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Abstract: Hyperspectral imagery generally contains a very large amount of data due to hundreds of spectral bands.
Band selection is often applied firstly to reduce computational cost and facilitate subsequent tasks such as land-cover
classification and higher level image analysis. In this paper, we propose a new band selection algorithm using
sparse nonnegative matrix factorization (sparse NMF). Though acting as a clustering method for band selection,
sparse NMF need not consider the distance metric between different spectral bands, which is often the key step for
most common clustering-based band selection methods. By imposing sparsity on the coefficient matrix, the bands’
clustering assignments can be easily indicated through the largest entry in each column of the matrix. Experimental
results showed that sparse NMF provides considerable insight into the clustering-based band selection problem and
the selected bands are good for land-cover classification.
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1 Introduction

Hyperspectral sensors collect imagery simulta-
neously in hundreds of narrow and continuous spec-
tral bands, with a much finer spectral resolution
(e.g., 0.01 µm) compared to traditional multispec-
tral techniques. As a result, the three-dimensional
(3D) image cube obtained usually contains a large
amount of information for computer processing, with
the third dimension specifying the spectral bands. It
is often time consuming to process these high dimen-
sional data in tasks like land-cover classification or
other high level image analysis if all spectral bands
are included. Moreover, due to the high correlation
between the contiguously spaced spectral bands, re-
dundancies that do not contribute to the model’s
discriminative power should also be removed. Hence,
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band selection, or feature selection in hyperspectral
data, which is the procedure of selecting the relevant
wavelengths in the range of spectrum while keeping
the classification accuracy for land-cover discrimi-
nation or material identification tasks, is often an
essential preprocessing step for hyperspectral classi-
fication. The band selection in a hyperspectral data
classification problem should be aimed at improving
the classification accuracy of the classifier, making
the classification procedure more cost-effective and
faster, and achieving a better data compression for
the original hyperspectral data cube.

Much research has been done on hyperspec-
tral band selection during the past decade. Cheng
et al. (2006) used the logistic regression model for
both band selection and classification, and per-
formed band selection with sequential forward se-
lection. Keshava (2004) developed a method called
‘band add-on’ that incrementally selects bands to
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increase the angular separation between two spec-
tra. Chang et al. (1999) presented an algorithm that
comprises band prioritization and band decorrela-
tion, and showed that the algorithm is very effective
in eliminating the insignificant bands. Wang and
Chang (2007) gave a variable-number variable-band
selection method, which determines the number
of selected bands through hyperspectral signature’s
spectral shapes. Archibald and Fann (2007) used
a support vector machine (SVM) with embedded-
feature-selection (EFS) to achieve a representative
subset of bands. Most of the above methods have
contributed to the band selection problem more or
less. However, none of these studies has been shown
to be a superior method, which can be independent
of any premise or hypothesis. Therefore, it may be
valuable to view the band selection problem from
a new perspective and experiment with new meth-
ods. An exceptional set of feature selection methods
are called feature construction methods (Guyon and
Elisseeff, 2003). Feature construction begins with
the careful consideration of appropriate data rep-
resentations. Performance is often enhanced with
features derived from the original input. There are
many feature construction methods, such as the ba-
sic linear transforms of the input features, including
principal component analysis (PCA) (Jolliffe, 2002),
independent component analysis (ICA) (Hyvärinen
and Oja, 2000), and Fisher linear discriminant anal-
ysis (LDA) (Fisher, 1936), and clustering methods.
Many of these methods are often related to feature
extraction concepts.

In this paper, we view the band selection prob-
lem as a feature construction problem. We use an
unsupervised clustering method for our task. Clus-
tering has been used for feature construction for a
fairly long time, and has also been experimented
for band selection in recent research (Martinez-Uso
et al., 2007). The main idea is to represent a group
of ‘similar’ features by a cluster center or representa-
tive exemplar (Qian et al., 2009), which often forms
an effective feature reduction in replacing the origi-
nal feature group. The most popular algorithms in-
clude k -means and hierarchical clustering. Martinez-
Uso et al. (2007) had proved the clustering method’s
high efficiency and pointed out the importance for se-
lecting suitable distance measures between different
bands. In this paper, we use the sparse nonnegative
matrix factorization (NMF) algorithm in Kim and

Park (2008) for band clustering. Though acting as
a clustering method for band selection, sparse NMF
need not consider distance measures between differ-
ent spectral bands, which is the key step for most
common clustering methods. By imposing sparsity
on the coefficient matrix, it easily indicates the clus-
tering membership through the largest entry in each
column of the matrix.

