).

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 251

It is well known that the COPs with such char-
acteristics as non-differentiable objective functions
(and perhaps even non-differentiable constraints),
non-convex objective functions, and disjoint feasible
regions, are difficult to solve using traditional
mathematical programming techniques. In contrast,
EC techniques such as genetic algorithms (Holland,
1962; 1992), ant colony algorithms (Dorigo et al.,
1991; Dorigo, 1992; Colorni et al., 1992), and parti-
cle swarm algorithms (Eberhart and Kennedy, 1995;
Kennedy and Eberhart, 1995) are global optimization
algorithms using nature-inspired mechanisms. The
EC techniques are widely applied to solve COPs
since no well-posted problem models are required in
using an EC algorithm (Coello, 2002).

In constraint handling approaches used with EC
techniques, a number of solution candidates are com-
monly generated randomly in the search space and set
as the initial population. Three phases are needed in
the search process using EC techniques for solving
COPs:

1. Reproduction phase: new offspring of the
current population are generated based on the original
candidates by some heuristic rules, such as recombi-
nation and mutation.

2. Evaluation phase: the offspring are evaluated
by a fitness function.

3. Selection phase: good or bad candidates are
distinguished in the new offspring, and candidates
that do not satisfy constraints or have a poor objective
value are removed.

In the selection phase of the search process,
enormous efforts are needed to remove infeasible
candidates, especially when the feasible region is very
small with respect to the whole search space. This will
decrease the efficiency of the search process. Some
researchers have developed special operators or de-
coders to preserve the feasibility of solution candi-
dates in the reproduction phase. However, these
methods are not general-purpose tools in all problem
domains since problem-specific knowledge is used to
design special operators or decoders.

The ability to find feasible solutions is essential
for solving the COPs that have smaller feasible re-
gions compared with their search spaces. Therefore,
some new approaches based on infeasible candidates
were proposed to accelerate the search process.
Richardson et al. (1989) proposed a method based on

the number of violated constraints for solving COPs,
but their method is not likely to produce any solution
if there are only a small number of feasible solutions
in the COPs. Deb (2000) suggested simple feasibility
rules to compare two candidates by drawing upon a
preference of feasible solutions to infeasible ones;
however, this approach requires a niching technique
to maintain diversity in the population.

We propose a new approach in this paper based
on the solution candidates satisfying a part of the
constraints of a COP. The effect of these candidates
on constraint handling approaches is evaluated and
the results are incorporated as heuristic knowledge
into the search process. In the traditional classifica-
tion of solution candidates, a candidate must be either
feasible or infeasible. To extend this classification, a
new concept of RFD is proposed in this section to
measure the amount by which in terms of ‘feasibility’
the solution candidate exceeds another. A solution
candidate with a larger RFD means a greater prob-
ability of being a feasible solution than that of another.
Therefore, heuristic rules based on the RFD of a so-
lution candidate can obviously improve the per-
formance of EC techniques if they can increase the
RFD of the solution candidate. Therefore, the RFD of
a solution candidate can be used as new heuristic
knowledge for solving COPs.

Fig. 1 shows the relationship among the feasible
region F, the search space S, and the feasible regions
Fi (i=1, 2, 3) of constraints, where the rectangular
region represents the search space S and the three
circular regions indicate the feasible regions F1, F2,
and F3, respectively. If a candidate x is randomly
generated in the feasible region Fi, the probability of
the candidate x being located in the feasible region F
is proportional to the ratio of the size of feasible re-
gion, |F|, to the size of the feasible region of the con-
straint, |Fi|.

S

F2

F1

F3

Fig. 1 Relationship bee feasible region and the search
space

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 252

In order to measure the probability of a solution
candidate being a feasible solution when using a
search process to solve the problem Eq. (1), the RFD
of a constraint is given as follows:
Definition 1 (Relative feasibility degree of a con-
straint) Given the COP Eq. (1), the ratio of the size
of the feasible region F to the size of the feasible
region Fi of the ith constraint is called the relative
feasibility degree of the constraint, denoted by
ρi=|F|/|Fi|.

The RFD of a constraint measures the probabil-
ity of a solution candidate satisfying the constraint of
becoming a feasible solution. This concept can be
extended to the RFD of a solution candidate, de-
scribing the amount by which as regards ‘feasibility’
the solution candidate exceeds another.
Definition 2 (Relative non-common satisfied con-
straint set) Given the COP Eq. (1), let x1 and x2
denote two solution candidates of the problem, G
represent the constraint set of the problem, G1 and 1G
refer to the satisfied constraint set and the violated
constraint set of x1 respectively, and G2 and 2G in-
dicate the satisfied constraint set and the violated
constraint set of x2 respectively. The intersection of
G1 and 2G denoted as Q(x1→x2) is called the relative
non-common satisfied constraint set (RNSCS) of x1
with respect to x2, defined as

