
Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 730

Applying gravitational search algorithm in the QoS-based
Web service selection problem#

Bahareh ZIBANEZHAD†1, Kamran ZAMANIFAR†‡1, Razieh Sadat SADJADY1, Yousef RASTEGARI2

(1Computer Engineering Department, Islamic Azad University, Najafabad Branch, Isfahan, Iran)
(2Electrical and Computer Engineering Department, Shahid Behehsti University, Tehran, Iran)

†E-mail: b.zibanezhad@gmail.com; zamanifar@eng.ui.ac.ir
Received Sept. 2, 2010; Revision accepted Apr. 2, 2011; Crosschecked July 29, 2011

Abstract: With the growing use of service-oriented architecture for designing next generation software systems, the service
composition problem and its execution complexity have become even more important in responding to different user requests. The
gravitational search algorithm is one of the latest heuristic algorithms. It has a number of distinguishing features, such as rapid
convergence, lower memory usage, and the use of particular parameters, for instance, the distance between the solutions. In this
paper, we propose a model for the optimization of the Web service composition problem based on qualitative measures and the
gravitational search algorithm. To determine the efficacy of this proposed model we solve the problem with the particle swarm
optimization algorithm for comparison. Simulation results show that the gravitational search algorithm has a high potential and
substantial efficiency in finding the best combination of Web services.

Key words: Web service composition, Gravitational search algorithm (GSA), Quality of service (QoS), Ontology engineering
doi:10.1631/jzus.C1000305 Document code: A CLC number: TP311

1 Introduction

With the expansion of Internet services, the

demand for business-to-business communication and
cooperation has increased. Consequently, new forms
of technology such as Web services have come into
being. The main focus related to Web services is the
ability to establish harmony between distributed,
non-centralized, and heterogeneous usage. Consid-
ering the rapid increase of Web users and the growing
complexity of their demands, simple atomic services
are inadequate; the combination of services to render
possible complex services is a necessity (Staab et al.,
2003; Maximilien and Singh, 2004; Leutenmayr,
2007). However, due to a large number of providers,
various services are offered which are, in terms of the

functions they carry out, the same, and they can be
substituted for one another. These services are, of
course, different from one another in non-functional
properties such as response time, availability,
throughput, security, reliability, and execution cost
(Benveniste, 2008; Chen and Wang, 2009), and are
therefore different in terms of efficiency. Since the
services should be chosen in such a way as to enable
the best possible quality for the overall combination,
the issue of Web service composition leads to the
quality-of-service (QoS) engineering problem. It can
be said that qualitative measures reflect user needs
and satisfaction. Therefore, the response time, for
instance, may not be very important for a user, but the
service cost may be so, or vice versa (Ismail et al.,
2009); or a user may want to determine a specific
price for the cost measure. Since solving this type of
problem through the ordinary method falls within the
NP-hard problem category and is very time consum-
ing and costly, it can be modeled as an optimization
problem and answered using the heuristic search

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author
A preliminary version was presented at the International Conference
on Innovations in Information Technology, Dec. 15–17, 2009, Al-Ain,
United Arab Emirates
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 731

algorithms (Chen and Wang, 2007; Liu et al., 2009).
This study deals with the gravitational search algo-
rithm (GSA) (Rashedi et al., 2009), a type of heuristic
algorithm, as the answer to finding the best Web ser-
vices composition on the premise of user priorities
and constraints.

2 Combination of Web services based on
qualitative measures

The Web service combination problem based on
qualitative measures can be explained by Fig. 1.

Different services with different purposes have

been published in Universal Description, Discovery
and Integration (UDDIs) by service providers. These
services cannot respond to different aspects of user
requests; this is why we should think about the service
composition problem. The main challenges of service
composition consist of the following steps:

1. Converting requests to a machine under-
standable model;

2. Discovering suitable candidate services for
each task of the input model;

3. Selecting the best path between candidate
services based on required user QoS criteria;

4. Converting the solution (made in step 3) to an
executable language such as business process execu-
tion language (BPEL).

In the above process, the system receives the
importance of each QoS parameter from the user in
step 1. The system may find different models which
are responsible to user requests in step 3, but it will
continue with the best one based on QoS (obtained in
step 1) to step 4. Finally, using a BPEL engine in step
4, the system executes the model and responds to the
request. Most Web services are described in Web
services description language (WSDL), which is

syntactic and extensible markup language (XML)
based. In recent years, OWL-S, with a new perspec-
tive on semantic issues, has been released. Fig. 2
shows different execution operators that are sup-
ported in BPEL language, and composition algo-
rithms should support them as well.

If we consider the composite Web service as a

combination of n atomic services defined as the vec-
tor S=(s1, s2, …, sn), according to Fig. 1, for every
atomic service si there is a group of candidate Web
services alike in terms of function, but different in
terms of qualitative parameters. The aim now is to
find the best combination of Web services with regard
to qualitative parameters. By combination we mean a
path which would guide us from the start point to the
end point (Fig. 1). Note that, for any task, only one of
the candidate services is used.

Much research has been done on the choice of
atomic services, some of which is related to service-
combination in the design time and some to the
atomic combination of services during execution (Li
et al., 2009). Various algorithms have been used for
both purposes. For example, Menasce (2004) studied
issues such as the way (between time intervals or by
tool) in which qualitative measures should be esti-
mated, who (service providers or independent and

Fig. 1 Web service combination

S1,1 S2,1 Sn,1

S1,2 Sn,2

S1,l Sn,l

S2,2

S2,l

Q1,1 Q2,1 Qn,1

Q1,2

Q2,lQ1,l Qn,l

Q2,2 Qn,2
…
.

…
.

…
.