2 Sparse NMF for band selection

For simplicity, we describe the hyperspectral
data with the following notations. As shown in
Fig. 1, hyperspectral imagery is a 3D data cube with
the width and length corresponding to spatial dimen-
sions and the third dimension corresponding to the
spectral domain, which are denoted by M , N , and
L in sequence. R is the image cube with each band
Rl ∈ R

M×N being a gray-scale image matrix.

Image cube R

Rl

M

L

N

Fig. 1 The sketch map of hyperspectral imagery

2.1 Nonnegative matrix factorization

NMF was first proposed for finding part-based,
linear representations of nonnegative data (Lee and
Seung, 1999; 2001; Hoyer, 2004). It has been proved
useful for modeling nonnegative data such as images.
Given a set of data samples represented in a matrix
form, which has only nonnegative entries, NMF aims
to find a lower rank factor analysis while approximat-
ing the data matrix, with the factors also required
to be negative. Let us represent the input data ma-
trix with V ∈ R

m×n, where each column represents a
sample and each row represents a feature. For a given
integer k such that k < min{m,n}, NMF seeks to
find an approximate factorization V ≈ WHT into
nonnegative factors W ∈ R

m×k and H ∈ R
n×k.

The solving problem of W and H is illustrated
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as

min
W ,H

fk(W ,H) ≡ 1

2
‖ V −WHT ‖2F s.t. W ,H ≥ 0,

(1)
where the subscript k in fk denotes the desired low
rank k, W is often named the basis matrix, and H

is named the coefficient matrix.

2.2 NMF for clustering

The main purpose of most matrix factorization
type methods (e.g., PCA, ICA, and NMF) is to find
the latent and meaningful structure hiding in the
data, which could be much more effective than the
original data representation for the postprocessing
task such as classification or clustering, while the
goal of many clustering methods is to find a proto-
type for representing each cluster. Some researchers
have found that NMF can be interpreted as a cluster-
ing scheme through matrix operation techniques (Xu
et al., 2003; Ding et al., 2005; Shahnaz et al., 2006).
Kim and Park (2008) showed how k -means can be
formulated as NMF and built a connection with the
clustering method for NMF.

In the k -means algorithm, the objective function
to be minimized is the sum of squared Euclidean dis-
tances from each data sample to its cluster centroid.
With V = [v1,v2, · · · ,vn] ∈ R

m×n, the objective
function Jk for a given cluster number k can be writ-
ten as

Jk =

k∑

j=1

∑

vi∈Cj

‖ vi − cj ‖2=‖ V −CBT ‖2F, (2)

where C = [c1, c2, · · · , ck] ∈ R
m×k is the cluster

centroid matrix and cj is the cluster centroid of the
jth cluster, B ∈ R

n×k denotes clustering assign-
ment, and Bij = 1 if the ith data sample belongs to
the jth cluster. Define a diagonal matrix

D−1 = diag

{
1

|N1| ,
1

|N2| , · · · ,
1

|Nk|
}

∈ R
k×k, (3)

where |Nj | is the number of data samples in cluster
j. C is then written as C = V BD−1. Hence,

Jk =‖ V − V BD−1BT ‖2F, (4)

and now the k -means’ target is to seek the B that
minimizes Jk, where each row of B has only one 1,
with all remaining entries being zero. Given any two

diagonal matrices D1 and D2 that fulfill the con-
straint D−1 = D1D2, and representing F = BD1

and H = BD2, Eq. (4) can be rewritten as

min
F ,H

Jk =‖ V − V FHT ‖2F, (5)

where F and H have exactly one positive entry in
each row, with the remaining entries being zeros. If
we set W = V F , this objective function is similar to
NMF formulation as shown in Eq. (1). In k -means,
the factor W = V F is the centroid matrix and the
factor H has exactly one nonzero entry for each row.
Thus, the rows of H represent hard clustering results
of corresponding data samples. NMF relaxes these
constraints, and the basis vectors of NMF need not
be the centroids of the clusters, which could be more
flexible than hard clustering. This indicates that
each sample can be represented by only a few ba-
sis vectors through imposing the sparsity constraint
on H in NMF. When a basis vector is close to a
cluster center, samples belonging to that cluster can
be easily identified by the largest entry in H , which
corresponds to the basis vector’s contribution only.
Cluster assignment of samples can be determined in
this way.

