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Abstract:    The modeling of switching loss in semiconductor power devices is important in practice for the prediction and 
evaluation of thermal safety and system reliability. Both simulation-based behavioral models and data processing-based empirical 
models are difficult and have limited applications. Although the artificial neural network (ANN) algorithm has often been used for 
modeling, it has never been used for modeling insulated gate bipolar transistor (IGBT) transient loss. In this paper, we attempt to 
use the ANN method for this purpose, using a customized switching loss test bench. We compare its performance with two con-
ventional curve-fitting models and verify the results by experiment. Our model is generally superior in calculation speed, accuracy, 
and data requirement, and is also able to be extended to loss modeling for all kinds of semiconductor power devices. 
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1  Introduction 
 

Loss in power electronic devices depends on the 
type of device and the operating conditions. These 
factors directly determine the selected rating and 
system requirements such as cooling and overheating 
protection. It is crucial to predict the loss (the heat 
generated) in specified applications during the early 
design stages to guarantee an optimized balance be-
tween cost and reliability. Loss in a voltage controlled 
switching power device like an insulated gate bipolar 
transistor (IGBT) comes from two main sources: 
conduction and switching. Simple and steady rela-
tions between current and temperature are found in 
the case of conduction loss, which can be estimated 
fairly accurately according to the operation modes 
and datasheets. However, transient losses, including 

those arising from turn-on and turn-off, are more 
difficult to estimate, as many more influential factors 
need consideration. Hence, models far more compli-
cated than the simple curves used in the case of 
conductive loss, are needed for switching loss 
evaluations. 

Many attempts have been made in recent dec-
ades to obtain comprehensive models for IGBTs. 
Mainstream technologies can be classified as:  

1. Micro behavioral models with exact equiva-
lent circuits, derived from the intrinsic physics and 
parameters, which provide the operation details such 
as real-time voltage and current waveforms under 
different conditions, by simulation. With good per-
formance and high modeling cost, switching losses 
are obtainable from these models (Hefner, 1994; 
Hefner and Diebolt, 1994; Kraus et al., 1998; Sheng et 
al., 1999; Bryant et al., 2008; Michel et al., 2009). 

2. Macro behavioral models based on the com-
bination and modification of existing component 
models, which take IGBTs as the combination of 
existing well modeled components such as metallic 
oxide semiconductor field effect transistors (MOSFETs) 
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and bipolar junction transistors (BJTs). The results 
can be close to reality, but sometimes not, especially 
in precise switching characterization simulations 
(Sheng et al., 2000; Hu et al., 2008). 

3. Non-behavioral methods based on datasheets 
that extract loss-related key data from device manuals. 
These can be simple and fairly precise, but give only 
rough results in most cases (Rosu et al., 2008; Bazzi 
et al., 2009). 

4. Empirical models based on measurement, 
having nothing to do with the physics mechanisms, 
include only mathematical mapping between influ-
ential factors and losses. These are non-behavioral 
and only for loss estimation (Blaabjerg et al., 1996; 
Xu et al., 2002; Cavalcanti et al., 2003; Poulsen and 
Sørensen, 2004). 

Both the behavioral and non-behavioral models 
are useful for loss prediction once the result is suffi-
ciently accurate, but they differ in their user-friend-
liness and in their usefulness for specific applications. 
A high-end-device user can be short of support in a 
project with tough restrictions such as designing 
converters in satellites or slim sealed underwater 
pump drivers, suffering tight constraints on space or 
weight, or with narrow margins of design redundancy. 
In these cases, better loss models with more detail and 
better accuracy may be desirable, in contrast to the 
simplicity of datasheets. Generally, the establishment 
of behavioral models is complex in principle and in 
practice, even for professional semiconductor scien-
tists, while the empirically calculated loss models are 
basically derived from loss measurement and data 
processing, which are more accessible to engineers 
using a common device. To obtain the loss, the be-
havioral models also require simulation tools while 
the empirical models need only regular computing 
programs. Additionally, the empirical non-behavioral 
modeling, in this paper referred to as ‘math modeling’, 
does not need a complete software reset but only 
another batch of measurement and recalculation to 
adapt to shift as much as from IGBT to MOSFET. 
Problems for math modeling include either lack of 
accuracy or the heavy duty in loss measurement and 
data calculation. Improvement of math modeling is 
possible only with the backup of appropriate switch-
ing loss measurement. A well-developed 1200 V/200 A 
test bench for discrete IGBTs, using a conventional 

dual pulse test mode, records turn-on and turn-off 
waveforms and loss data in groups automatically 
(Shen et al., 2006b). In this paper, we have attempted 
to apply the neural network method to IGBTs 
switching loss modeling to make progress in math 
modeling performance. 