Start End

Fig. 2 Some operators supported in BPEL
(a) Sequence; (b) Parallel; (c) Selection; (d) Loop

A

B

PC P(C) SC

PA

PB IC

SA

SB

A

B

PC
SC

PA

PB IC

SA

SB

C(X) IAIB

A BPC SC

PA PBSA SB
IA IB

IC C

A

B

PC PC SC

PA

PB IC

SA

SB

IA IB

(a)

(b)

(c)

(d)

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 732

intelligent agents) should estimate the measures, and
where (on network edges or the user side) these
measures should be estimated in the access point (the
location of access) of Web services. Zeng et al. (2003)
made the presentation of qualitative measures and
solution finding by linear programming for choosing
the best services combination. Maximilien and Singh
(2004) and Lecue and Mehandjiev (2009) enhanced
the dynamic choice of services by presenting a QoS
ontology. Liu et al. (2007) achieved the combination
of Web services using the spanning tree algorithm,
which enables an optimum choice in path-finding
between Web services and consequently the reduction
of response time.

In Claro et al. (2005), Yu and Lin (2005), and Ai
et al. (2008), local and global strategies have been
used for the best combination choice. This algorithm
(Ai et al., 2008) first eliminates combinations with a
low QoS (local strategy), and then from the remaining
combinations, chooses the best one in terms of
qualitative measures using the knapsack problem 0-1
algorithm (global strategy). Chen and Wang (2007)
used the particle swarm optimization (PSO) algorithm
to find best service combination. PSO, as an optimi-
zation algorithm, has certain advantages such as
simple implementation and rapid convergence.

Semantic Web concepts have been applied in the
service composition problem in recent years (Lecue,
2009; Talantikite et al., 2009). Talantikite et al. (2009)
presented a proper semantic framework for QoS-
based selection and discovery. Applying Web service
semantic annotation, constructing a semantic network
of UDDI Web services, and using a customized
backward changing algorithm are some of the major
innovations presented in Talantikite et al. (2009).
Annotation process was achieved by using an ontol-
ogy related to each Web service.

3 Algorithm presentation

3.1 Gravitational search algorithm

GSA is a heuristic type algorithm derived from
the concepts of ‘mass’ and ‘gravitational force’ and
the simulation of Newton’s laws. The system space is
a multi-dimensional coordinate system in the space
defined by the problem: each point of the space is an
answer to the problem.

If the system is considered as a collection of num

masses, the position of each mass is a space point and
a probable answer to the problem. The position of
dimension d from mass i is shown by :d

iX

1(,..., ,...,).d n
i i i iX X X=X (1)

In this system, at time t a force ()d
ijF t is exerted

on each mass i from mass j in the direction of di-
mension d. The amount of this force is calculated
according to Eq. (2). Mgj is the gravitational mass of
mass j, G(t) is the gravitational constant at time t, ε is
a very small number, and Rij is the distance between
masses i and j. The Euclidian distance has been used.

() Mg ()
(() ()),

()
jd d d

ij j i
ij

G t t
F X t X t

R t ε
⋅

= −
+

 (2)

2
() () () .ij i jR t t t= −X X (3)

The force exerted on mass i in the direction of

dimension d at time t is, according to Eq. (4), equal to
the sum of all forces exerted on the mass from the
other masses of the system.

num

1,
() (),d d

i j ij
j j i

F t r F t
= ≠

= ∑ (4)

where rj is a uniform random variable in the interval
[0, 1], used to ensure a random search.

According to Newton’s laws of gravitation and
motion, the acceleration of any mass in the direction
of dimension d is equal to the force exerted on the
mass in that direction divided by the inertia mass:

()
() ,

Mi ()

d
d i
i

i

F t
a t

t
= (5)

where ai

d(t) is the acceleration of mass i in the direc-
tion of dimension d at time t and Mii is the inertia
mass of mass i.

The velocity of any mass is equal to the sum of
an index of the velocity of the mass and its accelera-
tion, as defined in Eq. (6). The new position of di-
mension d in relation to mass i is calculated using
Eq. (7).

(1) () (),d d d
i i i iV t V t tr a+ ⋅= + (6)

(1) () (1),d d d
i i iX t X t V t+ = + + (7)

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 733

where ri is a uniform random variable in the interval
[0, 1], used to ensure a random search.

To determine the gravitational index, Eq. (8) is
used:

/() ,αt TG t β−= (8)

where the gravitational constant decreases exponen-
tially. α is equal to 20 and β shows linear increase
ranging from one to three.

To determine the masses, according to Eqs. (9)
and (10), the mass target function is used such that the
masses with a higher degree of fitness are accorded a
higher quality of mass.

fit () worst()Mg ,
best() worst()

i
i

t t
t t

−
=

−
 (9)

num

1

MgMi
Mg

i
i

jj=

=
∑

 (10)

where fiti(t) represents the degree of fitness in mass i
at time t and num is the number of population. In
problems involving maximization, Eqs. (11) and (12)
can be used to attain the best and the worst variables:

()Best() max fit () ,jt t= (11)

()Worst() min fit () .jt t= (12)

Therefore, the GSA algorithm stages are:
1. Determining the system environment;
2. Initial quantity allocation;
3. Mass evaluation;
4. Updating the parameters G, best, worst, Mi,

and Mg;
5. Calculating the amount of force exerted on

each mass;
6. Calculating the acceleration and velocity of

each mass;
7. Updating the position of masses;
8. Ordering: if the condition of termination is not

met, go to step 2;
9. End.