1 2 1 2() .Q G G→ = ∩x x

Definition 3 (Relative feasibility degree of a solution
candidate) Given the COP Eq. (1), let x1 and x2 be
two solution candidates of the problem, Q(x1→x2) the
RNSCS of x1 with respect to x2, and ρi, i∈Q(x1→x2),
the RFD of constraint i. R(x1→x2) is called the RFD
of x1 with respect to x2, defined as

1 2

1 2

1 2 1 2

()

0, () ,
() 1, () {1, 2, ..., },

max , otherwise.i Q x x i

Q
R Q m

ρ∈ →

⎧ → =∅
⎪

→ = → =⎨
⎪
⎩

x x
x x x x (2)

We call the constraint with the highest RFD in

the RNSCS the maximal non-common satisfied con-
straint.

The RFD of a solution candidate defined by
Eq. (2) has the following properties (for convenience,

we classify infeasible solutions into complete infea-
sible solutions (satisfying no constraints) and incom-
plete infeasible solutions (partially satisfying the
constraints in COPs)):

1. The RFD of a solution candidate with respect
to another is 0 if the satisfied constraint set of the
former is included in that of the latter. For instance,
we can obtain that (1) the RFD of a complete infea-
sible solution with respect to any solution candidate is
0; (2) the RFD of any type of infeasible solutions with
respect to any feasible solution is 0; (3) the RFD of a
feasible solution with respect to any feasible solution
is 0; (4) the RFD of a solution candidate with respect
to another is 0 if the two solution candidates have the
same satisfied constraint set.

2. On the contrary, the RFD of any feasible so-
lution with respect to any complete infeasible solution
is 1.

3. Except for conditions 1 and 2, the RFD of a
solution candidate compared to another is between 0
and 1. In this case the RFD is determined by the
maximal non-common satisfied constraint, which is
the one with the largest RFD in the RNSCS of the
former with respect to the latter. The greater the RFD
of the maximal non-common satisfied constraint, the
greater the RFD of the solution candidate with respect
to another; it indicates that, the probability of the
solution candidate in the feasible region of the origi-
nal optimization problem is much larger than that of
another solution candidate.

As implied in Definition 3, since the RFD of a
solution candidate is defined by the RFD of a con-
straint, it is necessary to evaluate the RFD of all the
constraints in a COP before the RFD of a solution
candidate can be obtained. A method based on ran-
domly selected candidates is used to evaluate the RFD
of a constraint since the feasible region is unknown.
Michalewicz et al. (2000) proposed a method to
evaluate the ratio of the size of the feasible region to
the size of the search space in a COP. It can also be
used to evaluate the RFD of a constraint; i.e., given
the COP Eq. (1), generate s randomly selected can-
didates by a uniform n-dimensional probability dis-
tribution in the search space, with k the number of
candidates in the feasible region F and kj the number
of candidates in the feasible region Fj of the constraint
gj(x)≤0. Then, according to Definition 1, the RFD of
the constraint gj(x)≤0 is ρj=k/kj.

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 253

In the real world, there are many COPs in which
the ratio of the size of the feasible region to the size of
the search space is very low, so the cost of generating
a feasible solution is very high. It makes Michale-
wicz’s method inefficient. Actually, as heuristic
knowledge in a search process, the exact value of the
RFD of a candidate is not necessary. The rank of the
RFD can also provide heuristic knowledge to improve
the performance of an EC algorithm. The size of the
feasible region of a constraint is constant for a given
COP. Therefore, the rank of ρj can be determined
simply by kj, j=1, 2, …, m; i.e., if ki>kj, then ρi<ρj.

Experiments show that, only a small number of
randomly selected candidates are needed in practice
when calculating the rank of the RFDs of constraints.
For example, only 100 randomly selected candidates
are needed when we calculate the rank ordering of
RFD of the 6 constraints in the benchmark problem
g10 (the ratio of the size of the feasible region to the
size of the search space is only 2.0×10−5) (Runarsson
and Yao, 2000). As is shown in Table 1, the results
given by evaluating 100 randomly selected candi-
dates are nearly the same as that by 1 000 000 ran-
domly selected candidates.

The evaluations of the RFDs of constraints can

be done before the search process. Thus, the RFD of a
solution candidate can be evaluated by the RFDs of
constraints in descending order.

3 Relative feasibility degree based selection
rules

The RFD of a solution candidate is defined in the

former section as the amount by which the ‘feasibil-
ity’ of the solution candidate exceeds that of another.

By this definition, the solution candidate with a larger
RFD can be selected as a better candidate in the
search process for solving COPs. In this way, the
RFD knowledge can be conveniently incorporated
into the selection phase of an EC technique to reduce
the search space and accelerate the search process.

