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Abstract:    Based on the ratio of the size of the feasible region of constraints to the size of the feasible region of a constrained 
optimization problem, we propose a new constraint handling approach to improve the efficiency of heuristic search methods in 
solving the constrained optimization problems. In the traditional classification of a solution candidate, it is either a feasible or an 
infeasible solution. To refine this classification, a new concept about the relative feasibility degree of a solution candidate is 
proposed to represent the amount by which the ‘feasibility’ of the solution candidate exceeds that of another candidate. Relative 
feasibility degree based selection rules are also proposed to enable evolutionary computation techniques to accelerate the search 
process of reaching a feasible region. In addition, a relative feasibility degree based differential evolution algorithm is derived to 
solve constraint optimization problems. The proposed approach is tested with nine benchmark problems. Results indicate that our 
approach is very competitive compared with four existing state-of-the-art techniques, though still sensitive to the intervals of 
control parameters of the differential evolution. 
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1  Introduction 
 

Evolutionary computation (EC) techniques have 
been used to effectively solve constrained optimiza-
tion problems (COPs) recently. However, EC tech-
niques are normally used as ‘blind heuristics’ in the 
sense that no specific domain knowledge is used or 
required (Back et al., 1997). Several researchers have 
proposed different mechanisms to incorporate con-
straints into the fitness function of an EC technique. 

Penalty functions, popular in conventional 
methods for constrained optimization, are most 
common approaches to handling constraints with 
evolutionary algorithms (Back et al., 1997). There are 
different types of penalty functions, some of which 

are discussed as follows. In the static penalty method, 
the penalty is a weighted sum of the constraint viola-
tions where the weights are called penalty factors. 
Therein the penalty factors are independent of the 
current generation number and remain constant dur-
ing the entire search process. In contrast, the success 
of the static penalty method depends on the proper 
penalty factors. In the dynamic penalty method, the 
penalty assigned to each individual relies on the 
generation number, but the difficulty of tuning pa-
rameters for the dynamic penalty method has sig-
nificantly limited its applicability. Hadj-Alouane and 
Bean (1997) developed a penalty function which 
takes a feedback from the search process; however, 
the choice of the generational gap that provides rea-
sonable information to guide the search is very dif-
ficult in this method. Runarsson and Yao (2000) in-
troduced a stochastic ranking method to combine the 
objective and penalty functions, which could produce 
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only feasible solutions in some problems. Farmani 
and Wright (2003) proposed a self-adaptive penalty 
function, which uses a two-stage penalty function to 
replace the explicit definition of any parameter. Wang 
et al. (2008) developed an adaptive tradeoff model to 
determine the penalty function; however, the per-
formance of this method is determined by the reduc-
tion of the initial step size in evolution strategies.  

The methods based on the preference of feasible 
solutions over infeasible ones are another category of 
constraint handling techniques (Powell and Skolnick, 
1993; Hinterding and Michalewicz, 1998; Deb, 2000). 
Accordingly, a heuristic rule was proposed to process 
infeasible solutions. However, iterations in the search 
process may stagnate in the infeasible region if the 
region is very small compared with the size of its 
search space.  

The methods based on multi-objective optimi-
zation techniques are also a category of constraint 
handling techniques. Coello (2000) proposed a 
method using multi-objective optimization tech-
niques to handle each of the constraints of COPs as an 
objective; however, this method tends to generate 
trade-off solutions, and is hard to reach the global 
optimum efficiently. Cai and Wang (2006) proposed a 
method based on multi-objective optimization tech-
niques; however, the performance depends on the 
parameters of the crossover operator. 

From the analyses of the algorithms previously 
proposed to solve COPs, we notice that no specific 
domain knowledge is used. However, the constraints 
provide cheap specific domain knowledge which can 
be used to augment domain independent search 
methods in COPs (Coello, 2002). Therefore, incor-
porating domain knowledge can considerably im-
prove the performance of an EC technique and ac-
celerate evolution by reducing the search space. 
Several researchers have proposed different mecha-
nisms to use domain knowledge to solve COPs. Ko-
walczyk (1997) proposed a method based on con-
straint consistency to avoid the generation of variable 
instantiations that are not consistent with the con-
straints of a COP. The main drawback of this method 
is the extra computational cost of constraint propaga-
tion, which may become more expensive than the 
optimization. Schoenauer and Xanthakis (1993) han-
dled constraints sequentially (one by one), but did not 
bring out how to order the constraints of a problem. 

The performance of this method is affected greatly by 
the particular order of processed constraints 
(Michalewicz, 1996). Chung and Reynolds (1996) 
proposed a cultural algorithm with GENOCOP (Mi-
chalewicz and Nazhiyath, 1995) to solve COPs. As 
required to build a map of the search space, this ap-
proach is sensitive to high dimensionality. 