3.2 Particle swarm optimization algorithm

The PSO algorithm is a probability technique of
optimization that works on the basis of population
(Maximilien and Singh, 2004), initially derived from
the group behavior of fish or birds in search of food.
In the PSO algorithm, each solution, which is termed

a ‘particle’, is equivalent to a bird in a flock. Each
particle has a certain degree of fitness which is de-
termined by a fitness function. The closer is a particle
to the target (e.g., food in the bird-flock model) in the
search space, the fitter is it deemed. Also, each parti-
cle has a velocity which is responsible for its guidance.
Each particle continues its movement in the problem
space pursuing the particles which are, in any present
condition, the best.

In the beginning, a number of particles (i.e., so-
lutions) are randomly created, and the aim is to find
the best solution by updating the generations. In each
step, each particle is updated with regard to two po-
sitions: one is the best position it has gained thus far
and is known and kept as pbest, which is the particle’s
best local position, and the other is the best position
attained by the swarm of particles thus far, which is
the best global position of the particles, shown as
gbest. After finding the best quantities, the velocity
and location of each particle are updated using

1 1 pbest

2 2 gbest

(() ())() ()

(() ()),

1

d d
i i

d d
i i

d d
i

V w V C r X X

C r X Xt t

t t t t= ⋅ + ⋅ ⋅ −

+ ⋅ ⋅ −

+

 (13)

(1) () (1),d d d
i i iX t X t V t+ = + + (14)

where Vi

d is the particle velocity and Xi
d is the present

location of the particle, each being an array with a
length equal to the problem dimensionality, r1 and r2
are two random numbers in [0, 1], and C1 and C2 are
learning factors. Usually C1 and C2 are supposed
equal and equal to 2 (i.e., C1=C2=2). The right-hand
side of Eq. (13) is composed of three parts: the first is
the present velocity of the particle and the second and
third parts relate to the change in velocity and the
change towards the best individual and collective
experience, respectively. Actually, the aim in the
combination of these two factors is to achieve a bal-
ance between local and global search. Accordingly,
the PSO algorithm stages are as follows:

1. Determining the system environment;
2. Initial quantity allocation;
3. Particle evaluation;
4. Particle velocity calculation;
5. Updating particle position;
6. Ordering: if the condition of termination is not

met, go to step 2;
7. End.

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 734

4 Finding the best QoS awareness combi-
nation from Web services

In this part we first design a fitness function and

present the concept of optimization and then propose
our models.

4.1 Designing the fitness function

A composite service is constituted by a number
of atomic services each with a specific duty. Consid-
ering the expansion of the Internet and the variety of
providers for any task ti, there are a number of can-
didate services similar in function, but different in
terms of qualitative measures. In the following for-
mula, Si shows a set of l services for task ti:

{ }1 2, ,..., .i i i ilS S S S= (15)

The integration of Web service quality vectors

yields matrix Q:

(), 1 , 1 , 1 ,k
ijQ i n j l k m= ≤ ≤ ≤ ≤ ≤ ≤Q (16)

where n is the number of tasks, l is the number of
candidate services ready to carry out any task, and m is
the number of qualitative measures for each service.

In matrix Q each line corresponds to a set of
candidate Web services and each Qij element with the
qualitative measures of service Sij; k shows the kth
QoS measure.

Some qualitative measures such as execution
time and cost are in inverse relationship with the
quality parameter (i.e., a higher level shows a lower
quality), whereas some measures such as reliability
and availability are in direct relationship with it (i.e., a
higher level in these measures shows a higher degree
of quality). Since we need a target function composed
of the above measures, we use Eq. (17) for the
measures with inverse relationship and Eq. (18) for
those with direct relationship as the functions for the
interval [0, 1].

1,

min ()
,

max () min ()
() max () min (),

max () min (),

k k
ij v iv

k k
v iv v iv

k k k
ij v iv v iv

k k
v iv v iv

Q Q
Q Q

V Q Q Q

Q Q

⎧ −
⎪

−⎪
⎪= ≠⎨
⎪
⎪
⎪ =⎩

 (17)

max ()
,

max () min ()
() max () min (),

1,
max () min ().

k k
v iv ij
k k

v iv v iv
k k k
ij v iv v iv

k k
v iv v iv

Q Q
Q Q

V Q Q Q

Q Q

⎧ −
⎪

−⎪
⎪= ≠⎨
⎪
⎪
⎪ =⎩

 (18)

The quality of the resulting composite service is

a determining factor for consumer satisfaction. Vari-
ous users may prefer different qualities. For instance,
one user may need minimum execution time and want
specific limits for cost and validity, whereas for an-
other user, cost may be more significant than execu-
tion time. Therefore, the aim is to determine the
qualitative measures of composite services based on
the user’s constraints and priorities. For this purpose,
a weight is allotted to each qualitative measure. The
amount is determined by the circumstances of the user.
As a result, with regard to Eqs. (17) and (18), the
target function is derived from

, 0 1, 1,k

ij k
k

ij k kV WF W W= ≤ ≤ =∑ (19)

where Wk is the qualitative measure weight deter-
mined by the user, k

ijV is the standardized form of

impact of the kth QoS criterion of the jth candidate
Web service for the ith task, and k

ijF is the standard-

ized form of impact of the kth QoS criterion of the jth
candidate Web service for the ith task, by considering
each criterion from the user’s point of view.

The standardized quality of the jth candidate
Web service of the ith task is calculated using

article .k
ij

k
ij F= ∑ (20)

Finally, by the help of article, the fitness of each

path is calculated. Our objective is finding a path with
the highest fitness value. Fitness values are calculated
in different cases based on the relation between Web
services in the path (operators used in the path). Thus,
Web services are divided into blocks based on their
related operators, and then the fitness value of each
block is calculated based on the composition operator
used. As an example, if Sequence is the operator used
among all Web services in the path, the fitness value
is calculated as

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 735

fitnesspath article ,ij= ∑ (21)

when candidate service j for task i is anticipated in the
path.

