
Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 615

Clustering feature decision trees for semi-supervised
classification from high-speed data streams*

Wen-hua XU†1, Zheng QIN†‡2, Yang CHANG2

(1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China)
(2School of Software, Tsinghua University, Beijing 100084, China)

†E-mail: {xwh07, zhqing}@mails.tsinghua.edu.cn
Received Sept. 25, 2010; Revision accepted Mar. 9, 2011; Crosschecked July 4, 2011

Abstract: Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data.
Such approaches are impractical since labeled data are usually hard to obtain in reality. In this paper, we build a clustering feature
decision tree model, CFDT, from data streams having both unlabeled and a small number of labeled examples. CFDT applies a
micro-clustering algorithm that scans the data only once to provide the statistical summaries of the data for incremental decision
tree induction. Micro-clusters also serve as classifiers in tree leaves to improve classification accuracy and reinforce the any-time
property. Our experiments on synthetic and real-world datasets show that CFDT is highly scalable for data streams while gener-
ating high classification accuracy with high speed.

Key words: Clustering feature vector, Decision tree, Semi-supervised learning, Stream data classification, Very fast decision tree
doi:10.1631/jzus.C1000330 Document code: A CLC number: TP391

1 Introduction

Historically, machine learning has concentrated
on learning models from small numbers of examples.
More recently, the need to process larger amounts of
data has motivated the field of data mining. Nowa-
days, we are faced with a tremendous number of data
streams from sensor networks, social networks, Web
applications, scientific experiments, and financial
activities, etc. In most cases, such data are massive,
temporally ordered, fast changing, and potentially
infinite (Domingos and Hulten, 2000). Mining from
data streams is a research topic of growing interest.

Most approaches in classifying data streams
assume that a major portion of the data streams are
labeled, which can be used in training to build
classification models; the remaining small amount of

unlabeled data can then be classified with the models.
However, data streams are not inherently accompanied
by class labels in real-world applications. They are
usually labeled manually. Such operations are both
costly and time consuming. Therefore, in a streaming
environment, labeled examples that can be used in
training may be very scarce, leading to poorly trained
classifiers. In comparison with the supervised
algorithms that use only labeled examples, one can
hope for a more accurate prediction by taking into
account the unlabeled examples. Semi-supervised
learning from data streams has emerged as an exciting
direction in machine learning research.

In a streaming environment the algorithms run
under time and space constraints. With the fast and
continuous supply of data, the algorithms could not
obtain all data at the beginning of training. Moreover,
the algorithms have no control over the order of the
data seen, so they must update incrementally when-
ever an example is inspected. In other words, the fresh
knowledge derived from new examples must be in-
corporated without repeating the entire training

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project supported by the National Natural Science Foundation of
China (No. 60673024) and the “Eleventh Five” Preliminary Research
Project of PLA (No. 102060206)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 616

processes. Therefore, the fundamental problem to
solve in the context of data streams is that: given an
infinite amount of continuous data examples, how to
model them in order to capture their trends and pat-
terns, and make time-critical predictions (Wang et al.,
2003).

With regard to semi-supervised learning, sup-
pose that the examples of each class tend to form a
cluster; therefore, the unlabeled data could assist in
finding the boundary of each cluster. The motivation
behind this approach is the cluster assumption. If two
examples are in the same cluster, they are likely to be
of the same class (Chapelle et al., 2006). This as-
sumption should be reasonable on the basis of the
sheer existence of classes. If there is a densely popu-
lated continuum of objects, it may seem unlikely that
they are ever distinguished into different classes.
Moreover, the assumption does not imply that each
class forms a single compact cluster. It addresses that
usually one does not observe objects of two distinct
classes in the same cluster. With more examples in a
cluster, labeled or unlabeled, the boundary can be
more accurate, so is the classification model.

Motivated by the assumption, we propose CFDT,
an acronym for the clustering feature decision trees,
learning from data streams having both unlabeled and
a small amount of labeled examples. Very fast deci-
sion tree (VFDT) is one of the most successful and
prominent algorithms designed specifically for su-
pervised classification of data streams. CFDT applies
an efficient semi-supervised clustering algorithm on
VFDT, and is able to scan the data only once to pro-
vide the statistical summaries of the data in the form
of micro-clusters for incremental decision tree
induction.

Micro-clusters also serve as classifiers in tree
leaves to improve classification accuracy and reinforce
the any-time property. The classification is performed
with the decision tree to seek an appropriate leaf and
then the nearest neighbor (NN) algorithm in the leaf.

We have made three contributions. First, we
propose an efficient semi-supervised classification
algorithm for data streams based on the micro-
clustering technique. Second, we provide an exten-
sion to the state-of-the-art VFDT algorithm with the
ability to deal with numeric attributes for data streams.
Third, we apply more powerful classifiers in leaves of
VFDT, which can improve its accuracy and reinforce

its any-time property on data streams. Evaluations on
both synthetic and real-world datasets comprising up
to one million examples show that our approach can
achieve better classification accuracy than other
stream classification approaches, using only a frac-
tion of the labeled examples.