2.3 Sparse NMF for band selection

There are two important points to be cleared
in the band selection scheme. The first is that the
hyperspectral data is a 3D image cube, which needs
to be preprocessed for applying sparse NMF. The
second point is when clusters by sparse NMF are
obtained, which bands should be chosen to represent
the clusters.

2.3.1 Data reformulation

To fulfill the needs of a sparse NMF scheme, we
must change the original 3D image and cube to a 2D
data matrix. Each band of the image can be reshaped
and viewed as a multivariate random variable vector
withM×N length. Each band of the vectoredRl can
be denoted as V (l, ·). Hence, the 3D hyperspectral
cube R ∈ R

L×M×N is reshaped to a 2D matrix V ∈
R

L×P , where P = M ×N .

2.3.2 Sparse NMF

The L1 norm penalty has been widely recog-
nized in recent years, and has been used successfully
for achieving sparse solutions (Tibshirani, 1996). By
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imposing the L1 norm constraint on rows of the H

factor, we can achieve the sparse H factor to indi-
cate the clustering membership. The formulation is
given below:

min
W ,H

1

2

[
‖ V −WHT ‖2F +η ‖ W ‖2F

+ β

n∑

j=1

‖ H(j, ·) ‖21
]

s.t. W ,H ≥ 0, (6)

where H(j, ·) is the jth row vector of H . Parameter
η > 0 controls the size of the entries of W to avoid a
very large value, which may cause unstable results,
and β > 0 controls the sparseness in rows of H . A
larger value of β means more sparsity. Small values
of β and η incline to better approximation results.
The sparse NMF objective function in Eq. (6) can be
solved by iterating the following nonnegativity con-
strained least square problems until the convergence
condition is fulfilled (Kim and Park, 2007):

min
H

∣∣∣∣

∣∣∣∣

(
W√
βe1×k

)
HT −

(
V

01×n

)∣∣∣∣

∣∣∣∣
2

F

s.t. H ≥ 0,

(7)
where e1×k ∈ R

1×k is a row vector having every
entry as one, and 01×n is a zero vector, and

min
W

∣∣∣∣

∣∣∣∣

(
H√
ηIk

)
WT −

(
V T

0k×m

)∣∣∣∣

∣∣∣∣
2

F

s.t. W ≥ 0, (8)

where Ik is an identity matrix of size k×k and 0k×m

is a zero matrix of size k ×m.

Through the sparsity, the matrix factorization
procedure has a new function of interpretability for
the generation process of data samples. It is obvi-
ous that sparsity on HT means that each sample is
represented by a small number of basis vectors as to
respective cluster centers. When a basis vector is
close to a cluster center, data samples in that cluster
can be identified easily. As a result, clustering assign-
ment can be determined by the largest entry of each
row in H . We can use an example to demonstrate
the clustering procedure. Here, we have a small data
matrix V ∈ R

2×5. The five samples are generated
from three different separated bivariate Gaussians.
The first two columns of V belong to the same clus-
ter, the third and fourth columns of V belong to
another cluster, and the fifth column of V is gener-

ated from the other cluster.
⎛

⎜⎜⎜⎜⎜⎝

9.3891 8.0281

7.8440 7.6814

5.0772 2.4629

2.5532 4.2337

2.5420 2.1794

⎞

⎟⎟⎟⎟⎟⎠

T

≈
(
0.0842 0 0.1022

0 0.0485 0.0988

)

W

·

V⎛

⎝
11.3023 0 29.1259 55.3683 0

0 0 0 0 32.7325

81.4755 76.8569 25.0516 0.9178 25.5586

⎞

⎠ .

HT

(9)

It is one of the sparse NMF results with parameters
k = 3, η = 9, β = 0.0001, and the correct cluster
assignments of data samples are explicitly indicated
by the largest entry of H .

2.3.3 Band selection scheme

As described in Section 2.3.2, by imposing the
sparsity on the H factor, the sparse coefficient factor
could indicate the clustering membership. This band
selection scheme is as illustrated in Algorithm 1.