To compare the PSO and GSA algorithms, the
designed evaluation function has been used for both.

4.2 Optimum version of the algorithm

The concept of optimization is the same in PSO
and GSA algorithms and is defined as follows.

In the optimum version of GSA, only k fitter
masses in the population have the capability of ex-
erting force on the remainder of the masses. That is, in
each repetition of the algorithm, the force exerted on
any mass is equivalent to the overall sum of forces
exerted on it from the k fitter masses in the population.
Therefore, Eq. (4) is changed to

1
kbest,

(),() d
ij

j j i

d
i r F ttF

∈ ≠

⋅= ∑ (22)

where kbest represents the k fitter masses within the
population.

In our model, the optimum masses are solutions
that meet the global constraints set by users. For
example, a user may decide on a 1500 USD limit for
the overall cost of the chosen services. As mentioned
before, for any task ti, there is a set of candidate Web
services { }1 2, ,...,i i i ilS S S S= from which only one of
the services can be chosen. In the following, Xij shows
the choice of service Sij for the execution of task ti:

{ }
1

.1, 0,1
l

ij ij
j

X X
=

= ∈∑ (23)

Xij shows whether or not a Web service belongs to a
composition. Suppose the number of Web services in
Si is l. The user constraint is exercised over the
composite service according to

1 1
.

n l
k k

ij ij
i j

X Q Q
= =

≤∑∑ (24)

This constraint shows that the cost of the com-

posite service should not extend the fixed amount Qk.
Therefore, in each execution of the algorithm only
optimum masses (i.e., those that also answer global
constraints) influence each other.

In the PSO algorithm, also, only the particles that
answer users’ global constraints are given participa-
tion in any stage.

4.3 Hypothetical model for Web service combina-
tion based on qualitative measures and GSA

Algorithm details are given as the following.
1. Determining the system environment.
To solve the problem of Web service combina-

tion with GSA, it is necessary to define the system
environment beforehand. In our proposed model,
each mass is a problem solution defined as

1 2(, ,..., ,...,),j n

i i i i iX X X X=X (25)

where Xi
j (j=1, 2, …, n) is the service number used for

task j in path i and n shows the overall number of
tasks in a path. At this step, Article matrix elements
are calculated.

2. Initial quantity allocation.
To determine the initial population, we randomly

create a number of paths, i.e., a number of vectors that
will take us from the start point to the end point (Fig. 1).
Considering the fact that we are using the optimum
version of GSA, in this stage the paths that do not
answer the user’s global constraint are substituted
with new paths and the constraint is again reconsid-
ered for new paths. Therefore, at the end of this stage
all members of the population are optimal; that is,
they answer the user’s global constraint.

3. Mass evaluation.
In the proposed model, each mass is a path con-

sisting of some Web services. These Web services
may relate to each other based on different composi-
tion operators. The path is divided into blocks and in
each block the fitness value is calculated based on the
composition operator. Finally, the path fitness is
calculated.

4. Updating the parameters G, best, worst, Mi,
and Mg.

Using Eqs. (9) and (10) Mi and Mg are calcu-
lated for each mass. The path with the highest fitness
among the paths determined is chosen as the best and
that with the least fitness, as the worst. Since the dis-
crete version of this algorithm is used, the formula for
G(t) is reduced to a linear form:

() 2 ,tG t
T

= − (26)

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 736

where T represents the total number of iterations.
5. Calculation of force.
As mentioned in Section 3.1, to calculate the

force between two masses, Eq. (2) is used; for the
purpose of correlation between the equation and Web
service combination, the distance between two
masses i and j in dimension d is defined as

0, () (),
() ()

1, () (),

d d
j id d

j i d d
j i

X t X t
X t X t

X t X t
⎧ =⎪− = ⎨ ≠⎪⎩

 (27)

where d shows the path dimension or task d and may
be explicated as follows: since our aim is to calculate
the forces that masses exert on each other, in each
dimension (for the execution of each task), if the
service numbers of the two masses are the same,
which means they use the same service to carry out
that task and () ()d d

j iX t X t= , then 0=d
ijF and they

do not exert any force on one another. As a result, they
use the same service number as before to execute the
task. Otherwise, the two masses use different services
to execute the same task and must exert a force in
proportion to their Mg on each other.

In Eq. (3) which is used to calculate the amount
of force, Rij is the Euclidian distance between the two
masses, and in our model, it is a matrix in which the
rows and columns are equivalent to the number of
population members and each element of Rij, which is
different between the path of any row i and the path of
any column j, shows the number of services.

Therefore, to calculate the force existing be-
tween the two paths i and j for task d, if they use the
same service number, they will not exert any force on
each other; otherwise, they will exert a force equiva-
lent to a fraction of the number of different services.
By adding the forces present in dimension d, the
forces exerted on mass i in dimension d are calculated
using Eq. (4).

6. Calculating the acceleration and velocity of
masses.

Since masses exert force on one another, each
causes acceleration and brings about a change in the
velocity of the other. Using Eqs. (5) and (6) mass
acceleration and velocity in each dimension (each
task) can be calculated.

7. Updating the position of masses.
Any two masses exert force on each other, mu-

tually causing change in acceleration and velocity.

The mass with a higher degree of fitness, however,
exerts a stronger force on that with a lower degree.
For this reason, and also due to the fact that the
problem is defined for a discrete space, update the
mass position in each dimension by

()+ (+1) % +1, (+1) ,
(+1)=

(), (+1) .

d d d
i i id

i
d d
i i

X t V t l V t α
X t

X t V t α

⎧⎡ ⎤⎢ ⎥ ≥⎪ ⎣ ⎦⎣ ⎦⎨
<⎪⎩

(28)

The first rule is used for masses with a higher fitness
degree, and the second for those lower in terms of
fitness.