2 Related works

A classification algorithm for data streams must
meet several different requirements from the tradi-
tional setting (Bifet et al., 2009). The most significant
are the following. First, process one example at a time,
and inspect it at most once. The data examples flow in
and out of a system one after another. Each example
must be accepted in the order in which it arrives. Once
inspected or ignored, the example is discarded with
no way to retrieve it. Second, use a limited amount of
memory. Memory will be easily exhausted without
limiting its allocation since the amount of the data is
potentially infinite. Third, work in a limited amount
of time. Though most conventional algorithms are
fast enough when classifying examples, the training
processes are time consuming. For an algorithm to
scale comfortably to any number of examples, its
training complexity must be linear to the number of
examples, such that online learning is possible.
Fourth, be ready to perform classification at any time.
This is the so-called any-time property, which indi-
cates that the induction model is ready to be applied at
any point between training examples.

Our work is related to both decision tree induc-
tion algorithms and semi-supervised classification
techniques on data streams. We briefly discuss both of
them.

2.1 Decision tree induction algorithms on data
streams

Decision tree is one of the most often used
techniques in the data mining literature. Each node of
a decision tree contains a test on an attribute. Each
branch from a node corresponds to a possible out-
come of the test and each leaf contains a class pre-
diction. A decision tree is constructed by recursively
replacing leaves by test nodes, starting at the root. The
attribute to test in a leaf is chosen by comparing
all available attributes and choosing the best one

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 617

according to some heuristic evaluation function.
Classic decision tree learners like ID3, C4.5, and
CART assume that all training examples can be stored
simultaneously in memory, and thus are severely
limited in the number of examples from which they
can learn.

Previous works on scaling up decision tree
learning algorithms are SLIQ (Mehta et al., 1996),
SPRINT (Shafer et al., 1996), BOAT (Gehrke et al.,
1999), and RAINFOREST (Gehrke et al., 2000).
These approaches perform static learning of decision
trees from large data sources in limited memory by
performing multiple passes over the data and using
external storage. Such operations are not suitable for
high-speed stream processing.

Domingos and Hulten (2000) proposed an in-
cremental decision tree algorithm called the Hoeffding
tree. For streams made up of discrete types of data,
Hoeffding bounds guarantee that the output model is
asymptotically nearly identical to that of a conven-
tional decision tree. The Hoeffding tree algorithm is
the basic theoretical algorithm and represents current
state-of-the-art for classifying high-speed data
streams. Its implementation is VFDT which adopts
several enhancement techniques for practical appli-
cations, such as grace period, pre-pruning, and tie
breaking.

Since the majority voting strategy used in the
Hoeffding tree uses only a small part of the available
information in leaves, Gama et al. (2003) proposed
the VFDTc algorithm, which incorporates two main
extensions to VFDT. These are the ability to deal with
numeric attributes and apply naïve Bayes classifiers
in tree leaves. In this way, there is a much better ex-
ploitation of the available information. VFDTc can
obtain a performance similar to that of the C4.5 al-
gorithm even on medium size datasets.

Furthermore, the CVFDT proposed by Hulten et
al. (2001) induces a decision tree from concept
drifting data streams based on VFDT. It can keep the
latest knowledge by growing a sub-tree from new
examples and replacing the old when the new be-
comes more accurate.

Hoeffding option tree (Pfahringer et al., 2007) is
a regular Hoeffding tree containing extra option
nodes besides the internal decision nodes and leaves.
The structure makes it possible for an example to
travel down multiple paths and arrive at multiple

leaves. An adaptive Hoeffding option tree (Bifet et al.,
2009) is a Hoeffding option tree with several im-
provements. Each leaf stores an estimation of the
current classification error and the weight of each
node in the major voting process which is propor-
tional to the square of the inverse of the error. A
Hoeffding perceptron tree (Bifet et al., 2010) is a
Hoeffding tree that has a perceptron in each leaf.

Bifet et al. (2009) also proposed two new en-
semble learning strategies, adaptive window bagging
and adaptive size Hoeffding tree bagging, which
combine Hoeffding trees into ensemble classifiers to
achieve better accuracy.

In all the extensions mentioned above, the
structure of the Hoeffding tree is not modified. Only
some extra features are appended to the nodes, such as
features to deal with numeric attributes, additional
option nodes, and more sophisticated classifiers in
leaves (e.g., naïve Bayes, perceptron). However, to
build such classifiers from the examples in leaves is
time consuming, especially when there are enormous
leaves.