Algorithm 1 Band selection scheme with sparse
nonnegative matrix factorization
Input: the hyperspectral image cube
Output: the selected bands indexes
1: Data reformulation: the 3D hyperspectral cube R ∈

R
L×M×N is reshaped to a 2D matrix V ∈ R

L×P ,
where P = M ×N .

2: Sparse nonnegative data matrix factorization: sub-
stitute V in the above step back to Eqs. (1) and (6)
for V . Use Eqs. (7) and (8) to solve Eq. (6).

3: Band selection based on the sparse matrix factor
H: each band of data V (l, ·) can be viewed as a
sparse linear combination of the basis vectors in W ,
and matrix H is the sparse coefficient matrix, which
determines the cluster assignments for each band.
Find and save the band having the largest cluster
indicator entry in each cluster.

After sparse NMF clustering on the reshaped
data matrix, a specific spectral band (e.g., the lth
band in the hyperspectral cube) belongs to the clus-
ter by the largest entry of its linear representation
coefficients corresponding to the lth row of the H

factor matrix. For the band selection goal, we need
to choose a suitable band from each cluster and the
band can represent its cluster well for the subsequent
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task such as classification. There are some ways to
solve this problem, such as randomly choosing band
or rearranging the bands in a cluster by some dis-
tance metrics for choosing. In our algorithm, we use
the bands that have the largest indicator entries in
their own clusters as the selected band subsets. This
strategy is reasonable, as the clustering results of
sparse NMF have been considered to be a soft clus-
tering scheme, and we just choose the most confident
band to represent its cluster.

3 Experiments and results

3.1 Dataset description and experimental
setup

A real hyperspectral dataset was used in our ex-
periments. The dataset is a section of the subscene
taken over Washington D.C. mall (1280× 307 pixels,
210 bands, and 7 land-cover classes) by the hyper-
spectral digital imagery collection experiment (HY-
DICE) sensor (Neher and Srivastava, 2005). Fig. 2
shows the 80th band of the data. It has been widely
accepted that, because of atmospheric water absorp-
tion, a total of 19 channels can be identified as noisy
(1, 108–111, 143–153, 208–210) and safely removed
as a preprocessing step.

The subsequent experimental analysis was or-
ganized for one main consideration. It aims at an-
alyzing the effectiveness of selected bands for the
classification task. Through changing the cluster
number parameter k, different selected band subsets
are evaluated. This part focuses on comparing the
sparse NMF method with relevant techniques from
the recent literature using different classifiers. The
experiments have to be well designed for this consid-
eration in view of an objective reflection of the prob-
lem. Therefore, in our experiments, we set k from
1 to 20, with an increment of 1. For each k, sparse
NMF was experimented 50 times with corresponding
classification tasks for analyzing the average perfor-
mance. There are two parameters to be determined
in sparse NMF. In the experiment, η was estimated
by the largest entry of the input matrix A. The pa-
rameter β was used to control the degree of sparsity.
The general behavior of sparse NMF was not very
sensitive to β; however, too large β values might
lead to worse approximation. In the experiment, we
used β = 0.01.

Fig. 2 Washington D.C. mall HYDICE dataset, band
80

3.2 Experiment result: classification accuracy
of selected subsets of bands

To assess the performance of sparse NMF re-
garding recent relevant band selection techniques, a
comparison study was carried out on sparse NMF
and three other dimensionality reduction meth-
ods, i.e., maximum-variance principal component
analysis (MVPCA), k -means, and affinity propaga-
tion (AP). MVPCA is a joint band-prioritization
and band-decorrelation approach to band selection,
which was introduced in Chang et al. (1999) for hy-
perspectral image classification and was also used in
some comparative works for band selection. The k -
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means algorithm is a well-known clustering method
for cluster analysis; it aims to partition n samples
into k clusters in which each sample belongs to the
cluster with the nearest mean. In our band selection
scheme, we choose the nearest band to each of the k
clusters’ means to represent its cluster. AP is a new
clustering algorithm which operates by simultane-
ously considering all data points as potential cluster
centers (called ‘exemplars’) and exchanging message
between data points until a good set of exemplars
and clusters emerges. AP has been used for band
selection and proved to be efficient in classification
tasks (Qian et al., 2009). A comparison of classifi-
cation accuracies with different numbers of selected
bands between the above four band selection meth-
ods was provided, as well as an assessment of these
band subsets’ effectiveness for representation in the
classification test with two different types of classi-
fiers, SVM and K-nearest neighbor (KNN). The two
classifiers were used to compare the significance of
the subsets of selected image bands that are obtained
when using different classification schemes. For the
evaluation of the selected bands’ effectiveness in clas-
sification tasks, we used all of the original bands as
a baseline for comparison. During classification, we
randomly chose 6000 samples from each class. Even-
tually, a set of 3500 training samples (500 from each
class for learning the classifier) and a set of 38 500
test samples (5500 from each class for assessing the
accuracy) were obtained.