Deb (2000) worked out a set of simple feasibility
rules to compare two solution candidates in the
tournament selection of GAs by giving a preference
for feasible solutions. It can be stated as follows:

1. A feasible solution is always preferred to an
infeasible one.

2. Between two feasible solutions, the one with a
better objective function value is preferred.

3. If both solution candidates are infeasible, the
one with a smaller constraint violation is preferred.

However, only feasible and infeasible solutions
based on the traditional classification of solution
candidates are compared in Deb’s rules. Therefore,
iterations in the searching process may stagnate in the
infeasible region if the feasible region is very small as
opposed to the size of its searching space. Based on
Deb’s rules, a set of RFD based selection rules is
developed in the following to reduce the search space
of COPs.

The RFD based selection rules can be formu-
lated as follows:

Given two solution candidates x1 and x2:
1. If x1 and x2 are both feasible solutions, the one

with a better objective is preferred.
2. Otherwise, (1) if R(x1)≠R(x2), the one with a

larger RFD wins; and (2) if R(x1)=R(x2), the one with
a smaller violation of their maximal non-common
satisfied constraint is preferred.

Note that violation of a constraint is defined by
V(x)=max(0, g(x)) (for details, see Back et al., 1997).

Following these rules, the search process can
reach the feasible region of a COP quickly. When two
infeasible solutions with the same RFD are compared,
the one whose maximal non-common satisfied con-
straint bears a smaller violation is preferred. This rule
forces solution candidates into satisfying their
maximal non-common satisfied constraint. When two
infeasible solutions with different RFDs are com-
pared, preference would be given to the solution
candidate with a larger RFD. This rule makes solution
candidates satisfy the constraint with a larger RFD
first. When two feasible solutions are compared,

Table 1 The rank of RFD of constraints evaluated by
different numbers of random variables

kj Rank
Constraint

n=100 n=1×106 n=100 n=1×106

g1(x)≤0 47 499 528 3 3
g2(x)≤0 50 504 075 4 4
g3(x)≤0 76 779 026 6 6
g4(x)≤0 39 421 367 2 2
g5(x)≤0 3 73 497 1 1
g6(x)≤0 64 595 348 5 5

n: number of candidates

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 254

preference would be taken up by the solution candi-
date with a better objective. Following this rule, the
search process needs to find solution candidates with
the best objective. Therefore, the solution candidates
selected based on these rules will satisfy the con-
straints in descending order of RFDs and reach the
global optimum finally.

4 Implementation with differential evolution

To illustrate validity of the RFD based selection

rules, we introduce them to a DE algorithm as an
example. The DE algorithm proposed by Storn and
Price (1997) is a heuristic method for real parameter
optimization problems.

Let xt
i denote an individual in the population of

the DE algorithm and NP the size of the population,
where i indicates the index of the individual, j the
index of the variable, and t the current generation. A
new mutated individual , 1

i
j tv + is generated according

to the following equation:

3 1 2
, 1 , , ,(),d d di

j t j t j t j tv x x xη+ = + − (3)

where the random indexes d1, d2, d3∈[0, NP] are
mutually different integers and also different from the
running index i, and η∈(0, 1] is called the scaling
factor or the amplification factor.

According to Eq. (5), a crossover operator is
used to generate the trial individual , 1

i
j tu + based on the

original individual 3
,

d
j tx and the new individual , 1

i
j tv + .

, 1

, 1

,

, if Rand[0,1) CR

 or randint(1,),
, otherwise,

i
j t

i
j t

i
j t

v

u j D
x

+

+

⎧ ≤
⎪

= =⎨
⎪
⎩

 (4)

where Rand[0, 1) is a function that returns a real
number between 0 and 1, randint(min, max) is a
function that returns an integer between min and max,
CR∈[0, 1] is a crossover factor. The probability of the
mutated individuals being preserved in the next gen-
eration is determined by the crossover factor CR.

A selection operator is used to choose an indi-
vidual for the next generation (t+1) according to the

following rule:

1 1
1

, if is better than ,

, otherwise,

i i i
t t ti

t i
t

u u x
x

x
+ +

+

⎧⎪= ⎨
⎪⎩

 (5)

where 1

i
tu + and xt

i are compared by the RFD based
selection rules.

In this way, an individual will replace the one
with a lower RFD with respect to it; an individual will
replace the one with the same RFD depending on
different conditions, where an infeasible individual
will replace the one with a larger violation of the
maximal non-common satisfied constraint and a fea-
sible individual will replace the one with a worse
objective with respect to it, respectively. Therefore,
the EC techniques using the RFD based selection
rules can reduce the search space and find the optimal
solution.

The pseudo code of the DE with the RFD based
selection rules is given in Fig. 2. As can be seen, the
rules keep the operators of DE algorithms unchanged.
Therefore, the RFD based selection rules are a general
method and can be used not only in ES but also in
other DE algorithms.