In other words, after calculating Vi
d(t+1), its

value is compared to α. If it is less than α, this means
the change in velocity is small and there is no need for
change in position (i.e., change in the number of the
services used); otherwise, the service number is added
to the calculated velocity and the result is divided by
the total number of candidate services and the re-
mainder of this division is added to one, and thus
another service is chosen randomly to be used for the
task. Based on experiment, the most suitable value for
α was set to be 0.5.

8. If the condition for termination is not met, go
to step 2. The condition for termination was consid-
ered as a specific number of repetitions, T.

9. End.
Fig. 3 gives the pseudo code of this algorithm,

which is an extension of the algorithm presented in
our previous work (Zibanezhad et al., 2009).

4.4 Hypothetical model for Web services combi-
nation based on qualitative measures and the PSO
algorithm

The first three stages of the PSO algorithm are
exactly the same as those of GSA. To calculate parti-
cle velocity we employ the following procedure.

Since the binary version of the PSO algorithm is
used, to calculate the particle velocity in dimension d,
Eq. (13) is used. According to the explanation given,
the first part of the right-hand side of Eq. (13) calcu-
lates an index of the velocity in the previous stage.
The second part calculates the difference between the
particle’s position and its best previously attained
position. As mentioned, index d of vector X shows the
number of the services used for task d. Thus, ac-
cording to Eq. (29):

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 737

INPUT: QoS_Matrix, Weight_Matrix, GlobalConstraints_
 Matrix, composite Web service structure
OUTPUT: Solution, the best path for creating the composite
 Web service

BEGIN
// generate the first population randomly (paths for creating
// the composite Web service).
Initialize ();

// examine global constraints for selected gifted people.
FOR total paths DO

LABEL 1: FOR each QoS measure DO
IF (the measure is direct AND

[path,]path
QoS_Matrix k >∑ global_constraint[]k)

OR (the measure is indirect AND

[path,]path
QoS_Matrix k <∑ global_constraint[]k)

THEN
Generate another random path and examine its
constraints again;

FI
OD

OD

// compute for each atomic service its total quality due to
// the Weight_Matrix which is determined by the user.

, 0 1, 1;k k
ij ij k k kF V W W W= ≤ ≤ =∑

For T times DO
// the fitness of each path is evaluated according to its
// operators (aggregation functions) and blocks.
// using Eqs. (9) and (10) to compute Mg and Mi for each path.
// using Eq. (2) to compute d

ijF for each pair of services.

IF (() ())d d
j iX t X t≠ THEN

()Mg ()
;

()
jd

ij
ij

G t t
F

R t ε
=

+

FI
// using Eqs. (4) and (5) to compute acceleration for each
// given dimension (task) of the path.

num

1,
()

() ;
Mi ()

d
j ijj j id

i
i

r F t
a t

t
= ≠=

∑

// using Eqs. (6) and (7) to compute velocity and new position
// for each given dimension (task) of the path.

IF ((1))d
iV t α+ ≥ THEN

(1) () (1) % 1;d d d
i i iX t X t V t l⎡ ⎤⎢ ⎥+ = + + +⎣ ⎦⎣ ⎦

ELSE
(1) ();d d

i iX t X t+ =
FI

// examine global constraints for selected gifted people;
// this step is similar to LABEL 1.
OD

END

Fig. 3 Pseudo code of the gravitational search algorithm

pbest
pbest

pbest

0, () (),
() ()

1, () (),

d d
i id d

i i d d
i i

X t X t
X t X t

X t X t
⎧ =⎪− = ⎨ ≠⎪⎩

 (29)

if, to execute task d of particle i, the service number of
its best previous location is used, then the second part
of the right-hand side of Eq. (13) will equal zero; if a
different service number is used, its velocity will be
increased in proportion to C1·rand().

The third part of the right-hand side of Eq. (13)
enables the calculation of the difference between the
particle position and the best overall position.
Therefore, according to Eq. (30):

gbest
gbest

gbest

0, () (),
() ()

1, () (),

d d
id d

i d d
i

X t X t
X t X t

X t X t
⎧ =⎪− = ⎨ ≠⎪⎩

 (30)

if the service number of the best global position is
used for the execution of task d of particle i, the third
part will equal zero; if a different service number is
used, its velocity will be increased in proportion to
C2·rand().

Updating particle position:
With regard to the velocity calculated in the

previous stage, we update the new position of the
particle in dimension d. For this purpose, Eq. (31) is
used. Its explication is the same as in GSA.

(1) () (1).d d d

i i iX t X t V t+ = + + (31)

5 Evaluation

This algorithm was implemented using a Pen-

tium IV computer with 3 GHz CPU and 1 GB memory,
a windows operating system with MATLAB software.
Note that finding global optimization quality is our
main objective and that inappropriate masses are
substituted with other masses randomly. The premise
of implementation is that the composite service is
constituted by n atomic services, each service having l
candidate services. m shows the qualitative parame-
ters that are, for this model, the following six measures:

1. Response time (ms): time taken to send a re-
quest and receive a response;

2. Availability (%): the ratio of the number
of successful invocations to the number of total
invocations;

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 738

3. Throughput (s−1): the total number of invoca-
tions for a given period of time;

4. Success ability (%): the ratio of the number of
responses to the number of request messages;

5. Reliability (%): the ratio of the number of
error messages to the number of total messages;

6. Latency (ms): time taken for the server to
process a given request.

Measures 1 and 6 are indirect measures and the
remainder, direct. For the quantity allocation of the
service qualitative parameters, a quality of Web ser-
vice (QWS) Internet dataset (Liu et al., 2007) was
used (Al-Masri and Mahmoud, 2007a; 2007b; 2008).
In this dataset, the degree of the qualitative parame-
ters of a set of services was measured. For utilization,
the similar services in terms of function were grouped
together.