KNN is a method for classifying objects based
on closest training examples in the feature space.
It is amongst the simplest of all machine learning
algorithms: an object is classified by a majority
vote of its neighbors, with the object being assigned
to the class most common amongst its k nearest
neighbors. The best choice of k depends upon the
data; in general, larger values of k reduce the ef-
fect of noise on the classification, but they make
boundaries between classes less distinct. A good
k can be selected by various heuristic techniques,
for example, cross-validation. In our experiment,
as a matter of experience, we chose k = 5. Re-
cently, much attention has been put on SVM for
the classification of hyperspectral data (Bazi and
Melgani, 2006; Munoz-Mari et al., 2007). SVM
seeks a high dimensional hyperplane to maximize
the margin between two different classes of sam-
ples. SVM usually provides high classification ac-

curacies and very good generalization capabilities;
it involves only a few control parameters for tun-
ing and choosing. In our experiment, we used the
LIBSVM library (Chang and Lin, 2001). The opti-
mal parameters of SVM (radial basis function kernel)
were obtained by 10-fold cross validation. The crit-
ical parameters (C, γ) were searched on a grid dur-
ing cross validation. Pairs of (C, γ) were tried and
the one with the best cross validation accuracy was
picked. We tried exponentially growing sequences of
C and γ to identify good parameters: in experiment,
C = 2−5, 2−4, . . . , 210, γ = 2−10, 2−9, . . . , 25. Figs. 3
and 4 show the classification results.
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Fig. 3 Classification performance of selected band
subsets (KNN5) for the four band selection methods.
The all original bands classification result is also in-
cluded for comparison
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Fig. 4 Classification performance of selected band
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The all original bands classification result is also in-
cluded for comparison

As illustrated in Figs. 3 and 4, it seems that
MVPCA gave weaker results compared with the
other three methods. The k -means and AP seemed
to perform similarly well often and gave very good re-
sults. Only when the cluster number was small, was
k -means a little superior to AP in classification accu-
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racy results. The sparse NMF performed very well in
band selection, and obtained high classification accu-
racies which are very close to the accuracy baseline
using all original bands. The classification results
of the above experiments have proved that sparse
NMF performs very well on band selection and data
compression for hyperspectral data. Though in our
experiments, the data dimension had been largely
decreased, there were still very strong classification
results, which means that the selected band subsets
are very representative. It is interesting to investi-
gate the obtained bases by sparse NMF when clas-
sification results are very good. The few nonzero
and non-maximal entries in the coefficients can also
be helpful to explain the relationship between bases
and bands in the same cluster. The main draw-
back of sparse NMF is that the sparse NMF does not
have a unique solution theoretically. Here, we exper-
imented the sparse NMF 50 times for each data set,
and used the mean of performance for evaluation. To
our knowledge, most of the sparse NMF clustering
procedures reached the same results because of the
imposed sparsity constraints. However, it is still an
issue to be considered for researchers.

4 Conclusions

In this paper, we present a band selection algo-
rithm using sparse NMF for the band selection prob-
lem of hyperspectral imagery. Different from many of
the clustering based band selection methods, sparse
NMF does not need considerations on the distance
metric between bands. By imposing sparsity on the
coefficient matrix, it indicates the clustering mem-
bership through the largest entry in each column
of the matrix. Experimental results show that the
band subsets selected by sparse NMF have very good
performance for real applications like land cover clas-
sification. In future work, nonnegative tensor factor-
ization with sparse constraints will be exploited; it
may be a superior alternative because of its avoiding
ruining the spatial structure of the band image with
data reshaping.
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