According to the relationship between the fea-
sible region of a COP and that of constraints, a rela-
tive feasibility degree (RFD) based approach is pro-
posed in this paper to solve COPs. The RFD of a 
constraint and the RFD of a solution candidate are 
defined to guide the search process of searching for 
feasible solutions. The former RFD represents the 
probability of a solution candidate that satisfies this 
constraint being a feasible solution and the latter RFD 
represents the amount by which the ‘feasibility’ of the 
solution candidate exceeds that of another candidate. 
According to these concepts, a set of RFD based se-
lection rules are proposed to make solution candidates 
accelerate the search process of reaching the feasible 
region.  

The proposed constraint handling approach is a 
generic framework for solving COPs, suitable for all 
EC techniques. In this paper, only a differential evo-
lution (DE) algorithm is implemented as an example 
of this constraint handling approach. 
 
 
2  Feasibility degree of a solution candidate 
 

In general, a constrained optimization problem 
can be expressed as follows: 

 

1 2min ( ),   ( , ,..., ) ,
 s.t.    ( ) 0,    1,2,..., ,
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f x x x
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= ∈

≤ =
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         (1) 

 
where f(x) is the objective function, and m is the 
number of inequality constraints. Let S⊂ún represent 
the search space bounded by the parametric con-
straints ,i i ix x x≤ ≤  i∈{1,2,…,n}, where ix  and ix  
are the lower bound and the upper bound of xi, re-
spectively. We define the feasible region of the jth 
constraint gj(x)≤0 by Fj={x∈ún|gj(x)≤0}, and then the 
feasible region of the problem Eq. (1) can be ex-

pressed by 
1

m
jj

F F
=

=∩ . Thus, a vector x∈F is a 

feasible solution of the problem Eq. (1). 
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It is well known that the COPs with such char-
acteristics as non-differentiable objective functions 
(and perhaps even non-differentiable constraints), 
non-convex objective functions, and disjoint feasible 
regions, are difficult to solve using traditional 
mathematical programming techniques. In contrast, 
EC techniques such as genetic algorithms (Holland, 
1962; 1992), ant colony algorithms (Dorigo et al., 
1991; Dorigo, 1992; Colorni et al., 1992), and parti-
cle swarm algorithms (Eberhart and Kennedy, 1995; 
Kennedy and Eberhart, 1995) are global optimization 
algorithms using nature-inspired mechanisms. The 
EC techniques are widely applied to solve COPs 
since no well-posted problem models are required in 
using an EC algorithm (Coello, 2002). 

In constraint handling approaches used with EC 
techniques, a number of solution candidates are com-
monly generated randomly in the search space and set 
as the initial population. Three phases are needed in 
the search process using EC techniques for solving 
COPs: 

1. Reproduction phase: new offspring of the 
current population are generated based on the original 
candidates by some heuristic rules, such as recombi-
nation and mutation. 

2. Evaluation phase: the offspring are evaluated 
by a fitness function. 

3. Selection phase: good or bad candidates are 
distinguished in the new offspring, and candidates 
that do not satisfy constraints or have a poor objective 
value are removed. 

In the selection phase of the search process, 
enormous efforts are needed to remove infeasible 
candidates, especially when the feasible region is very 
small with respect to the whole search space. This will 
decrease the efficiency of the search process. Some 
researchers have developed special operators or de-
coders to preserve the feasibility of solution candi-
dates in the reproduction phase. However, these 
methods are not general-purpose tools in all problem 
domains since problem-specific knowledge is used to 
design special operators or decoders. 

The ability to find feasible solutions is essential 
for solving the COPs that have smaller feasible re-
gions compared with their search spaces. Therefore, 
some new approaches based on infeasible candidates 
were proposed to accelerate the search process. 
Richardson et al. (1989) proposed a method based on 

the number of violated constraints for solving COPs, 
but their method is not likely to produce any solution 
if there are only a small number of feasible solutions 
in the COPs. Deb (2000) suggested simple feasibility 
rules to compare two candidates by drawing upon a 
preference of feasible solutions to infeasible ones; 
however, this approach requires a niching technique 
to maintain diversity in the population. 

We propose a new approach in this paper based 
on the solution candidates satisfying a part of the 
constraints of a COP. The effect of these candidates 
on constraint handling approaches is evaluated and 
the results are incorporated as heuristic knowledge 
into the search process. In the traditional classifica-
tion of solution candidates, a candidate must be either 
feasible or infeasible. To extend this classification, a 
new concept of RFD is proposed in this section to 
measure the amount by which in terms of ‘feasibility’ 
the solution candidate exceeds another. A solution 
candidate with a larger RFD means a greater prob-
ability of being a feasible solution than that of another. 
Therefore, heuristic rules based on the RFD of a so-
lution candidate can obviously improve the per-
formance of EC techniques if they can increase the 
RFD of the solution candidate. Therefore, the RFD of 
a solution candidate can be used as new heuristic 
knowledge for solving COPs. 