2.2 Semi-supervised classification algorithms on
data streams

The supervised classification problem is gener-
ally defined as follows. A set of Nl training examples
Sl={(xi, yi)|i=1, 2, …, Nl} of the form (x, y) is given,
where x=(x1, x2, …, xJ) is a value vector of
J-dimensional attributes, each of which may be dis-
crete or numerical. The attributes are represented as
X=(X1, X2, …, XJ). yi is a nominal class label, yi∈{c1,
c2, …, cK}. In addition to labeled examples, the algo-
rithm of semi-supervised learning is provided with a
set of unlabeled examples Su={(xi, yi)|i=Nl+1, Nl+2, …,
N}, where N>>Nl and yi=φ indicates the example is
unlabeled. Therefore, the training examples are
S=Sl∪Su={(xi, yi)|i=1, 2, …, N} and yi∈{φ, c1, c2, …,
cK}. The semi-supervised learning in this work is to
build a model y=f(x) from these examples that can
predict the class labels of future examples with high
accuracy.

There have been several works in semi-
supervised stream data classification, most of which
are based on clustering techniques. The self-training
strategy is adopted in the cluster-training algorithm,
which applies k-prototype clustering to select confi-
dently unlabeled examples and uses them to retrain the

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 618

classifier iteratively (Wu et al., 2006). Though the
unlabeled data can be fully exploited in cluster-training,
the retraining operation is time consuming, which may
be undesirable in a high speed streaming environment.
SmSCluster is an ensemble classification model spe-
cialized for concept drifting data streams (Masud et al.,
2008), which can be trained from a dataset having
both unlabeled and a small number of labeled exam-
ples. Each base model in SmSCluster is built as
micro-clusters using the semi-supervised k-means
clustering technique, and classification is performed
with the k-nearest neighbor algorithm. Such models
are combined together to classify the unlabeled data.
SmSCluster is a moderately practical approach to
handling the real-world stream classification problem;
yet the runtime of the expectation maximization ap-
proach used in clustering could be reduced. SUN is a
semi-supervised classification algorithm for data
streams with concept drifts (Li et al., 2010), based on
an evolved decision tree. The k-mode clustering al-
gorithm is developed to generate concept clusters in
leaves of the decision tree to detect concept drifts, and
an unlabeled example is labeled with the majority
class of the cluster to which it belongs. Though
unlabeled examples are exploited in SUN, they are
used not for training the model but for detecting
concept drifts. Therefore, only a small portion of the
information obtained from them is used.

3 Very fast decision tree and clustering fea-
ture decision trees

3.1 Very fast decision tree

The Hoeffding tree algorithm is a classification
model that constructs a decision tree model from data
streams incrementally with no need to store them or
repeat the entire induction process on all of the ob-
served examples. The only information needed in
memory is the tree itself, which stores sufficient sta-
tistics in its leaves in order to grow.

The Hoeffding tree is constructed by making
recursive splits of leaves and subsequently obtaining
internal decision nodes, such that a tree structure is
formed. The splits are decided by heuristic evaluation
functions to choose the best cut-point of an attribute.
The main innovation in the Hoeffding tree is the use
of a Hoeffding bound to decide how many examples

are necessary to be collected for heuristic evaluation
in each leaf. Assuming a real-valued random variable
r whose range is Ra (e.g., for a probability, Ra=1; for
an information gain, Ra=log2K, where K is the number
of classes), suppose there are N independent obser-
vations of this variable whose mean value is .r The
Hoeffding bound indicates that, with probability 1−δ,
the true mean of the variable is at least ,r ε− where

1/22
a ln(1 /) (2) .R Nε δ⎡ ⎤= ⎣ ⎦ (1)

Let H(·) be a heuristic evaluation function, and

assume H is maximized. Let Xa be the attribute with
the highest H observed after observing N examples,
and Xb be the second highest attribute. Let

a b() ()H H X H XΔ = − be the difference between the
two best observed heuristic values. Then, given a
desired δ, the Hoeffding bound guarantees that Xa is
the correct choice with probability 1−δ if N examples
have been observed in this node and H εΔ > . That is,
if the observed ,H εΔ > then the Hoeffding bound

guarantees that the true value 0H H εΔ ≥ Δ − > with
probability 1−δ, and therefore Xa is indeed the best
attribute with probability 1−δ. At this point, the leaf
can be split using the current best attribute, and is
transformed into an internal decision node.

Each leaf stores only the sufficient statistics
about attribute values, instead of the whole example.
When an example traverses to a leaf, the statistics at
the leaf are updated, and the heuristic measure is
evaluated to check whether or not to split the leaf.
Assuming the heuristic function is the information
gain, the statistics are the counts nijk, representing the
number of examples of class ck that reach the leaf,
where the attribute Xj takes the value i. Then H(Xj) for
attribute Xj is calculated using

 () Info(examples) Info(),j jH X X= − (2)

where Info(examples) is the information of the ex-
amples that reach the leaf, and

 2Info() logj i ik ik
i k

X P P P⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑ (3)

is the information of attribute Xj. In Eq. (3),

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 619

 ik ijk tjk
t

P n n= ∑ (4)

is the probability of the observed value i of attribute Xj
given class ck, and

 i ijt sjt
t s t

P n n=∑ ∑∑ (5)

is the probability of the observed value i of attribute
Xj.