 
 

2  Math modeling 
 

The purpose of the math models for IGBT 
switching loss is to obtain the function-like relation-
ship between the influential independent variables 
such as voltage and current, and the dependent vari-
ables, the losses.  

2.1  Conventional math models 

Typical conventional math modeling methods, 
i.e., function or curve fittings, include: power func-
tions, interpolations, and polynomial functions. For 
example, if only voltage, current, and temperature are 
considered, loss models typically look like 
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in which Eon, Ic, UDC, and Tj are the turn-on energy 
loss, switching current, voltage, and temperature 
respectively, while Uref and Tref are the reference 
voltage and temperature respectively. The function 
types and structures in the modeling are fixed in ad-
vance and only the unknown parameters, such as the 
coefficients a, b, …, i, j mentioned above, need to be 
determined using the data from experiments. In fact, 
the Fourier transform indicates that with a unified 
form of polynomials, all the conventional math mod-
els can be expressed in longer or shorter polynomial 
expressions of the decisive factors. 

It is apparent that the preset form of the model 
function plays the main role in determining the per-
formance of the modeling. The expressions are not 
related to the inherent mechanisms of loss and are 
random in selection. Therefore, whether the model 
builders set the reference values or orders of a specific 
input to obtain a remarkable or negligible effect over 
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the output, in either a positive or negative direction, 
will also be random. The higher the order of the 
model equations, the larger the number of coefficients 
to be determined and the larger the size of the backing 
data package, the more accurate the models will be, 
and vice versa. Thus, there is a conflict between the 
accuracy of the model and heavy data acquisition and 
processing. The massive calculation required for 
good loss prediction could in practice disable the 
modeling. Consequently, compromises are always 
made to mitigate the stress of calculation, resulting in 
rough math models for device loss (Blaabjerg et al., 
1996; Xu et al., 2002; Cavalcanti et al., 2003). 

2.2  Modeling with artificial neural network tech-
nology 

In some cases, conventional models suffer from 
the non-mechanism oriented definition. Artificial 
neural network (ANN) technologies can be put to 
good use in applications where other models would be 
difficult or even useless. One of the stronger capa-
bilities of ANN is function mapping, which is often 
used in situations with very complicated, undisclosed, 
and nonlinear relationships between multiple inputs 
and outputs. For ANN modeling, the object is con-
sidered as a black box and the measured input and 
output data are used to modify the model networks to 
fit the external characteristics of the real system. This 
is the process of ‘training’ or ‘learning’. In the case of 
IGBT switching loss modeling, the operating voltage, 
current, temperature, driving voltages (here the 
negative gate bias is ignored owing to its minor effect 
on switching loss), and driving impedance are taken 
as inputs for the ANN models, and the turn-on/ 
turn-off losses are taken as outputs, all of which can 
be measured and recorded automatically by the test 
bench. Well configured ANN models are expected to 
require less data and calculation to achieve better 
accuracy than conventional models. 

Although an ANN is considered to be a black 
box, the basic structure needs to be defined. Neurons 
from creatures are referenced in the configuration of 
elementary cells (Fig. 1). The feed forward network is 
the most common and demonstrative type in ANN 
technologies. ANN models are special cases in math 
models, with complicated configurations and function 
expressions. The aim of the modeling process, or 

‘training’, is to obtain the numerous parameters for 
each neuron such as the input weights and the biases. 
More hidden layers, or more neurons in hidden layers, 
will improve performance. An appropriate tradeoff 
must be made between complexity and precision for 
any modeling. According to experience, multiple 
hidden layers can be largely substituted by having 
enough neurons in a single hidden layer, and a 
three-layer feed forward network will be sufficient for 
modeling of systems with such a scale. Therefore, the 
fundamentals of newly adopted ANN models for 
IGBT switching loss can be sorted out but several 
issues are still awaiting optimization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Modeling description 
 
The math modeling of switching loss is based on 

experimental data for developing the function ex-
pressions. Collector current (ic), DC link voltage 
(VDC), junction temperature (Tj), drive voltage (Vg), 
and gate resistance (Rg) are included in the equations 
as follows:  
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Fig. 1  Structures for an artificial neural network (ANN)
(a) Model for a single neuron cell; (b) A typical three-layer 
feed forward ANN 
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3.1  Data acquisition 