Fig. 1 shows the relationship among the feasible 
region F, the search space S, and the feasible regions 
Fi (i=1, 2, 3) of constraints, where the rectangular 
region represents the search space S and the three 
circular regions indicate the feasible regions F1, F2, 
and F3, respectively. If a candidate x is randomly 
generated in the feasible region Fi, the probability of 
the candidate x being located in the feasible region F 
is proportional to the ratio of the size of feasible re-
gion, |F|, to the size of the feasible region of the con-
straint, |Fi|. 

 
 
 
 
 
 
 
 
 
 

S

F2 

F1

F3 

Fig. 1  Relationship bee feasible region and the search 
space 
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In order to measure the probability of a solution 
candidate being a feasible solution when using a 
search process to solve the problem Eq. (1), the RFD 
of a constraint is given as follows: 
Definition 1 (Relative feasibility degree of a con-
straint)    Given the COP Eq. (1), the ratio of the size 
of the feasible region F to the size of the feasible 
region Fi of the ith constraint is called the relative 
feasibility degree of the constraint, denoted by 
ρi=|F|/|Fi|. 

The RFD of a constraint measures the probabil-
ity of a solution candidate satisfying the constraint of 
becoming a feasible solution. This concept can be 
extended to the RFD of a solution candidate, de-
scribing the amount by which as regards ‘feasibility’ 
the solution candidate exceeds another. 
Definition 2 (Relative non-common satisfied con-
straint set)    Given the COP Eq. (1), let x1 and x2 
denote two solution candidates of the problem, G 
represent the constraint set of the problem, G1 and 1G  
refer to the satisfied constraint set and the violated 
constraint set of x1 respectively, and G2 and 2G  in-
dicate the satisfied constraint set and the violated 
constraint set of x2 respectively. The intersection of 
G1 and 2G  denoted as Q(x1→x2) is called the relative 
non-common satisfied constraint set (RNSCS) of x1 
with respect to x2, defined as 
 

1 2 1 2( ) .Q G G→ = ∩x x  
 
Definition 3 (Relative feasibility degree of a solution 
candidate)    Given the COP Eq. (1), let x1 and x2 be 
two solution candidates of the problem, Q(x1→x2) the 
RNSCS of x1 with respect to x2, and ρi, i∈Q(x1→x2), 
the RFD of constraint i. R(x1→x2) is called the RFD 
of x1 with respect to x2, defined as 
 

1 2

1 2

1 2 1 2

( )

0,   ( ) ,
( ) 1,   ( ) {1,  2,  ...,  },

max ,  otherwise.i Q x x i

Q
R Q m

ρ∈ →

⎧ → =∅
⎪

→ = → =⎨
⎪
⎩

x x
x x x x   (2) 

 
We call the constraint with the highest RFD in 

the RNSCS the maximal non-common satisfied con-
straint. 

The RFD of a solution candidate defined by 
Eq. (2) has the following properties (for convenience, 

we classify infeasible solutions into complete infea-
sible solutions (satisfying no constraints) and incom-
plete infeasible solutions (partially satisfying the 
constraints in COPs)): 

1. The RFD of a solution candidate with respect 
to another is 0 if the satisfied constraint set of the 
former is included in that of the latter. For instance, 
we can obtain that (1) the RFD of a complete infea-
sible solution with respect to any solution candidate is 
0; (2) the RFD of any type of infeasible solutions with 
respect to any feasible solution is 0; (3) the RFD of a 
feasible solution with respect to any feasible solution 
is 0; (4) the RFD of a solution candidate with respect 
to another is 0 if the two solution candidates have the 
same satisfied constraint set. 

2. On the contrary, the RFD of any feasible so-
lution with respect to any complete infeasible solution 
is 1. 

3. Except for conditions 1 and 2, the RFD of a 
solution candidate compared to another is between 0 
and 1. In this case the RFD is determined by the 
maximal non-common satisfied constraint, which is 
the one with the largest RFD in the RNSCS of the 
former with respect to the latter. The greater the RFD 
of the maximal non-common satisfied constraint, the 
greater the RFD of the solution candidate with respect 
to another; it indicates that, the probability of the 
solution candidate in the feasible region of the origi-
nal optimization problem is much larger than that of 
another solution candidate. 