The Hoeffding tree algorithm uses the majority
voting strategy in classification. When classifying an
unlabeled test example, the example is filtered down
to an appropriate leaf and classified with the majority
class of the training examples in the leaf.

VFDT applies several extensions, such as the
grace period, pre-pruning, and tie breaking, to en-
hance the basic Hoeffding tree algorithm.

3.2 Clustering feature decision trees

We present a decision tree induction algorithm
CFDT, an acronym for the clustering feature decision
tree for the semi-supervised learner, which is the
extension of VFDT. By using micro-clustering and
clustering feature techniques, CFDT has the ability of
learning from data streams having both labeled and
unlabeled examples. Micro-clusters are used in cal-
culating and storing the statistics used in the heuristic
evaluation function for splits of leaves, as well as in
making classification on testing examples.

The micro-clustering technique was originally
exploited by Zhang et al. (1996). The concept of
‘micro-cluster’ in this paper is similar to those in
Zhang et al. (1996), Jin et al. (2001), and Yu et al.
(2003), and denotes a statistically summarized rep-
resentation of a group of examples with the same
class label which are so close together that they are
likely to belong to the same cluster.

3.3 Clustering feature vector

A clustering feature (CF) vector is a tuple that
summarizes the sufficient information of a cluster.
The concept of CF and its characteristic make the
clustering incremental without expensive computa-
tions. Given N examples {xi|i=1, 2, …, N} in a cluster,
the CF vector of the cluster is a tuple CF=(N, LS, SS),

where
1

N
ii=

= ∑ xLS is the linear sum of the examples,

and 2
1

N
ii=

= ∑ xSS is the square sum of the examples

(Zhang et al., 1996).
The additivity of the CF vector indicates that if

CF1=(N1, LS1, SS1) and CF2=(N2, LS2, SS2) are the
CF vectors of two disjoint clusters, the CF vector of
the cluster formed by merging the two disjoint clus-
ters is

1 2 1 2 1 2 1 2(, ,).N N+ = + + +CF CF LS LS SS SS (6)

The centroid C and radius R of the cluster are
defined as follows:

1

1 ,
N

i
iN =

= ∑C x (7)

1/2

2

1

1 ,
N

i
i

R
N =

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ x C (8)

where R is the average distance from the cluster
member to the centroid. A pure cluster is the cluster
that contains only examples with the same class label
and unlabeled examples.

From the CF definition and additivity charac-
teristic, we know that the CF vector of a cluster can be
calculated incrementally and accurately as new ex-
amples are incorporated. The centroid C and the ra-
dius R of a cluster can be calculated from the CF
vector of the cluster using the following equations:

 / ,N=C LS (9)

1/2

2
2

1 1

1 1SS (LS) .
J J

j j
j j

R
N N= =

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ ∑ (10)

One usually thinks of a cluster as a set of data

points, but the CF vector is stored only as a statistical
summary. Managing the CF vector is efficient and
accurate, saves space significantly, and is sufficient
for calculating all the information to build a decision
tree. Therefore, the CF vector serves as the micro-
cluster in this paper.

A CFDT is a decision tree with two parameters
for leaves, the threshold Rmax and the maximum
number of micro-clusters W. Rmax is a constraint for
micro-clusters to ensure that the radius of each
micro-cluster has to be less than Rmax. Each leaf of the
CFDT consists of at most K entries of the form

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 620

[ck, m-clusterk], with K being the number of classes,
and each entry consists of at most W micro-clusters
whose members are from ck or φ, i.e., m-clusterk=
{CFik|i=1, 2, …, W}.

Each example is inspected by CFDT only once
to obtain information. The process that an example
(x, y) is inserted into a micro-cluster of a leaf is as
follows:

1. Identify an appropriate leaf. The example
traverses the CFDT from the root to a leaf, testing the
appropriate attribute at each internal node and fol-
lowing the branch corresponding to the attribute value
of the example.

2. Seek an entry. Two situations should be con-
sidered. For a labeled example (i.e., y≠φ), an entry is
chosen whose class label is also y, and then a micro-
cluster is selected whose centroid is the closest. For an
unlabeled example (i.e., y=φ), a micro-cluster is se-
lected whose centroid is the closest from all entries in
the leaf. In this way, information obtained from la-
beled and unlabeled examples is absorbed by micro-
clusters.

3. Modify the leaf. If the micro-cluster can in-
corporate the example without violating the threshold
Rmax condition, update the micro-cluster, i.e., the CF
vector. If not, construct a new one for the example.
Then the example is discarded to leave memory for
future examples.