In the following, num represents the population
size, l the number of candidate services for each task,
n the number of atomic services, and m the number of
qualitative measures.

Fig. 4 shows that, with the initial premise
num=10, l=10, n=10, and m=6, with an increase in the
number of algorithm repetitions, fitness increases
significantly. Since this algorithm is of the collective-
intellect type, with a higher number of program exe-
cutions and the passage of time, masses have a better
mutual impact on each other, and the problem moves
more quickly towards better fitness.

Fig. 5 shows that, with the premise num=10,
T=10, n=10, m=6, there is no specific relation be-
tween the change in the number of candidate services
and the fitness of the composite service. Considering
the present expansion of the Internet and the regular
increase of Web service providers, with regard to the
fact that this algorithm is unyielding to increase in the

number of candidate services, it is, consequently, an
efficient, practical algorithm.

Fig. 6 shows that, with the increase in the num-
ber of atomic services, the algorithm execution time
increases, which is normal. For additional informa-
tion concerning the functional features of GSA, the
PSO algorithm was simulated in a very similar way.
The reason for using the PSO algorithm for com-
parison is the inherent similarity between these two
algorithms: in both algorithms the searcher agents
that mutually affect each other play the main role. We
present a number of example results.

Fig. 7 shows that, in the simulation of the two
algorithms, with similar initial premises, an increase
in the number of algorithm repetitions results in GSA
moving much more quickly towards the convergence
point (i.e., finding the fitter composite Web service) in
comparison with the PSO algorithm. This is one of the
most important reasons for the superiority of GSA in
this case.

As can be seen in Fig. 7, since both algorithms
are of the collective-intellect type, a higher number of
program executions and the passage of time cause a
higher degree of mutual effect between the agents and

Fig. 6 Fitness change with increase in the number of
atomic services, with l=10, num=10, m=6, and T=80

5 10 15 20 25
9.0

9.1

9.2

9.3

9.4

Number of atomic services in composite service

Ti
m

e
(m

s)

Fig. 5 Fitness change with increase in the number of
candidate services, with num=10, T=10, n=10, and m=6

5 10 15 20 25
0.58

0.59

0.60

0.61

0.62

Number of candidate services in composite service

Fi
tn

es
s

Fig. 4 Fitness change with increase in the number of
algorithm repetitions, with num=10, l=10, n=10, and m=6

0 10 20 30 40 50 60 703.00
3.05
3.10
3.15
3.20
3.25
3.30
3.35
3.40

Number of iterations

Fi
tn

es
s

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 739

the movement of the problem towards the convergence
point and higher fitness. In this regard, however, GSA
is significantly better than PSO. Two of the most
important reasons for this superiority are: (1) In the
PSO algorithm, the direction of an agent is deter-
mined by calculating the best global position of all
agents and the best local position of that agent. In
GSA, the direction of agents is determined on the
basis of all forces exerted by all agents, which enables
a more speedy convergence, i.e., finding the fitter
combination in a shorter time. (2) In the PSO algo-
rithm, updating the location of masses occurs without
regard to the distance between the solutions, whereas
in GSA, the force parameter is in inverse relationship
with the distance between the solutions. Therefore,
the difference between solutions (the number of dif-
ferent services in two compositions) is also effective
in updating mass position and this causes a more rapid
convergence.

Fig. 8 shows the change in fitness with an in-
crease in the number of candidate services. In the

simulation, both algorithms are resistant to the in-
crease in the number of candidate services. In this
regard, the behaviors of these two algorithms are
similar. In most cases, GSA fitness is of a higher level
in comparison with the PSO algorithm.

Fig. 9 shows the change in fitness on the basis of
the number of atomic services. With an increase in the
number of atomic services, the average of the result-
ing fitness decreases; this is normal. What is inter-
esting is that the gradient showing the average de-
crease in fitness in the PSO algorithm is significantly
sharper than that in GSA. This means that GSA shows
a more logical reaction to the increase of atomic ser-
vices. Also, the resulting fitness for GSA is higher in
comparison with the PSO algorithm.

We investigated composition operators such as
sequence, parallel, loop, and selection. Fig. 10 pre-
sents the sample on which we examined our algorithm.
In our proposed algorithm, the composite algorithm
structure is divided into blocks. The fitness value is

Fig. 7 Fitness change with increase in the number of
algorithm repetitions
(a) l=15, m=6, n=15; (b) l=10, m=6, n=15; (c) l=10, m=6,
n=5

(a)

(b)

(c)

8.0

8.2

8.4

8.6

8.8

9.0

Fi
tn

es
s

GSA
PSO

7.4

7.8

8.2

8.6

9.0

Fi
tn

es
s

GSA
PSO

0 10 20 30 40 50 60 70 80 903.0

3.1

3.2

3.3

3.4

Number of iterations

Fi
tn

es
s

GSA
PSO

Fig. 8 Fitness change with increase in the number of
candidate services
(a) n=5, num=10, T=80, m=6; (b) n=10, num=10, T=80,
m=6; (c) n=15, num=10, T=80, m=6

6.0
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Fi
tn

es
s

PSO
GSA

6.0

6.1

6.2

6.3

6.4

Fi
tn

es
s

PSO
GSA

10 15 20 25 30 35 40 45 50 55 60
5.9

6.0

6.1

6.2

6.3

6.4

6.5

Number of candidate services in each set

Fi
tn

es
s

PSO
GSA

(a)

(b)

(c)

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 740

calculated for each block based on the operator ap-
plied, and the total fitness is calculated at last. Table 1
presents the details of service-to-blocks division and
finally composing blocks to calculate the fitness value
of the sample.