As implied in Definition 3, since the RFD of a 
solution candidate is defined by the RFD of a con-
straint, it is necessary to evaluate the RFD of all the 
constraints in a COP before the RFD of a solution 
candidate can be obtained. A method based on ran-
domly selected candidates is used to evaluate the RFD 
of a constraint since the feasible region is unknown. 
Michalewicz et al. (2000) proposed a method to 
evaluate the ratio of the size of the feasible region to 
the size of the search space in a COP. It can also be 
used to evaluate the RFD of a constraint; i.e., given 
the COP Eq. (1), generate s randomly selected can-
didates by a uniform n-dimensional probability dis-
tribution in the search space, with k the number of 
candidates in the feasible region F and kj the number 
of candidates in the feasible region Fj of the constraint 
gj(x)≤0. Then, according to Definition 1, the RFD of 
the constraint gj(x)≤0 is ρj=k/kj.  
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In the real world, there are many COPs in which 
the ratio of the size of the feasible region to the size of 
the search space is very low, so the cost of generating 
a feasible solution is very high. It makes Michale-
wicz’s method inefficient. Actually, as heuristic 
knowledge in a search process, the exact value of the 
RFD of a candidate is not necessary. The rank of the 
RFD can also provide heuristic knowledge to improve 
the performance of an EC algorithm. The size of the 
feasible region of a constraint is constant for a given 
COP. Therefore, the rank of ρj can be determined 
simply by kj, j=1, 2, …, m; i.e., if ki>kj, then ρi<ρj. 

Experiments show that, only a small number of 
randomly selected candidates are needed in practice 
when calculating the rank of the RFDs of constraints. 
For example, only 100 randomly selected candidates 
are needed when we calculate the rank ordering of 
RFD of the 6 constraints in the benchmark problem 
g10 (the ratio of the size of the feasible region to the 
size of the search space is only 2.0×10−5) (Runarsson 
and Yao, 2000). As is shown in Table 1, the results 
given by evaluating 100 randomly selected candi-
dates are nearly the same as that by 1 000 000 ran-
domly selected candidates. 

 
 
 
 
 
 
 
 
 

 
 
 
The evaluations of the RFDs of constraints can 

be done before the search process. Thus, the RFD of a 
solution candidate can be evaluated by the RFDs of 
constraints in descending order. 

 
 

3  Relative feasibility degree based selection 
rules 

 
The RFD of a solution candidate is defined in the 

former section as the amount by which the ‘feasibil-
ity’ of the solution candidate exceeds that of another. 

By this definition, the solution candidate with a larger 
RFD can be selected as a better candidate in the 
search process for solving COPs. In this way, the 
RFD knowledge can be conveniently incorporated 
into the selection phase of an EC technique to reduce 
the search space and accelerate the search process. 

Deb (2000) worked out a set of simple feasibility 
rules to compare two solution candidates in the 
tournament selection of GAs by giving a preference 
for feasible solutions. It can be stated as follows: 

1. A feasible solution is always preferred to an 
infeasible one. 

2. Between two feasible solutions, the one with a 
better objective function value is preferred. 

3. If both solution candidates are infeasible, the 
one with a smaller constraint violation is preferred. 

However, only feasible and infeasible solutions 
based on the traditional classification of solution 
candidates are compared in Deb’s rules. Therefore, 
iterations in the searching process may stagnate in the 
infeasible region if the feasible region is very small as 
opposed to the size of its searching space. Based on 
Deb’s rules, a set of RFD based selection rules is 
developed in the following to reduce the search space 
of COPs. 

The RFD based selection rules can be formu-
lated as follows: 

Given two solution candidates x1 and x2: 
1. If x1 and x2 are both feasible solutions, the one 

with a better objective is preferred. 
2. Otherwise, (1) if R(x1)≠R(x2), the one with a 

larger RFD wins; and (2) if R(x1)=R(x2), the one with 
a smaller violation of their maximal non-common 
satisfied constraint is preferred. 

Note that violation of a constraint is defined by 
V(x)=max(0, g(x)) (for details, see Back et al., 1997). 

Following these rules, the search process can 
reach the feasible region of a COP quickly. When two 
infeasible solutions with the same RFD are compared, 
the one whose maximal non-common satisfied con-
straint bears a smaller violation is preferred. This rule 
forces solution candidates into satisfying their 
maximal non-common satisfied constraint. When two 
infeasible solutions with different RFDs are com-
pared, preference would be given to the solution 
candidate with a larger RFD. This rule makes solution 
candidates satisfy the constraint with a larger RFD 
first. When two feasible solutions are compared, 

Table 1  The rank of RFD of constraints evaluated by 
different numbers of random variables 

kj Rank 
Constraint 

n=100 n=1×106 n=100 n=1×106

g1(x)≤0 47 499 528 3 3 
g2(x)≤0 50 504 075 4 4 
g3(x)≤0 76 779 026 6 6 
g4(x)≤0 39 421 367 2 2 
g5(x)≤0 3 73 497 1 1 
g6(x)≤0 64 595 348 5 5 

n: number of candidates 
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preference would be taken up by the solution candi-
date with a better objective. Following this rule, the 
search process needs to find solution candidates with 
the best objective. Therefore, the solution candidates 
selected based on these rules will satisfy the con-
straints in descending order of RFDs and reach the 
global optimum finally. 