If we treat the example (x, y) as a new cluster, the
CF vector of this cluster is represented as CFx. Add-
ing an example to a cluster at the (r+1)th step is
equivalent to merging two disjoint clusters. That is,

1

2

(, ,)

(1, ,).

r r

r r r

r r r

N N

N

+ = +

= + + +

= + + +

x

x x x

x x

CF CF CF
LS LS SS SS

LS SS
 (11)

After the entries of a leaf are constructed, ex-

amples in a micro-cluster can be substituted by the
centroid of the cluster to simplify the calculation.
Moreover, the numerical attribute values are discre-
tized, so that the counts nijk can be derived directly.
Note that a micro-cluster is excluded from the com-
putation of the heuristic evaluation function if it
contains no labeled examples.

The value of threshold Rmax will greatly affect
the number of micro-clusters in an entry. The initial
value 0

maxR can be set conservatively, which may

produce more than W micro-clusters in an entry. 0
maxR

is determined at the very beginning of the model
training process, which can be achieved using an
offline process. A standard k-means clustering algo-
rithm is employed on a batch of examples to create
W·K clusters. Once these clusters have been estab-
lished, the minimum value of the radii of all clusters
can be assigned to 0

maxR . When new blank leaves are
constructed, Rmax should be adjusted to produce an
appropriate number of micro-clusters. We use

1 1/
max max (/) ,i i J

iR R W W+ = ⋅ where Wi is the minimum
number of micro-clusters among all entries in the
previous leaf.

3.4 Heuristic evaluation function

Fig. 1 shows the structure of CFDT. In CFDT a
leaf that contains a heuristic evaluation function for
continuous attributes creates two descendant leaves.
For an attribute Xj of the vector x, which is numerical,
the heuristic evaluation function is a condition of the
form Xj<cutpj to determine if the attribute value xj of
an example x is less than cutpj or not. Then the
cut-point cutpj divides the training dataset into two
subsets, which correspond to the values TRUE (sub-
set A) and FALSE (subset B) for the function. What
needs to be determined is how to split subsets of X to
produce the best tree-structured classifier. CFDT uses
the recursive binary partition strategy.

At each stage in the recursive split, we use an
exhaustive method. All attributes X of the examples
and all possible cut-points for each attribute are
evaluated, and the class distributions at both sides of
the cut-point are calculated.

A leaf node

c1 c2 cK

…

…

…

unlabeled

Fig. 1 Structure of the clustering feature decision trees
(CFDT) model

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 621

To calculate the class distribution of the exam-
ples, for each possible cut-point, we compute the
information of the two partitions using the following
heuristic function (Gama et al., 2003):

Info() (cutp) Less()

(cutp) Great(),

t t
j j jt j

t
j jt j

X P X X

P X X

= < ⋅

+ > ⋅
 (12)

where Info()t

jX is the information for attribute Xj and

cutpjt, cutpjt is the tth possible cut-point for attribute Xj,
Less()t

jX is the information of Xj<cutpjt, and

Great()t
jX is the information of Xj>cutpjt, which are

calculated by

 1

2

Less() (| cutp)

log (| cutp) ,

K
t
j i j jt

i

i j jt

X P y c X

P y c X
=

⎡=− = <⎣

⎤⋅ = < ⎦

∑
 (13)

 1

2

Great() (| cutp)

log (| cutp) .

K
t
j i j jt

i

i j jt

X P y c X

P y c X
=

⎡=− = >⎣

⎤⋅ = > ⎦

∑
 (14)

The fundamental variables for calculating all

these necessary statistics are the counts nijk, which can
be derived directly from the micro-clusters in leaves
as presented above.

Without loss of generality, we consider cases
where each entry has an equal number of W micro-
clusters for convenience of explanation. Suppose
[ck, m-clusterk] is an entry in a leaf corresponding to
class ck, and m-clusterk={CFik|i=1, 2, …, W}. There-
fore, the centroids of the micro-clusters are {Cik|i=1,
2, …, W}, and the numbers of examples in the
micro-clusters are {Nik|i=1, 2, …, W}. Since examples
in a micro-cluster can be substituted by the centroid of
the cluster, the number of examples that have the
value Cik is Nik. Moreover, since we have Cik=(ci1k,
ci2k, …, cijk, …, ciJk) where cijk is the attribute value of
Cik corresponding to attribute Xj, the number of ex-
amples that have the value cijk is Nik, i.e., nijk=Nik.

To calculate the class distribution of the exam-
ples in a leaf, the attribute values of the centroids of
all the micro-clusters need to be sorted for every at-
tribute. The operation is time saving since the number
of centroids is much smaller than that of examples,
which are J groups with W·K examples in each group.