As mentioned in Chen and Wang (2007), the
PSO algorithm is better in finding the optimized se-
lection with higher fitness than the genetic algorithm
(GA). In this work, GSA was evaluated under the
same conditions and with the same fitness function.
Figs. 11 and 12 show the results of executing GSA
and the PSO algorithm on the sample given in Fig. 10.
Even by considering composition operators in Web
services, the results improved more than before. This
is because of the ability of GSA in producing more
varied random numbers and indeed moving in a
wider domain of response.

Fig. 10 A sample with different operators on which our
proposed algorithm was evaluated

S5 S1

S4

S2

S3

Selection

S12

S14

S13

S15

S8

S7

S6

S10

S9

S11

Parallel

Selection Loop

Parallel

Fig. 11 Fitness change with increase in the number of
algorithm repetitions, with n=10, l=12, m=6, num=4,
and T=80

0 10 20 30 40 50 60 70 80 90
3.4

3.6

3.8

4.0

4.2

4.4

Number of iterations

Fi
tn

es
s

GSA
PSO

Fig. 12 Fitness change with increase in the number of
candidate services, with n=10, m=6, num=10, and T=80

5 10 15 20 25 30 35 40 45 503.65

3.70

3.75

3.80

3.85

3.90

3.95
4.00

Number of candidate services in each set

Fi
tn

es
s

GSA
PSO

Table 1 Details of each step of the proposed algorithm
executed on the sample given in Fig. 10

OperatorList of Web ser-
vices and blocks nb ncwsBlockStep

SelectionS2, S3, S4 0 3 B1 1
SelectionS6, S7 0 2 B2 2

Loop S11 0 1 B3 3
SequenceB2, B3 2 0 B4 4
ParallelS8, S9, S10 0 3 B5 5

SequenceB5, S12, S13 1 2 B6 6
ParallelB4, B6 2 0 B7 7

SequenceS1, B1, S5,
B7, S14, S15

2 4 B8 8

ncws: number of candidate Web services; nb: number of blocks

Fig. 9 Fitness change with increase in the number of
atomic services
(a) l=10, num=10, T=80, m=6; (b) l=15, num=10, T=80,
m=6

0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65

Fi
tn

es
s

PSO
GSA

0.56

(a)

(b)

5 10 15 20 25

0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66

Number of atomic services in composite service

Fi
tn

es
s

PSO
GSA

0.57

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 741

However, the computation complexity of GSA
is higher than that of PSO; thus, GSA is more time-
consuming than PSO (Figs. 13 and 14).

6 Conclusions

In this research, the gravitational search algo-

rithm, a natural type algorithm derived from the
concept of gravitational force between masses, is used
to determine the best Web services combination. As
mentioned in Chen and Wang (2007), the PSO algo-
rithm is better in finding the optimized selection than
GA. We illustrate that GSA is much better than PSO
under the same conditions and with the same fitness
function. GSA considers the difference between so-
lutions, and therefore moves quickly towards the
convergence point in determining the best Web ser-
vices combination. In addition, it does not use any
marginal memory to save probable modes. Also, in
designing the targeted evaluation function, the ideal
combination is derived from the user’s standpoint by
giving weights to qualitative parameters and includ-

ing the global constraints of the user. Simulation re-
sults showed that GSA has, in comparison with the
PSO algorithm, a significant potential for finding the
ideal user combination in the least time and with least
memory use, and is therefore a good choice for prac-
tical use.

7 Future work

The combination of this algorithm with services

interface comparison algorithms is a future aim con-
cerned with the probability of atomic services com-
bination in creating composite services. This issue is
important with regard to the daily expansion of the
Web and the number of Internet users. By using multi-
purpose functions (Yu and Lin, 2005), the algorithm
can be extended, and also by using the framework
presented in Canfora et al. (2008) and a comparison
with the genetic algorithm (Canfora et al., 2005; Ma
and Zhang, 2008), the evaluation results will be
clearer and more comparable.

In the future, we will apply the ontology engi-
neering and Web service annotation techniques to
increase the accuracy and improve algorithm com-
plexity. The system can decrease the number of can-
didate Web services in the discovery phase and find a
better path in the selection phase. As one can see in
Fig. 15, Web services are annotated and the system
can calculate the similarity measure (numbers above
each edge) between their inputs and outputs. In this
case, the system can find the best selection path by
both syntactic matching and semantic measuring.

Fig. 15 Web service annotation and calculation of se-
mantic similarity measures between Web services (rep-
resented by circles) which would lead to higher accu-
racy and lower complexity

0.6

0.8

0.5

0.3

Fig. 13 Change of time with increase in the number of
algorithm repetitions, with n=10, m=6, num=10, and
l=10

0 10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1.0

1.2
1.4

Number of iterations

GSA
PSO

Ti
m

e
(s

)

Fig. 14 Change of time with increase in the number of
candidate services, with n=5, m=6, num=10, and T=80

5 10 15 20 25 30 35 40 45 50
0
5

10

15

20
25

30
35

Number of candidate services in each set

Ti
m

e
(m

s)

GSA
PSO

Zibanezhad et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):730-742 742

References
Ai, W., Huang, Y., Zhang, H., Zhou, N., 2008. Web Services

Composition and Optimizing Algorithm Based on QoS.
4th Int. Conf. on Wireless Communications, Networking
and Mobile Computing, p.1-4. [doi:10.1109/WiCom.2008.
2001]

Al-Masri, E., Mahmoud, Q.H., 2007a. Discovering the Best
Web Service. 16th Int. Conf. on World Wide Web,
p.1257-1258.