Fig. 2 Pseudo code of the DE using the RFD based selec-
tion rules

Begin
t=0;
Create NP random solutions for the initial population;
Evaluate all individuals;
For t=1 to MAX_GENERATION Do
 For i=1 to NP Do
 Select randomly d1≠d2≠d3;
 If (Rand[0, 1]≤CR or j=randint(1, D)) Then
 , 1 , 1

i i
j t j tu v+ += ;

 Else
 , 1 ,

i i
j t j tu x+ = ;

 End If
 End For
 Compare , 1

i
j tu + and ,

i
j tx by the RFD based selected

rules;
 If 1

i
tu + is better than i

tx Then

 1 1
i i
t tx u+ += ;

 Else
 1

i i
t tx x+ = ;

 End If
 t=t+1;
End For

End

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 255

The capability of finding the global minimum
and a fast convergence speed of DE are both highly
sensitive to the control parameters CR and η (Qin and
Suganthan, 2005). Therefore, a self-adaptive ap-
proach is developed to adjust these parameters based
on the success rate φt, where φt is defined by the
percentage of original individuals replaced by trial
individuals in the population at every generation,
through the following updating law:

1

1

rand , 0.5,
, otherwise,

l u t
t

t

η η φ
η

η −

+ ≤⎧
= ⎨
⎩

 (6)

2

1

rand , 0.5,
CR

CR , otherwise,
t

t
t

φ

−

≤⎧
= ⎨
⎩

 (7)

where ηt and CRt are the scaling factor η and the
crossover factor CR at generation t, respectively;
rand1 and rand2 are uniformly distributed random
numbers in [0, 1]; ηl=0.1, ηu=0.9. The updating of ηt
and CRt is conducted before the mutation is per-
formed. Eqs. (6) and (7) ensure that ηt∈[0.1, 1]⊂(0, 1],
CRt∈[0, 1], ∀t, included in the defined ranges of CR
and η. Note that, although the parameters are
self-adaptively adjusted in the search process, the
upper and lower boundaries of the scaling factor are
still defined empirically.

5 Experiments and results

Nine benchmark problems described in
Runarsson and Yao (2000) were used to evaluate the
performance of the RFD based differential evolution
(RFDDE) algorithm proposed in this paper. The cha-
racteristics of the benchmark problems are shown in
Table 2, where n is the number of decision variables,
ml the number of linear inequalities, mn the number of
nonlinear inequalities, mle the number of linear
equalities, mne the number of nonlinear equalities, and
r̂ the ratio of the size of the feasible region to the size
of the search space of the benchmark problems
evaluated by Michalewicz et al. (2000)’s method
using 1 000 000 random candidates. As shown in Ta-
ble 2, r̂ of the remaining problems is fairly low ex-
cept for problems g02 and g04, while r̂ of problems
g02 is nearly 100%. Therefore, the capability to find
feasible solutions with different r̂ can be tested using
these benchmark problems.

We performed 30 independent runs for each

benchmark problem. Equality constraints were trans-
formed into inequalities using a tolerance value of
0.0001. The parameters were set the same as those of
Mezura-Montes et al. (2004): NP=60, MAX_
GENERATIONS=5800. The control parameters CR
and η were adjusted using a self-adaptive method.
Our approach was implemented in C/C++ and tested
on a Pentium IV 2.8 GHz PC.

The statistical results of RFDDE are summa-
rized in Table 3.

We compared our approach against four
state-of-the-art approaches: the stochastic ranking
(SR) algorithm (Runarsson and Yao, 2000), the sim-
ple multimembered evolution strategy (SMES) algo-
rithm (Mezura-Montes and Coello, 2005), the adap-
tive tradeoff model evolution strategy (ATMES) al-
gorithm (Wang et al., 2008), and the constraint han-
dling differential evolution (CHDE) algorithm
(Mezura-Montes et al., 2004). The best results, the
mean results, the worst results, and the standard de-
viations obtained by each approach are shown in
Table 4. The results provided by these approaches
were taken from the original references for each
method.

6 Discussion

6.1 General performance of the proposed ap-
proach

As described in Table 3, our approach was able
to find the global optimum in nine benchmark

Table 2 Characters of the nine benchmark problems
chosen

Problem n Type of
function r̂ (%) ml mn mle mne

g01 13 quadratic 0.0003 9 0 0 0
g02 20 nonlinear 99.9973 1 1 0 0
g04 5 quadratic 27.0079 0 6 0 0
g05 4 nonlinear 0.0000 2 0 0 3
g06 2 nonlinear 0.0057 0 2 0 0
g07 8 quadratic 0.0000 3 5 0 0
g08 2 nonlinear 0.8581 0 2 0 0
g09 7 nonlinear 0.5199 0 4 0 0
g10 6 linear 0.0020 6 0 0 0

n: number of decision variables; ml: number of linear ine-
qualities; mn: number of nonlinear inequalities; mle: number
of linear equalities; mne: number of nonlinear equalities