 
 

4  Implementation with differential evolution 
 
To illustrate validity of the RFD based selection 

rules, we introduce them to a DE algorithm as an 
example. The DE algorithm proposed by Storn and 
Price (1997) is a heuristic method for real parameter 
optimization problems. 

Let xt
i denote an individual in the population of 

the DE algorithm and NP the size of the population, 
where i indicates the index of the individual, j the 
index of the variable, and t the current generation. A 
new mutated individual , 1

i
j tv +  is generated according 

to the following equation: 
 

3 1 2
, 1 , , ,( ),d d di

j t j t j t j tv x x xη+ = + −                  (3) 

 
where the random indexes d1, d2, d3∈[0, NP] are 
mutually different integers and also different from the 
running index i, and η∈(0, 1] is called the scaling 
factor or the amplification factor.  

According to Eq. (5), a crossover operator is 
used to generate the trial individual , 1

i
j tu +  based on the 

original individual 3
,

d
j tx  and the new individual , 1

i
j tv + . 

 

, 1

, 1

,

, if Rand[0,1) CR

            or randint(1, ),
,     otherwise,

i
j t

i
j t

i
j t

v

u j D
x

+

+

⎧ ≤
⎪

= =⎨
⎪
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            (4) 

 
where Rand[0, 1) is a function that returns a real 
number between 0 and 1, randint(min, max) is a 
function that returns an integer between min and max, 
CR∈[0, 1] is a crossover factor. The probability of the 
mutated individuals being preserved in the next gen-
eration is determined by the crossover factor CR. 

A selection operator is used to choose an indi-
vidual for the next generation (t+1) according to the 

following rule: 
 

1 1
1

, if  is better than ,

,     otherwise,

i i i
t t ti

t i
t

u u x
x

x
+ +

+

⎧⎪= ⎨
⎪⎩

       (5) 

 
where 1

i
tu +  and xt

i are compared by the RFD based 
selection rules. 

In this way, an individual will replace the one 
with a lower RFD with respect to it; an individual will 
replace the one with the same RFD depending on 
different conditions, where an infeasible individual 
will replace the one with a larger violation of the 
maximal non-common satisfied constraint and a fea-
sible individual will replace the one with a worse 
objective with respect to it, respectively. Therefore, 
the EC techniques using the RFD based selection 
rules can reduce the search space and find the optimal 
solution.  

The pseudo code of the DE with the RFD based 
selection rules is given in Fig. 2. As can be seen, the 
rules keep the operators of DE algorithms unchanged. 
Therefore, the RFD based selection rules are a general 
method and can be used not only in ES but also in 
other DE algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Pseudo code of the DE using the RFD based selec-
tion rules 

Begin 
t=0; 
Create NP random solutions for the initial population; 
Evaluate all individuals; 
For t=1 to MAX_GENERATION Do 
   For i=1 to NP Do 
      Select randomly d1≠d2≠d3; 
      If (Rand[0, 1]≤CR or j=randint(1, D)) Then 
         , 1 , 1

i i
j t j tu v+ += ; 

      Else 
         , 1 ,

i i
j t j tu x+ = ; 

      End If 
   End For 
   Compare , 1

i
j tu +  and ,

i
j tx  by the RFD based selected 

rules; 
   If 1

i
tu + is better than i

tx  Then 

      1 1
i i
t tx u+ += ; 

   Else 
      1

i i
t tx x+ = ; 

   End If 
   t=t+1; 
End For 

End 
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The capability of finding the global minimum 
and a fast convergence speed of DE are both highly 
sensitive to the control parameters CR and η (Qin and 
Suganthan, 2005). Therefore, a self-adaptive ap-
proach is developed to adjust these parameters based 
on the success rate φt, where φt is defined by the 
percentage of original individuals replaced by trial 
individuals in the population at every generation, 
through the following updating law: 

 

1

1

rand , 0.5,
, otherwise,

l u t
t

t

η η φ
η

η −

+ ≤⎧
= ⎨
⎩

               (6) 

2

1

rand ,  0.5,
CR

CR , otherwise,
t

t
t

φ

−

≤⎧
= ⎨
⎩

                      (7) 

 
where ηt and CRt are the scaling factor η and the 
crossover factor CR at generation t, respectively; 
rand1 and rand2 are uniformly distributed random 
numbers in [0, 1]; ηl=0.1, ηu=0.9. The updating of ηt 
and CRt is conducted before the mutation is per-
formed. Eqs. (6) and (7) ensure that ηt∈[0.1, 1]⊂(0, 1], 
CRt∈[0, 1], ∀t, included in the defined ranges of CR 
and η. Note that, although the parameters are 
self-adaptively adjusted in the search process, the 
upper and lower boundaries of the scaling factor are 
still defined empirically. 