Letting cj(1)<cj(2)<…<cj(W·K) be the ordered dis-
tinct values of c1j1, c2j1, …, cWj1, …, c1j2, …, cWj2, …,
cWjK in a leaf, then the tth possible cut-point can be

()() (1)cutp 2, 1,2,..., 1.jt j t j tc c t WK+= + = − (15)

Therefore, even if there are a large number of
examples, there are a finite number of possible
cut-points to be considered.

Let nj(1), nj(2), …, nj(WK) be the numbers of ex-
amples corresponding to cj(1), cj(2), …, cj(WK), and N be
the total number of examples in the leaf. Therefore,

 ()
1

1(cutp) ,
t

j jt j i
i

P X n
N =

< = ∑ (16)

 () ()
1 1

(| cutp) .

i i

t WK

i j jt j d j d
d d
y c y c

P y c X n n
= =
= =

= < = ∑ ∑ (17)

()t
jH X for attribute Xj at cutpjt is calculated as

 () Info(examples) Info().t t
j jH X X= − (18)

Therefore, we can use the same method as in the

induction of the Hoeffding tree to choose the appro-
priate attribute and the correct cut-point.

3.5 Discrete attributes

We create one independent ‘1–0’ feature for each
value of the discrete attributes such that ‘1’ indicates
the existence of the value and ‘0’ indicates the ab-
sence of the value. The method for dealing with dis-
crete attributes is not the optimal one for building a
decision tree or clustering, but a general one for
categorical attributes, discrete ordinal attributes, and
ratio-scaled attributes. Using more sophisticated ap-
proaches could further improve the performance, yet
may take too much runtime for calculation to be
suitable for classification of data streams.

3.6 Construction of CFDT

The complete algorithm of CFDT is presented in
Algorithm 1. The construction process of a CFDT is
similar to that of a VFDT. With the continuous supply
of data stream examples, the first ones are used to
choose the root test. Once the root attribute is chosen,
the succeeding examples are passed down to the
corresponding leaves and used to choose the appro-

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 622

priate attributes there, and so on, recursively. Anno-
tations are added to the pseudo code of the algorithm.

Algorithm 1 CFDT algorithm
Inputs:
S a sequence of examples,
X a vector of attributes,
H(·) a heuristic evaluation function,
δ one minus the desired probability of choosing
 the correct attribute at any given node,
Rmax the initial threshold,
W the maximum number of micro-clusters.
Output:
T a decision tree.

1 Procedure CFDT(S, X, H(·), δ, Rmax , W)
// Start from a tree with one blank root

2 Let T be a tree with a root;
3 /* build the tree by making recursive splits of

leaves and subsequently obtaining internal
decision nodes */
for each example (x, y) in S // y=ck or y=φ
/* filter the example into a leaf and assign it to a
cluster */

4 Filter the example into a leaf l using T;
5 if y=ck
6 Seek a proper entry having the same class

label and a closest micro-cluster to incor-
porate the example;

7 end if
8 if y=φ
9 Seek a closest micro-cluster to incorporate

the example;
10 end if
11 if the micro-cluster cannot absorb the example
12 Construct a new micro-cluster;
13 end if
14 // update the statistics of the cluster

Update the CF vector of the micro-cluster in
the entry;

15 /* If a specific number of examples are accu-
mulated, try to calculate the heuristic function
and find the best cut-point. Nl is the number of
examples seen at leaf l */
if (Nl mod nmin=0) and the examples seen so far
at l are not all of the same class

16 Sort the attribute values of the centroids of
all the micro-clusters for every attribute;

17 Compute ()t
l jH X for each attribute and each

possible cut-point using Eqs. (12) and (18);
18 Compute the Hoeffding bound;
19 Let Xa be the attribute with the highest lH ;
20 Let Xb be the attribute with the second

highest lH ;
21 /* If the condition of split is satisfied, turn

the leaf into an internal node, and add new
leaves to it */
if a b() ()H X H X ε− > or ε τ<

22 Replace l with an internal node that splits
on Xa and the corresponding cut-point;

23 Adjust Rmax using
1 1/

max max (/)i i J
iR R W W+ = ⋅ ;

24 for the two branches of the split
25 Add a new leaf with initialized suffi-

cient statistics;
26 end for
27 end if
28 end if
29 end for
30 end Procedure

3.7 Functional tree leaves

One of the innovations of our algorithm is that
the current micro-clusters in tree leaves can be reused
and serve as classification models. The majority class
strategy of VFDT uses only the information about
class distributions and does not consider the attribute
values. It uses only a small part of the available in-
formation, a crude approximation to the distribution
of the examples. In contrast, micro-clusters of CFDT
take into account not only the class distribution, but
also the attribute values given the class. By this
method, there is a much better exploitation of the
available information in leaves.