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 256

Table 3 Statistical results obtained by RFDDE for the 9 benchmark problems over 30 independent runs
Problem Optimal Best Mean Median Worst SD

g01 −15.000 −15.000 −15.000 −15.000 −15.000 0
g02 0.803 619 −0.803 619 −0.801 783 −0.803 619 −0.792 608 4.2E−3
g04 −30 665.539 −30 665.539 −30 665.539 −30 665.539 −30 665.539 2.2E−11
g05 5126.4967 5126.4967 5149.7695 5135.2497 5448.4213 5.8E+01
g06 −6961.8140 −6961.8140 −6961.8140 −6961.8140 −6961.8140 0
g07 24.306 24.306 24.306 24.306 24.306 2.7E−05
g08 0.095 825 −0.095 825 −0.095 825 −0.095 825 −0.095 825 4.21E−17
g09 680.6300 680.6300 680.6300 680.6300 680.6300 1.2E−13
g10 7049.248 7049.248 7049.248 7049.248 7049.253 1.3E−03

 Results in boldface indicate the global optimum (or best known solution). SD: standard deviation

Table 4 Comparison of the best, the mean solutions, the worst solutions, and the standard deviations found by our
RFDDE against SR, SMES, ATMES, and CHDE

Statistics
Problem Optimal

SR SMES ATMES CHDE RFDDE
Best −15.000 −15.000 −15.000 −15.000 −15.000
Mean −15.000 −15.000 −15.000 −14.792 −15.000
Worst −15.000 −15.000 −15.000 −12.743 −15.000

g01 −15.000

SD 0.0E+00 0 1.6E−14 4.0E−01 0
Best −0.803 515 −0.803 601 −0.803 388 −0.803 619 −0.803 619
Mean −0.781 975 −0.785 238 −0.790 148 −0.746 236 −0.801 783
Worst −0.726 288 −0.751 322 −0.756 986 −0.302 179 −0.792 608

g02
 −0.803 619

SD 2.0E−02 1.7E−02 1.3E−02 8.1E−02 4.2E−03
Best −30 665.539 −30 665.539 −30 665.539 −30 665.539 −30 665.539
Mean −30 665.539 −30 665.539 −30 665.539 −30 592.154 −30 665.539
Worst −30 665.539 −30 665.539 −30 665.539 −29 986.214 −30 665.539

g04 −30 665.539

SD 2.0E−05 0 7.4E−12 1.1E+02 2.2E−11
Best 5126.497 5126.599 5126.498 5126.497 5126.497
Mean 5128.881 5174.492 5127.648 5218.729 5149.769
Worst 5142.472 5304.167 5135.256 5502.410 5448.421 g05 5126.497

SD 3.5E+00 5.0E+01 1.8E+00 7.6E+01 5.8 E+01
Best −6961.814 −6961.814 −6961.814 −6961.814 −6961.814
Mean −6875.940 −6961.284 −6961.814 −6367.575 −6961.814
Worst −6350.262 −6952.482 −6961.814 −2236.950 −6961.814

g06 −6961.814

SD 1.6E+02 1.9E+00 4.6E−12 7.7E+02 0
Best 24.307 24.327 24.306 24.306 24.306
Mean 24.374 24.475 24.316 104.599 24.306
Worst 24.642 24.843 24.359 1120.541 24.306

g07 24.306

SD 6.6E−02 1.3E−01 1.1E−02 1.8E+02 2.7E−05
Best −0.095 825 −0.095 825 −0.095 825 −0.095 825 −0.095 825
Mean −0.095 825 −0.095 825 −0.095 825 −0.091 292 −0.095 825
Worst −0.095 825 −0.095 825 −0.095 825 −0.027 188 −0.095 825

g08 −0.095 825

SD 2.6E−17 0 2.8E−17 0.012 0
Best 680.630 680.632 680.630 680.630 680.630
Mean 680.656 680.643 680.639 692.472 680.630
Worst 680.763 680.719 680.673 839.783 680.630

g09 680.630

SD 3.4E−02 1.6E−02 1.0E−02 23.575 1.2E−13
Best 7054.316 7051.903 7052.253 7049.248 7049.248
Mean 7559.192 7253.047 7250.437 8442.657 7049.248
Worst 8835.655 7638.366 7560.224 15580.370 7049.253

g10 7049.248

SD 5.3E+02 1.4E+02 1.2E+02 2.2E+03 1.3E−03
Results in boldface indicate the obtained global optimum (or best known solution). SD: standard deviation

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 257

problems. For problems g01, g04, g06, g07, g08, and
g09, the optimal solutions were consistently found in
all 30 runs. For problems g02, g05, and g10, the
near-optimal solutions were found in all 30 runs. For
problem g05, the optimal solutions were not consis-
tently found since the ratio of the size of the feasible
region to the size of the search space was very small.
For problems g02 and g10, the optimal solutions were
found in most of the runs. Furthermore, feasible so-
lutions were continuously found for all the bench-
mark problems in 30 runs. These results reveal that
RFDDE has the substantial capability to deal with
various kinds of COPs.