 
 
5  Experiments and results 
 

Nine benchmark problems described in 
Runarsson and Yao (2000) were used to evaluate the 
performance of the RFD based differential evolution 
(RFDDE) algorithm proposed in this paper. The cha-
racteristics of the benchmark problems are shown in 
Table 2, where n is the number of decision variables, 
ml the number of linear inequalities, mn the number of 
nonlinear inequalities, mle the number of linear 
equalities, mne the number of nonlinear equalities, and 
r̂  the ratio of the size of the feasible region to the size 
of the search space of the benchmark problems 
evaluated by Michalewicz et al. (2000)’s method 
using 1 000 000 random candidates. As shown in Ta-
ble 2, r̂  of the remaining problems is fairly low ex-
cept for problems g02 and g04, while r̂  of problems 
g02 is nearly 100%. Therefore, the capability to find 
feasible solutions with different r̂  can be tested using 
these benchmark problems. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
We performed 30 independent runs for each 

benchmark problem. Equality constraints were trans-
formed into inequalities using a tolerance value of 
0.0001. The parameters were set the same as those of 
Mezura-Montes et al. (2004): NP=60, MAX_ 
GENERATIONS=5800. The control parameters CR 
and η were adjusted using a self-adaptive method. 
Our approach was implemented in C/C++ and tested 
on a Pentium IV 2.8 GHz PC. 

The statistical results of RFDDE are summa-
rized in Table 3. 

We compared our approach against four 
state-of-the-art approaches: the stochastic ranking 
(SR) algorithm (Runarsson and Yao, 2000), the sim-
ple multimembered evolution strategy (SMES) algo-
rithm (Mezura-Montes and Coello, 2005), the adap-
tive tradeoff model evolution strategy (ATMES) al-
gorithm (Wang et al., 2008), and the constraint han-
dling differential evolution (CHDE) algorithm 
(Mezura-Montes et al., 2004). The best results, the 
mean results, the worst results, and the standard de-
viations obtained by each approach are shown in 
Table 4. The results provided by these approaches 
were taken from the original references for each 
method. 
 
 
6  Discussion 

6.1  General performance of the proposed ap-
proach 

As described in Table 3, our approach was able 
to find the global optimum in nine benchmark  

Table 2  Characters of the nine benchmark problems 
chosen 

Problem n Type of  
function r̂  (%) ml mn mle mne

g01 13 quadratic 0.0003 9 0 0 0
g02 20 nonlinear 99.9973 1 1 0 0
g04 5 quadratic 27.0079 0 6 0 0
g05 4 nonlinear 0.0000 2 0 0 3
g06 2 nonlinear 0.0057 0 2 0 0
g07 8 quadratic 0.0000 3 5 0 0
g08 2 nonlinear 0.8581 0 2 0 0
g09 7 nonlinear 0.5199 0 4 0 0
g10 6 linear 0.0020 6 0 0 0

n: number of decision variables; ml: number of linear ine-
qualities; mn: number of nonlinear inequalities; mle: number 
of linear equalities; mne: number of nonlinear equalities 
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Table 3  Statistical results obtained by RFDDE for the 9 benchmark problems over 30 independent runs 
Problem Optimal Best Mean Median Worst SD 

g01 −15.000 −15.000 −15.000 −15.000 −15.000 0 
g02 0.803 619 −0.803 619 −0.801 783 −0.803 619 −0.792 608 4.2E−3 
g04 −30 665.539 −30 665.539 −30 665.539 −30 665.539 −30 665.539 2.2E−11 
g05 5126.4967 5126.4967 5149.7695 5135.2497 5448.4213 5.8E+01 
g06 −6961.8140 −6961.8140 −6961.8140 −6961.8140 −6961.8140 0 
g07 24.306 24.306 24.306 24.306 24.306 2.7E−05 
g08 0.095 825 −0.095 825 −0.095 825 −0.095 825 −0.095 825 4.21E−17 
g09 680.6300 680.6300 680.6300 680.6300 680.6300 1.2E−13 
g10 7049.248 7049.248 7049.248 7049.248 7049.253 1.3E−03 

      Results in boldface indicate the global optimum (or best known solution). SD: standard deviation 

Table 4  Comparison of the best, the mean solutions, the worst solutions, and the standard deviations found by our 
RFDDE against SR, SMES, ATMES, and CHDE 