A 1200 V/200 A switching behavior test bench 
for IGBTs was used for our research, obtaining data 
automatically in batches for modeling. Typical 
measurement results are shown in Fig. 2 along with 
the interval definitions in the routine transient process, 
which can be easily adjusted by software. The product 
of voltage and current across the transistor can then be 
integrated over time during the defined interval to 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

obtain the switching loss. Other factors affecting the 
losses are also considered and deactivated. A turn-on 
loss model is essentially freewheeling diode related 
and the same type of diode used in practice should be 
tested in pair with IGBT. The parasitic parameters of 
the circuit layout are analyzed and minimized in the 
system and should be consistent for each device under 
test (Shen et al., 2006a). 

A discrete non-punch-through (NPT) IGBT 
rated at 1200 V/40 A was selected as the switching 
loss measuring and modeling candidate. For better 
description of the loss characteristics, parameters of 
the switching loss measurements are recommended to 
be distributed evenly over the complete operating 
range. An example is shown in Table 1. The total 
number of measured points is thus 2160 (N=5×4×6× 
6×3=2160) and the sample sets for loss modeling can 
be selected from among them. 

 
 
 
 
 
 
 
 
 

3.2  Neural network model building 

With their strong ability in measuring switching 
loss, models can be made and verified using the 
abundance of samples. Data processing and model 
building were carried out by Matlab, but numerous 
other software tools are also available. 

3.2.1  Sample selection and model error definition 

To obtain enough accuracy, all 2160 test points 
were used to build the initial model (actually, the 
sample scale can be very flexible, as shown later). 
First of all, the selected data are normalized into the 
region of [−1, 1] to avoid supersaturation. The total 
composite relative error is used to evaluate the accu-
racy of the model (later referred to as the ‘model 
error’) as 
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Table 1  Test conditions for modeling candidate IGBT 

Switching parameter Test points 
Collector current, I (A) 5, 10, 20, 30, 40 
DC link voltage, Vcc (V) 200, 400, 600, 800 
Junction temperature, Tj (°C) 25, 50, 75, 100, 125, 150
Gate resistance, Rg (Ω) 5.1, 10, 20, 30, 39, 51 
Gate drive voltage, Vg (V) 15, 17, 19 
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Fig. 2  Measured switching waveforms 

(a) Turn-on detail and interval definition; (b) Turn-off detail 
and interval definition 
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where Em is the measured loss value, Ec is the value 
calculated using the model, and n is the sample 
number used.  

3.2.2  Definition of key parameters in the neural net-
work model 

Generally, three key factors are very important 
to the performance of feed forward neural network 
modeling: the number of hidden neurons, the ex-
pected error, and the training algorithm. They are 
determined by a lot of trial and error, making use of 
existing theory and experience. 

1. Number of neurons in the hidden layer 
In this specified modeling, 1 loss (on or off) is 

decided by 5 factors (voltage, current, etc.), making 5 
input neurons and 1 output neuron in the three-layer 
neural network, with the neuron number N of the 
hidden layer to be determined. An excessive number 
of neurons lead to excessive calculation with no fur-
ther accuracy gain while an insufficient number of 
neurons result in longer training time, larger model 
errors, or even convergence problems. A moderate 
number of hidden neurons are desirable. There are 
empirical equations that can be used to find the suit-
able number of hidden neurons by using input or 
output numbers, but no theoretical proof is available. 
In practice the number of hidden neurons can be ob-
tained by a trial-and-error method, starting from an 
initial number obtained by the above equation, and 
then observing the performance after increasing or 
decreasing the number. Or in networks with minor 
scales (such as this case), a single digit number of 
neurons can be selected and increased until a change 
is seen. Such a process is shown in Table 2 in which a 
cost-error product valley is found at an N of 20.  

2. Values of expected errors 
Mean square absolute errors between real sam-

ple data and output data after each training are 
adopted as the training effect index in the feed for-
ward ANN modeling module in Matlab. Here the 
threshold is referred to as the ‘expected error’. Clearly, 
the smaller the error, the better will be the model’s 
accuracy, which is related mainly to increasing the 
number of hidden neurons and training times. How-
ever, too rough an expected error would even stop the 
training before convergence is reached. So a com-
promise here is also necessary. Several examples are 
shown in Table 3. The threshold selection could be 

different case by case, according to the change in the 
model error gradient in response to training. An ex-
pected error of 2E-5 was used in the proposed model 
training, where a sharp increase in training times 
would have been found if a lower value had been 
adopted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Training algorithms 
Different training algorithms can perform quite 

differently in ANN modeling. Frequently used train-
ing algorithms were tested in the same network  
(Table 4).  