6.2 Comparison with four state-of-the-art ap-
proaches

The performance of RFDDE was compared in
detail with four state-of-the-art techniques using the
selected performance metrics (Table 4). For bench-
mark problems g01, g04, and g08, RFDDE, SR,
SMES, and ATMES consistently found the optimal
solutions in all 30 runs. For problem g06, the optimal
solutions were consistently found by RFDDE and
ATMES in all 30 runs. For problem g05, SR, SMES,
and ATMES found better ‘mean’ and ‘worst’ results
than RFDDE. However, RFDDE was also able to find
the optimal solution in 30 runs and the ‘mean’ results
were very close to the optimal solution. For all the
other 5 problems, RFDDE found better ‘best’, ‘mean’,
and ‘worst’ results than SR, SMES, and ATMES. As
against CHDE, our approach found ‘similar’ best
results in all the problems, and furthermore located
better ‘mean’ and ‘worst’ results in all the problems.

In summary, we can conclude that RFDDE out-
performs or has similar performances to SR, SMES,
ATMES, and CHDE in all the problems.

6.3 Advantages of our approach

After corroborating the effectiveness of our ap-
proach, we want to verify the advantages of our ap-
proach. Two comparisons of RFDDE and CHDE
were designed as follows as there are only two dif-
ferences between the two algorithms: (1) RFDDE
uses the RFD based rules while CHDE uses simple
feasibility rules, and (2) the control parameters of
RFDDE are set using a self-adaptive method while
those of CHDE are set empirically.

6.3.1 Reaching the feasible region

In the real world, it is normally desirable to find
feasible (even if not optimal) solutions with the low-
est possible number of fitness function evaluations
(FFEs) for COPs. To study this issue, we compared
RDFDE with CHDE on the percentage of feasible
solutions in the population at every generation.

For problems g04, g06, g07, g08, g09, and g10,
the percentages of feasible solutions in the population
of RFDDE were larger than those of CHDE at the
same generation (Fig. 3). The statistical results
showed that a lower number of FFEs is needed for
RFDDE than for CHDE to obtain a same percentage
of feasible solutions in the population; i.e., RFDDE
can reach the feasible region more quickly than
CHDE.

There were 9 constraints in problem g01. The
RFD selection rules make RFDDE satisfy the con-
straints in descending order of RFDs. Thus, the more
constraints were located in a COP, the more FFEs
were required for RFDDE to satisfy all the constraints.
Therefore, the percentages of feasible solutions in the
population of RFDDE were larger only than those of
CHDE after 1500 FFEs. The ratio of the size of the
feasible region to the size of the search space was very
high in problem g02 (r̂ = 99.973%). Therefore, the
percentages of feasible solutions in the population at
generation 1 were both 100% for RFDDE and CHDE.
Analysis of each constraint in problem g05 shows that:
the RFDs of three equality constraints were all near 0
in problem g05. Since the RFD of a constraint was
used as the heuristic knowledge in the RFD based
selection rules, the effect of these rules will be
weakened when the RFDs of constraints are similar.

The experiment revealed that RFDDE can reach
the feasible region quickly and find more feasible
solutions than CHDE.

6.3.2 Convergence

In order to demonstrate the effectiveness of our
approach, we compared RFDDE with CHDE on their
convergence (Fig. 4). It can be found that the con-
vergence speed and the accuracy of RFDDE were
much higher than those of CHDE in most cases. For
problems g01, g02, g04, g06, g08, g09, and g10,
RFDDE showed a significantly fast convergence and
could find solutions very close to the optimal solu-
tions before 50 000 FFEs. For problem g07, although

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 258

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

0 500 1000 1500 2000 2500 3000
0.0

0.5

1.0

0 200 400 600 800 1000
0.0

0.5

1.0

0 20000 40000 60000 80000100000
0.0

0.5

1.0

0 600 1200 1800 2400 3000 3600
0.0

0.5

1.0

0 1000 2000 3000 4000 5000 6000
0.00

0.25

0.50

0.75

1.00

1.25

0 200 400 600 800 1000
0.0

0.5

1.0

0 500 1000 1500 2000 2500 3000

0.0

0.5

1.0

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

Fe
as

ib
le

 ra
tio

FES

g01

Fe
as

ib
le

 ra
tio

FES

g02

Fe
as

ib
le

 ra
tio

FES

g04

Fe
as

ib
le

 ra
tio

FES

g05
Fe

as
ib

le
 ra

tio

FES

g06

Fe
as

ib
le

 ra
tio

FES

g07

Fe
as

ib
le

 ra
tio

FES

g08

Fe
as

ib
le

 ra
tio

FES

g09

Fe
as

ib
le

 ra
tio

FES

g10

|—o—| RFDDE |- -| CHDE

FFEs FFEs FFEs

Fig. 3 Comparison of RFDDE and CHDE on the percentage of feasible solutions in the population (error bars
indicate standard deviation in population)