Statistics 
Problem Optimal  

SR SMES ATMES CHDE RFDDE 
Best −15.000 −15.000 −15.000 −15.000 −15.000 
Mean −15.000 −15.000 −15.000 −14.792 −15.000 
Worst −15.000 −15.000 −15.000 −12.743 −15.000 

g01 −15.000 

SD 0.0E+00 0 1.6E−14 4.0E−01 0 
Best −0.803 515 −0.803 601 −0.803 388 −0.803 619 −0.803 619 
Mean −0.781 975 −0.785 238 −0.790 148 −0.746 236 −0.801 783 
Worst −0.726 288 −0.751 322 −0.756 986 −0.302 179 −0.792 608 

g02 
 −0.803 619 

SD 2.0E−02 1.7E−02 1.3E−02 8.1E−02 4.2E−03 
Best −30 665.539 −30 665.539 −30 665.539 −30 665.539 −30 665.539 
Mean −30 665.539 −30 665.539 −30 665.539 −30 592.154 −30 665.539 
Worst −30 665.539 −30 665.539 −30 665.539 −29 986.214 −30 665.539 

g04 −30 665.539 

SD 2.0E−05 0 7.4E−12 1.1E+02 2.2E−11 
Best 5126.497 5126.599 5126.498 5126.497 5126.497 
Mean 5128.881 5174.492 5127.648 5218.729 5149.769 
Worst 5142.472 5304.167 5135.256 5502.410 5448.421 g05 5126.497 

SD 3.5E+00 5.0E+01 1.8E+00 7.6E+01 5.8 E+01 
Best −6961.814 −6961.814 −6961.814 −6961.814 −6961.814 
Mean −6875.940 −6961.284 −6961.814 −6367.575 −6961.814 
Worst −6350.262 −6952.482 −6961.814 −2236.950 −6961.814 

g06 −6961.814 

SD 1.6E+02 1.9E+00 4.6E−12 7.7E+02 0 
Best 24.307 24.327 24.306 24.306 24.306 
Mean 24.374 24.475 24.316 104.599 24.306 
Worst 24.642 24.843 24.359 1120.541 24.306 

g07 24.306 

SD 6.6E−02 1.3E−01 1.1E−02 1.8E+02 2.7E−05 
Best −0.095 825 −0.095 825 −0.095 825 −0.095 825 −0.095 825 
Mean −0.095 825 −0.095 825 −0.095 825 −0.091 292 −0.095 825 
Worst −0.095 825 −0.095 825 −0.095 825 −0.027 188 −0.095 825 

g08 −0.095 825 

SD 2.6E−17 0 2.8E−17 0.012 0 
Best 680.630 680.632 680.630 680.630 680.630 
Mean 680.656 680.643 680.639 692.472 680.630 
Worst 680.763 680.719 680.673 839.783 680.630 

g09 680.630 

SD 3.4E−02 1.6E−02 1.0E−02 23.575 1.2E−13 
Best 7054.316 7051.903 7052.253 7049.248 7049.248 
Mean 7559.192 7253.047 7250.437 8442.657 7049.248 
Worst 8835.655 7638.366 7560.224 15580.370 7049.253 

g10 7049.248 

SD 5.3E+02 1.4E+02 1.2E+02 2.2E+03 1.3E−03 
Results in boldface indicate the obtained global optimum (or best known solution). SD: standard deviation 
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problems. For problems g01, g04, g06, g07, g08, and 
g09, the optimal solutions were consistently found in 
all 30 runs. For problems g02, g05, and g10, the 
near-optimal solutions were found in all 30 runs. For 
problem g05, the optimal solutions were not consis-
tently found since the ratio of the size of the feasible 
region to the size of the search space was very small. 
For problems g02 and g10, the optimal solutions were 
found in most of the runs. Furthermore, feasible so-
lutions were continuously found for all the bench-
mark problems in 30 runs. These results reveal that 
RFDDE has the substantial capability to deal with 
various kinds of COPs. 

6.2  Comparison with four state-of-the-art ap-
proaches 

The performance of RFDDE was compared in 
detail with four state-of-the-art techniques using the 
selected performance metrics (Table 4). For bench-
mark problems g01, g04, and g08, RFDDE, SR, 
SMES, and ATMES consistently found the optimal 
solutions in all 30 runs. For problem g06, the optimal 
solutions were consistently found by RFDDE and 
ATMES in all 30 runs. For problem g05, SR, SMES, 
and ATMES found better ‘mean’ and ‘worst’ results 
than RFDDE. However, RFDDE was also able to find 
the optimal solution in 30 runs and the ‘mean’ results 
were very close to the optimal solution. For all the 
other 5 problems, RFDDE found better ‘best’, ‘mean’, 
and ‘worst’ results than SR, SMES, and ATMES. As 
against CHDE, our approach found ‘similar’ best 
results in all the problems, and furthermore located 
better ‘mean’ and ‘worst’ results in all the problems. 