 
 
 
 
 
 
 
 
 

The Levenberg-Marquardt (LM) algorithm in-
volved much less training time but gave acceptable 
accuracy while some other algorithms even failed in 
this case. We have found this result in most of our 
practical experience of IGBT switching loss modeling; 
thus, only LM was used as the training algorithm for 
this study. 

Table 2  The influence of the number of hidden-layer 
neurons on training times and the model error 

Number of hidden neurons Epochs* Err (%) 
15 238 2.64 
18 269 2.33 
20   44 2.43 
22 160 3.19 
25 167 2.73 

* Training times. Cost-error product valley was found at 20 hid-
den neurons 

Table 3  The influence of the value of the expected error 
on training times and the model error 

Expected error Epochs* Err (%) 
1.6×10−5 312 2.89 

2×10−5   44 2.43 
3×10−5   32 3.20 
4×10−5   26 3.38 

* Training times. The expected error of 2×10−5 was used in the 
proposed model training 

Table 4  The influence of the training algorithm 

Training algorithm Expected error Epochs* Err (%)
LM 2×10−5     44 2.43
Basic gradient descent 0.017 1793 >100
Adaptive learning rate 0.002 3000 43.37
Modification of the LM 

training algorithm 0.035   640 2.11

LM: Levenberg-Marquardt. * Training times. The boldface indicates 
that LM is the best training algorithm 
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4  Model implementation and results 
 
The feed forward neural network models of 

turn-on and turn-off losses were built although only 
the turn-on loss model is shown as an example. The 
model was constructed with three layers, i.e., an input 
layer with 5 nodes, an output layer with 1, and a hid-
den layer with 20. The transfer function between the 
input and hidden layers is tan-sigmoid (a saturated 
tangent type function in Matlab with an ‘S’ shaped 
curve) and between the hidden and output layers is 
purely linear. The learning function is trainlm, a term 
in Matlab for the LM algorithm. 

The expected error vs. training times of the 
neural network modeling is shown in Fig. 3a. After 44 
epochs (training times) a target expected error of 2E-5 
is reached. Fig. 3b shows the perfect regression curve 
(A=T) and the best linear fit curve for training, where 
A represents the actual output values of neural net-
works, T the target output values, and R the related 
coefficient between the target output and the net-
work’s output. The two curves almost overlap, im-
plying the excellent performance of the model. 

The mathematical description of the model is 
given as 
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where Win is the input weight matrix, bin represents 
the input bias vector, Wout represents the output layer 
weight matrix, and bout is the output layer bias vector. 
P is the input vector (including I, U, T, Rg, and Ug). 
The Win, bin, and Wout used in this implementation are 
given below, and bout=0.7284. 
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Fig. 3  Artificial neural network model training 
(a) Expected error versus training times (performance is 
1.98211E-005, and the goal is 2E-005); (b) Training per-
formance analysis (best linear fit: A=RT+(3.08E-007), R=1)

0 0.002 0.004 0.006 0.008 0.0100

0.002

0.004

0.006

0.008

0.010

Target output, T 
A

ct
ua

l o
ut

pu
t, 

A

Data points 
Best linear fit 
A=T 

(b)

(a)

0 10 20 30 40

1E-4

1E-2

1E0 

Epoch No. 

E
xp

ec
te

d 
er

ro
r 

Training 
Goal 



Deng et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2010 11(6):435-443 441

The relative errors of the turn-on loss model are 
shown in Fig. 4. Most of the relative errors of the data 
points are controlled to lie within ±10%, and most of 
those beyond ±10% are located in the low-voltage 
low-current range, which is of little practical signifi-
cance. The total composite relative error of this model 
is 3.6%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In contrast tests for the same IGBT, operating 

points other than those used by the model training 
were also measured and compared with predictions 
from the model. In a case with 16 measured data not 
embodied by the training dataset and evenly located 
in the switching voltage and current space, the largest 
relative error of this model on each individual point 
was only 5.67%.  