0 50 100 150 200 250 300 35010-10

100

0 50 100 150 200 250 300 35010-4

0 50 100 150 200 250 300 35010-6

0 50 100 150 200 250 300 35010-7

103

0 50 100 150 200 250 300 35010-7

103

0 50 100 150 200 250 300 35010-4

0 50 100 150 200 250 300 35010-8

102

0 50 100 150 200 250 300 35010-1

f(x
)-

f(x
*)

FES(10E3)

g01

f(x
)-

f(x
*)

FES(10E3)

g02
10

f(x
)-

f(x
*)

FES(10E3)

g04

0 40 80 120160200240280320360101

102

103

g05

f(x
)-

f(x
*)

FES(10E3)

f(x
)-

f(x
*)

FES(10E3)

g06

f(x
)-

f(x
*)

FES(10E3)

g07

f(x
)-f

(x
*)

FES

g08

f(x
)-f

(x
*)

FES(10E3)

g09

f(x
)-f

(x
*)

FES(10E3)

g10

Fig. 4 Comparison of RFDDE and CHDE on the convergence (error bars indicate standard deviation in population)

|—o—| SFDDE |- -| CHDE

FFEs (×103) FFEs (×103) FFEs (×103)

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 259

CHDE had a faster convergence speed, RFDDE out-
performed CHDE in terms of solution quality, i.e.,
achieving better mean solutions. The ultra small fea-
sible region of problem g05 (r̂ = 0.0000%) will result
in poor performance of many EC techniques on it,
which was also true for RFDDE and CHDE. In other
words, RFDDE and CHDE both had poor perform-
ances and slow convergence speed in these two
problems.

As shown in the two experiments, the RFD
based selection rules can make DE reach the feasible
region more quickly; that is, RFDDE can accelerate
the convergence of DE.

7 Conclusion

In order to extend the traditional classification of

a solution candidate, we proposed a novel approach
based on the feasibility of a solution candidate for
solving COPs. Herein new concepts of the RFD of a
constraint and the RFD of a solution candidate were
derived on the ratio of the size of the feasible region
of constraints to the size of the feasible region of a
COP to measure the amount by which the ‘feasibility’
of the solution candidate exceeds that of another.
Accordingly, RFD based selection rules were pro-
posed to select the solution candidates. EC techniques
using these rules can reach the feasible region of a
COP quickly. RFDDE, an implementation of this
approach with a DE in this paper, is compared with
CHDE on the percentage of feasible solutions in the
population at every generation and the convergence.
This new approach reaches the feasible region more
quickly and bears a more rapid convergence speed
than CHDE in most of the benchmark problems.
However, the ranges of the crossover factor and the
scaling factor of RFDDE are still defined empirically.
Since the effect of our approach may be decreased
when the RFDs of constraints are similar, our future
work will focus on accelerating the search process in
these conditions.

References
Back, T., Fogel, D.B., Michalewicz, Z., 1997. Handbook of

Evolutionary Computation. IOP Publishing Ltd., Bristol,
UK, p.351-356. [doi:10.1887/0750308958]

Cai, Z., Wang, Y., 2006. A multiobjective optimization-based
evolutionary algorithm for constrained optimization.

IEEE Trans. Evol. Comput., 10(6):658-675. [doi:10.1109/
TEVC.2006.872344]

Chung, C.J., Reynolds, R.G., 1996. A Testbed for Solving
Optimization Problem Using Cultural Algorithms. Evo-
lutionary Programming V: Proc. 5th Annual Conf. on
Evolutionary Programming, p.225-236.

Coello, C.A.C., 2000. Treating constraints as objectives for
single-objective evolutionary optimization. Eng. Optim.,
32(3):275-308. [doi:10.1080/03052150008941301]

Coello, C.A.C., 2002. Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state of the art. Comput. Methods Appl.
Mech. Eng., 191(11-12):1245-1287. [doi:10.1016/S0045-
78250100323-1]

Colorni, A., Dorigo, M., Maniezzo, V., 1992. Distributed
Optimization by Ant Colonies: Toward a Practice of
Autonomous Systems. Proc. First European Conf. on
Artificial Life, 37:258-267.

Deb, K., 2000. An efficient constraint handling method for
genetic algorithms. Comput. Methods Appl. Mech. Eng.,
186(2-4):311-338. [doi:10.1016/S0045-7825(99)00389-8]

Dorigo, M., 1992. Optimization, Learning and Natural Algo-
rithms. Unpublished Doctoral Thesis, Dipartimento di
Elettronica, Politecnico di Milano, Italy.