In summary, we can conclude that RFDDE out-
performs or has similar performances to SR, SMES, 
ATMES, and CHDE in all the problems. 

6.3  Advantages of our approach 

After corroborating the effectiveness of our ap-
proach, we want to verify the advantages of our ap-
proach. Two comparisons of RFDDE and CHDE 
were designed as follows as there are only two dif-
ferences between the two algorithms: (1) RFDDE 
uses the RFD based rules while CHDE uses simple 
feasibility rules, and (2) the control parameters of 
RFDDE are set using a self-adaptive method while 
those of CHDE are set empirically. 

6.3.1  Reaching the feasible region 

In the real world, it is normally desirable to find 
feasible (even if not optimal) solutions with the low-
est possible number of fitness function evaluations 
(FFEs) for COPs. To study this issue, we compared 
RDFDE with CHDE on the percentage of feasible 
solutions in the population at every generation.  

For problems g04, g06, g07, g08, g09, and g10, 
the percentages of feasible solutions in the population 
of RFDDE were larger than those of CHDE at the 
same generation (Fig. 3). The statistical results 
showed that a lower number of FFEs is needed for 
RFDDE than for CHDE to obtain a same percentage 
of feasible solutions in the population; i.e., RFDDE 
can reach the feasible region more quickly than 
CHDE. 

There were 9 constraints in problem g01. The 
RFD selection rules make RFDDE satisfy the con-
straints in descending order of RFDs. Thus, the more 
constraints were located in a COP, the more FFEs 
were required for RFDDE to satisfy all the constraints. 
Therefore, the percentages of feasible solutions in the 
population of RFDDE were larger only than those of 
CHDE after 1500 FFEs. The ratio of the size of the 
feasible region to the size of the search space was very 
high in problem g02 ( r̂ = 99.973%). Therefore, the 
percentages of feasible solutions in the population at 
generation 1 were both 100% for RFDDE and CHDE. 
Analysis of each constraint in problem g05 shows that: 
the RFDs of three equality constraints were all near 0 
in problem g05. Since the RFD of a constraint was 
used as the heuristic knowledge in the RFD based 
selection rules, the effect of these rules will be 
weakened when the RFDs of constraints are similar. 

The experiment revealed that RFDDE can reach 
the feasible region quickly and find more feasible 
solutions than CHDE. 

6.3.2  Convergence 

In order to demonstrate the effectiveness of our 
approach, we compared RFDDE with CHDE on their 
convergence (Fig. 4). It can be found that the con-
vergence speed and the accuracy of RFDDE were 
much higher than those of CHDE in most cases. For 
problems g01, g02, g04, g06, g08, g09, and g10, 
RFDDE showed a significantly fast convergence and 
could find solutions very close to the optimal solu-
tions before 50 000 FFEs. For problem g07, although  
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CHDE had a faster convergence speed, RFDDE out-
performed CHDE in terms of solution quality, i.e., 
achieving better mean solutions. The ultra small fea-
sible region of problem g05 ( r̂ = 0.0000%) will result 
in poor performance of many EC techniques on it, 
which was also true for RFDDE and CHDE. In other 
words, RFDDE and CHDE both had poor perform-
ances and slow convergence speed in these two 
problems. 

As shown in the two experiments, the RFD 
based selection rules can make DE reach the feasible 
region more quickly; that is, RFDDE can accelerate 
the convergence of DE. 
 
 
7  Conclusion 

 
In order to extend the traditional classification of 

a solution candidate, we proposed a novel approach 
based on the feasibility of a solution candidate for 
solving COPs. Herein new concepts of the RFD of a 
constraint and the RFD of a solution candidate were 
derived on the ratio of the size of the feasible region 
of constraints to the size of the feasible region of a 
COP to measure the amount by which the ‘feasibility’ 
of the solution candidate exceeds that of another. 
Accordingly, RFD based selection rules were pro-
posed to select the solution candidates. EC techniques 
using these rules can reach the feasible region of a 
COP quickly. RFDDE, an implementation of this 
approach with a DE in this paper, is compared with 
CHDE on the percentage of feasible solutions in the 
population at every generation and the convergence. 
This new approach reaches the feasible region more 
quickly and bears a more rapid convergence speed 
than CHDE in most of the benchmark problems. 
However, the ranges of the crossover factor and the 
scaling factor of RFDDE are still defined empirically. 
Since the effect of our approach may be decreased 
when the RFDs of constraints are similar, our future 
work will focus on accelerating the search process in 
these conditions. 
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