Al-Masri, E., Mahmoud, Q.H., 2007b. QoS-Based Discovery
and Ranking of Web Services. IEEE 16th Int. Conf. on
Computer Communications and Networks, p.529-534.

Al-Masri, E., Mahmoud, Q.H., 2008. Investigating Web Ser-
vices on the World Wide Web. 17th Int. Conf. on World
Wide Web, p.795-804.

Benveniste, A., 2008. Composing Web Services in an Open
World: QoS Issues. Proc. 5th Int. Conf. on Quantitative
Evaluation of Systems, p.121. [doi:10.1109/QEST.2008.
49]

Canfora, G., di Penta, M., Esposito, R., Villani, M.L., 2005. An
Approach for QoS-Aware Service Composition Based on
Genetic Algorithms. Proc. Conf. on Genetic and Evolu-
tionary Computation, p.1069-1075. [doi:10.1145/1068
009.1068189]

Canfora, G., di Penta, M., Esposito, R., Villani, M.L., 2008. A
framework for QoS-aware binding and re-binding of
composite web services. J. Syst. Software, 81(10):1754-
1769. [doi:10.1016/j.jss.2007.12.792]

Chen, M., Wang, Z.W., 2007. An Approach for Web Services
Composition Based on QoS and Discrete Particle Swarm
Optimization. 8th ACIS Int. Conf. on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/
Distributed Computing, p.37-41. [doi:10.1109/SNPD.
2007.11]

Chen, Z., Wang, H., 2009. An Approach to Optimal Web Ser-
vice Composition Based on QoS and User Preferences.
Int. Joint Conf. on Artificial Intelligence, p.96-101.
[doi:10.1109/JCAI.2009.206]

Claro, D.B., Albers, P., Hao, J.K., 2005. Selecting Web Ser-
vices for Optimal Composition. 2nd Int. Workshop on
Semantic and Dynamic Web Processes, p.32-45.

Ismail, A., Yan, J., Shen, J., 2009. Dynamic Service Selection
for Service Composition with Time Constraints. Austra-
lian Software Engineering Conf., p.183-190. [doi:10.
1109/ASWEC.2009.30]

Lecue, F., 2009. Optimizing QoS-Aware Semantic Web Ser-
vice Composition. Int. Semantic Web Conf., p.375-391.

Lecue, F., Mehandjiev, N., 2009. Towards Scalability of
Quality Driven Semantic Web Service Composition. Proc.
IEEE Int. Conf. on Web Services, p.469-476. [doi:10.
1109/ICWS.2009.88]

Leutenmayr, S., 2007. Selected Languages for Web Services
Composition: Survey, Challenges, Outlook. Available

from http://www.pms.ifi.lmu.de/publikationen/diplomar-
beiten/Stephan.Leutenmayr/Diplomarbeit%20Stephan%
20Leutenmayr.pdf

Li, H., Yang, X., Ouyang, Y., 2009. MCHRC: Min-conflict
Heuristic Based Web Services Chain Reconfiguration
Approach. Int. Conf. on Computational Intelligence and
Software Engineering, p.1-4. [doi:10.1109/CISE.2009.
5365664]

Liu, A.F., Chen, Z.G., He, H., Gui, W.H., 2007. Treenet: a Web
Services Composition Model Based on Spanning Tree.
2nd Int. Conf. on Pervasive Computing and Applications,
p.618-623. [doi:10.1109/ICPCA.2007.4365517]

Liu, D., Shao, Z., Yu, C., Fan, G., 2009. A Heuristic QoS-
Aware Service Selection Approach to Web Service
Composition. 8th IEEE/ACIS Int. Conf. on Computer and
Information Science, p.1184-1189. [doi:10.1109/ICIS.
2009.76]

Ma, Y., Zhang, C., 2008. Quick convergence of genetic algo-
rithm for QoS-driven web service selection. Comput.
Networks, 52(5):1093-1104. [doi:10.1016/j.comnet.2007.
12.003]

Maximilien, E.M., Singh, M.P., 2004. A framework and on-
tology for dynamic Web services selection. IEEE Internet
Comput., 8(5):84-93. [doi:10.1109/MIC.2004.27]

Menasce, D.A., 2004. A composing Web services: a QoS view.
IEEE Internet Comput., 8(6):88-90. [doi:10.1109/MIC.
2004.57]

Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., 2009. GSA: a
gravitational search algorithm. Inf. Sci., 179(13):2232-
2248. [doi:10.1016/j.ins.2009.03.004]

Staab, S., van der Aalst, W., Benjamins, V.R., Sheth, A., Miller,
J.A., Bussler, C., Maedche, A., Fensel, D., Gannon, D.,
2003. Web services: been there, done that? IEEE Intell.
Syst., 18(1):72-85. [doi:10.1109/MIS.2003.1179197]

Talantikite, H.N., Aissani, D., Boudjlida, N., 2009. Semantic
annotations for web services discovery and composition.
Comput. Stand. Interfaces, 31(6):1108-1117. [doi:10.
1016/j.csi.2008.09.041]

Yu, T., Lin, K.J., 2005. Service Selection Algorithms for
Composing Complex Services with Multiple QoS Con-
straints. Proc. Int. Conf. on Service Oriented Computing,
p.130-143.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng,
Q.Z., 2003. Quality Driven Web Services Composition.
Proc. 12th Int. Conf. on World Wide Web, p.411-421.
[doi:10.1145/775152.775211]

Zibanezhad, B., Zamanifar, K., Nematbakhsh, N., Mardukhi,
F., 2009. An Approach for Web Services Composition
Based on QoS and Gravitational Search Algorithm. Int.
Conf. on Innovations in Information Technology, p.340-
344. [doi:10.1109/IIT.2009.5413773]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