Dorigo, M., Colorni, A., Maniezzo, V., 1991. Positive Feed-
back as a Search Strategy. Technical Report, No. 91-016.
Dipartimento di Elettronica, Politecnico di Milano, Milan,
Italy.

Eberhart, R., Kennedy, J., 1995. A New Optimizer Using
Particle Swarm Theory. Proc. 6th Int. Symp. on Micro
Machine and Human Science, p.39-43. [doi:10.1109/MHS.
1995.494215]

Farmani, R., Wright, J., 2003. Self-adaptive fitness formula-
tion for constrained optimization. IEEE Trans. Evol.
Comput., 7(5):445-455. [doi:10.1109/TEVC.2003.817236]

Hadj-Alouane, A.B., Bean, J., 1997. A genetic algorithm for
the multiple-choice integer program. Oper. Res., 45(1):
92-101. [doi:10.1287/opre.45.1.92]

Hinterding, R., Michalewicz, Z., 1998. Your Brains and My
Beauty: Parent Matching for Constrained Optimisation.
IEEE Int. Conf. on Evolutionary Computation Proc. IEEE
World Congress on Computational Intelligence, p.180-
185. [doi:10.1109/ICEC.1998.700156]

Holland, J.H., 1962. Outline for a logical theory of adaptive
systems. J. ACM, 9(3):297-314. [doi:10.1145/321127.
321128]

Holland, J.H., 1992. Adaptation in Natural and Artificial Sys-
tems. MIT Press Cambridge, MA, USA.

Kennedy, J., Eberhart, R., 1995. Particle Swarm Optimization.
Proc. IEEE Int. Conf. on Neural Networks, p.942-948.
[doi:10.1109/ICNN.1995.488968]

Kowalczyk, R., 1997. Constraint Consistent Genetic Algo-
rithms. IEEE Int. Conf. on Evolutionary Computation,
p.343-348. [doi:10.1109/ICEC.1997.592333]

Mezura-Montes, E., Coello, C., 2005. A simple multimem-
bered evolution strategy to solve constrained optimization
problems. IEEE Trans. Evol. Comput., 9(1):1-17.

Cui et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2010 11(4):249-260 260

[doi:10.1109/TEVC.2004.836819]
Mezura-Montes, E., Coello, C.A.C., Tun-Morales, E.I., 2004.

Simple Feasibility Rules and Differential Evolution for
Constrained Optimization. Proc. 3rd Mexican Int. Conf.
on Artificial Intelligence, p.707-716. [doi:10.1007/
b96521]

Michalewicz, Z., 1996. Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, New York.

Michalewicz, Z., Nazhiyath, G., 1995. Genocop III: A
Co-evolutionary Algorithm for Numerical Optimization
problems with Nonlinear Constraints. Proc. IEEE Int.
Conf. on Evolutionary Computation, p.647-651. [doi:10.
1109/ICEC.1995.487460]

Michalewicz, Z., Deb, K., Schmidt, M., Stidsen, T., 2000.
Test-case generator for nonlinear continuous parameter
optimization techniques. IEEE Trans. Evol. Comput.,
4(3):197-215. [doi:10.1109/4235.873232]

Powell, D., Skolnick, M., 1993. Using Genetic Algorithms in
Engineering Design Optimization with Non-linear Con-
straints. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.

Qin, A.K., Suganthan, P.N., 2005. Self-adaptive Differential
Evolution Algorithm for Numerical Optimization. IEEE
Congress on Evolutionary Computation, p.1785-1791.
[doi:10.1109/CEC.2005.1554904]

Richardson, J.T., Palmer, M.R., Liepins, G., Hilliard, M., 1989.
Some Guidelines for Genetic Algorithms with Penalty
Functions. Proc. 3rd Int. Conf. on Genetic Algorithms,
p.191-197.

Runarsson, T.P., Yao, X., 2000. Stochastic ranking for con-
strained evolutionary optimization. IEEE Trans. Evol.
Comput., 4(3):284-294. [doi:10.1109/4235.873238]

Schoenauer, M., Xanthakis, S., 1993. Constrained GA Opti-
mization. Proc. 5th Int. Conf. on Genetic Algorithms,
p.573-580.

Storn, R., Price, K., 1997. Differential evolution: a simple and
efficient heuristic for global optimization over continuous
spaces. J. Glob. Optim., 11(4):341-359. [doi:10.1023/A:
1008202821328]

Wang, Y., Cai, Z., Zeng, W., 2008. An adaptive tradeoff model
for constrained evolutionary optimization. IEEE Trans.
Evol. Comput., 12(1):80-92. [doi:10.1109/TEVC.2007.
902851]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