To predict the class label of a testing example x,
the example traverses the tree from the root to a leaf,
testing the appropriate attribute at each internal node
and following the branch corresponding to the attrib-
ute value of the example. After x falls into a leaf, two
cases are considered. For a leaf having only one entry
[ck, m-clusterk], ck is the predicted label for x. For a
leaf having different entries, the nearest neighbor
algorithm is applied to find the nearest micro-cluster
from all micro-clusters in the leaf and the corre-
sponding class label is the predicted value for x.

4 Experimental evaluation

We applied CFDT on both synthetic datasets and
real-world datasets to evaluate its performance in six
aspects. These were the ability to handle numeric
attributes, accuracy in semi-supervised classification,
memory cost, training and classification speed, scal-
ability, and sensitivity to parameters. We compare

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 623

CFDT with the supervised baseline method Hoeffding
Tree Naïve Bayes Adaptive (HT-NBA) and the semi-
supervised method SmSCluster.

4.1 Datasets and experiment setup

The synthetic datasets include GAUSS, Hyper-
plane, Random RBF, Random Tree, SEA, and
Waveform. The approach to generating the GAUSS
dataset follows the way in Masud et al. (2008). In this
work, the number of class labels is 5, and the number
of attributes is 15. Examples belonging to each class
are generated by following a normal distribution
having a different mean within (−5.0, 5.0), and vari-
ance within (0.5, 9) for different classes. Hyperplane
was used to compare CVFDT with VFDT under the
environment of concept drift, where the number of
attributes can be assigned by users (Hulten et al.,
2001). Random RBF generates examples from a fixed
number of random centroids. Each time a centroid is
selected at random, a data point around the centroid is
drawn randomly. The centroid determines the class
label of the example, and the data point determines
the attributes of the example. Examples in Random
Tree are generated by assigning random values to
each attribute first and the class label is determined
via a pre-constructed decision tree (Domingos and
Hulten, 2000). SEA generates examples with three
attributes and two class labels, where the first two
attributes are relevant (Street and Kim, 2001). For the
waveform dataset, there are two versions in massive
online analysis (MOA). The first has 21 numeric
attributes and 3 class labels. The second introduces 19
additional irrelevant attributes, which can be viewed
as noises. The real-world datasets include Forest
Covertype and KDD-99. The Forest Covertype data-
set is taken from the UCI repository. It contains
581 012 examples, 54 attributes, and 7 class labels.
The classification goal is to predict the forest cover
type from cartographic variables. The KDD-99
training dataset is from the UCI KDD archive, con-
sisting of 41 attributes, 23 class labels, and approxi-
mately five million examples. We use 10% (i.e.,
494 021) examples of KDD-99, and 34 numeric at-
tributes in our evaluation. All attribute values are
normalized into [0, 1], divided by their maximum
values. We assume that no concept drift exists in these
datasets. The basic properties of each dataset and the
initial Rmax for every dataset are listed in Table 1.

MOA (Bifet et al., 2007) is a software environ-
ment for stream data mining, including evaluation
measures and a collection of implemented Hoeffding
tree based algorithms, such as VFDT and HT-NBA.
The CFDT algorithm was integrated into MOA.
SmSCluster was implemented in RapidMiner, which
is another open source data mining system. The ex-
periments were performed on a 2.0 GHz Intel Core
Duo PC with 2 GB RAM, running Windows XP.
Parameter settings are: τ=0.05, nmin=1000, δ=5×10−6
for both HT-NBA and CFDT, W=8 for CFDT.

4.2 Comparison of approaches handling numeric
attributes

Several approaches handling numeric attributes
when constructing Hoeffding trees have been pro-
posed in the data stream literature. Examples include
VFML (very fast machine learning) implementation
(Hulten and Domingos, 2003), Exhaustive Binary
Tree (Gama et al., 2003), Quantile Summaries
(Greenwald and Khanna, 2001), and Gaussian
Approximation (Pfahringer et al., 2008). Pfahringer
et al. (2008) investigated these methods and com-
pared them empirically to eight algorithm configura-
tions. From the results of the experimental compari-
son, GAUSS-10 and VFML-10 are highly competi-
tive on most testing configurations. Since CFDT has
the natural ability to deal with numeric attributes by
using the micro-clustering technique, we compare it
against two representative methods, Gaussian Ap-
proximation and VFML implementation, to evaluate
its performance.

GAUSS-10 and VFML-10 are tested based on
the HT-NBA classification algorithm. HT-NBA

Table 1 Properties of the datasets

Dataset nnom nnum K 0
maxR

GAUSS 0 15 5 13.0
Hyperplane 0 10 2 1.1
Random RBF 0 10 2 1.8
Random Tree 0 10 2 1.1
SEA 0 3 2 4.0
WAVE21 0 21 3 7.0
WAVE40 0 40 3 8.5
Covertype 44 10 7 60.0
KDD-99 0 34 23 15.0

nnom: number of nominal attributes; nnum: number of numeric at-
tributes; K: number of classes

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 624

contains Naïve Bayes learners in the leaves, making it
more accurate than the basic Hoeffding Tree Majority
Class algorithm. Seven synthetic datasets are used in
the evaluation, and learning is limited to a maximum
memory of 32 MB. We use a holdout evaluation
strategy similar to that in Pfahringer et al. (2008).
Each classifier is trained for 1 hr and then testing is
conducted on a holdout dataset comprising up to 106
examples. All training datasets in this subsection are
100% labeled.