 
 

5  Model comparison 
 

In contrast to the ANN models, two conventional 
math models for IGBT switching loss were also tested: 
a power function method (referred to here as Model-1) 
and a polynomial-power function combination 
(Model-2). 

 
 
 
 

 
 
 
 

The power function model is expressed as  
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where Ubase=600 V, Tbase=10 °C, Rgbase=30 Ω, Ugbase= 
17 V and a, b, c, d, e, f are the coefficients to be 
identified (Blaabjerg et al., 1996). 

Model-2 is based on both polynomial and power 
functions (Cavalcanti et al., 2003), as follows: 
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where a, b, …, q, r are the coefficients to be identified.  

The switching loss model based on neural net-
work is referred to as Model-3. 

The relative errors of the three models when 
trained by different numbers of measured sample data 
points, are listed in Table 5. 

A totally different type of IGBT rated in 600 V/ 
30 A was also tested and modeled as an additional 
verification. The measurement and modeling results 
are shown in Table 6. 

The proposed Model-3 had the highest accuracy 
over a wide range of sample scales. It improves faster 
in response to increasing amounts of training data 
while the other two methods change little or even 
deteriorate. Taking the modeling cost into considera-
tion, Model-1 certainly uses the least resources with  
 

 
 
 
 
 
 
 

Table 5  Comparison of model accuracy for a 1200 V/40 A IGBT for different numbers of test-points 

ERRoff (%) ERRon (%) 
Model 

2160 1296 648 486 243 2160 1296 648 486 243 
Model-1 12.1 13.3 12.4 12.3 12.6 14.5 15.0 15.3 16.0 18.1 
Model-2   9.1   9.3   9.2   9.4 16.1 12.6 13.4 14.2 15.5 24.4 
Model-3   5.7   7.8   8.9 10.4 11.6   3.6   7.8   7.4   8.6   6.6 

Model-1: power function method; Model-2: polynomial-power function combination; Model-3: switching loss model based on neural network 

Fig. 4  The relative error in (a) curve and (b) dots of the 
ANN turn-on loss model (N=2160) 
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only 6 coefficients waiting for fitting. Model-2 has 18 
coefficients and can be slow, taking more than 10 min 
for our system (CPU AMD Sempron 2200+, RAM 
768 MB) to finish, while Model-1 takes only several 
seconds. Model-3 is moderate. The model training 
calculation can be quite fast: despite having many 
more coefficients under estimation than in Model-2, it 
takes only 1 or 2 min to complete, which is much 
quicker than Model-2. This is because of the intrinsic 
advantages of the fast learning gradient in ANN. 

 
 

6  Discussion 
 

The proposed ANN modeling method displays 
superiorities over the conventional empirical models 
including higher accuracy in the case of similar av-
erage modeling cost (data number and calculation 
consumption). However, it has disadvantages in cer-
tain aspects. First of all, the lack of a theoretical basis 
may necessitate a lot of trial-and-error work and a 
reliance on experience. Therefore, we cannot claim 
that our model is an optimized ANN and we can ex-
pect that better ANN structures and algorithms will be 
developed. ANN models usually perform quite well 
but when the number of training datasets is smaller 
than the number of coefficients under identification 
(here it is 141), the network may have more than one 
result in varied training, which leads to longer train-
ing time and reduced accuracy. In the extreme, if the 
number of sample datasets is very small, such as only 
20 points, the ANN models will be disabled by the 
huge errors while the compared models will seem 
better but will also show deterioration and unac-
ceptable errors. The performance of ANN models 
decays faster once the sample scale declines beyond a 
threshold. However, these extreme cases are of little 
significance in practice because no one would like to 
use such inadequate sample data. 

 
 
 
 
 
 
 
 

7  Conclusions 
 

For the first time, we have introduced artificial 
neural network technology into semiconductor power 
device switching loss modeling. The construction of 
ANN switching loss models for power IGBTs is de-
scribed in comparison with two kinds of curve-fitting 
models. Our results suggest that the neural network 
method obtains higher accuracy than the conventional 
math models, as long as the training data are sufficient. 
It is feasible for ANN models to calculate and predict 
the switching losses of power switching devices by 
proper model building, and the new method can 
achieve short training time and good calculation ef-
ficiency. Measured data from a power device test 
bench and corresponding calculated modeling results 
validate our conclusions. In future research, device 
loss measurement from a practical power converter is 
expected to confirm and improve the proposed mod-
eling method. 
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