Tables 2–4 list the experiment results of the three
algorithms on seven synthetic datasets. Under the
predefined setting, GAUSS-10 is the most accurate on
all datasets, and builds the deepest trees with the most
nodes and leaves amongst the three algorithms. There
are two reasons for this. First, GAUSS-10 is faster
than the other two algorithms, which means that
GAUSS-10 can learn more examples under the same
training time constraint. Second, GAUSS-10 needs
less space for numeric approximation since only a few
statistics are stored in the leaves, permitting the
growth with a maximum number of active tree nodes
in memory. CFDT and VFML-10 achieve similar
accuracy in most cases but smaller accuracy than
GAUSS-10, while the training speed of CFDT is a
little higher than that of VFML-10 except on Random
Tree. Without iteration, micro-clustering is much
more efficient than conventional clustering methods.
This makes CFDT fast enough to handle high-speed
data streams. CFDT tends to create more nodes than
VFML-10, suggesting that fewer examples are
needed to determine a split point during the tree
growth. The depths of CFDT are on average smaller
than those of the other two algorithms, suggesting that
the splits on all attributes are even, not on some spe-
cific attributes.

According to space complexity analysis, to store
sufficient statistics of J numeric attributes and K class
labels, the memory required for each leaf is 5JK for
GAUSS-10, and 10J+10JK for VFML-10. Each leaf
of the CFDT consists of K entries of [ck, m-clusterk],
each entry consists of W micro-clusters, and each
micro-cluster needs 1+2J for storage of N, LS, and SS.
To store statistics of W micro-clusters, the memory
required for CFDT is K(1+W(1+2J)), that is (W+1)K+
2WJK. Given W=8, the memory cost is 9K+16JK.
Considering its ability for semi-supervised classifi-
cation, the space complexity is acceptable.

4.3 Classification accuracy, runtime, and memory
usage

In this subsection, we compare CFDT with su-
pervised baseline method HT-NBA with GAUSS-10
as the numeric handler and semi-supervised method
SmSCluster. When evaluating the performance, all
training datasets for semi-supervised CFDT and
SmSCluster are 20% labeled, meaning that 20% of
the examples selected at random are assumed to have
class labels, whereas the remaining 80% examples are

Table 2 GAUSS-10 algorithm over seven datasets

Dataset Accuracy
(%)

nte
(×106) ntn nal nil

Tree
depth

GAUSS 99.98 132 4267 2134 0 37
Hyperplane 92.01 42 31 215 12 686 2922 21
Random RBF 95.36 52 24 923 12 462 0 44
Random Tree 99.96 202 4599 2300 0 18
SEA 89.92 72 55 919 27 960 0 28
WAVE21 85.44 38 16 435 5866 2352 31
WAVE40 85.15 28 11 105 3134 2419 33
nte: number of training examples; ntn: number of total nodes; nal:
number of active leaves; nil: number of inactive leaves

Table 3 VFML-10 algorithm over seven datasets

Dataset Accuracy
(%)

nte
(×106) ntn nal nil

Tree
depth

GAUSS 99.71 70 2917 1459 0 25
Hyperplane 86.21 36 20 001 2995 7006 25
Random RBF 93.94 38 14 181 3049 4042 28
Random Tree 99.97 152 1631 816 0 23
SEA 89.86 42 34 199 9426 7674 31
WAVE21 82.93 34 9515 1389 3439 23
WAVE40 82.82 30 7077 734 2805 20
nte: number of training examples; ntn: number of total nodes; nal:
number of active leaves; nil: number of inactive leaves

Table 4 CFDT algorithm over seven datasets

Dataset Accuracy
(%)

nte
(×106) ntn nal nil

Tree
depth

GAUSS 99.92 52 6341 3171 0 18
Hyperplane 87.35 40 27 415 8144 5564 16
Random RBF 92.77 42 23 809 6033 5872 22
Random Tree 97.75 58 7897 3949 0 18
SEA 87.91 54 35 213 13 652 3955 15
WAVE21 82.58 38 12 373 3021 3166 17
WAVE40 82.17 34 8897 1926 2523 17
nte: number of training examples; ntn: number of total nodes; nal:
number of active leaves; nil: number of inactive leaves

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 625

unlabeled. For supervised HT-NBA, we use the same
number of training examples for comparison, which
are all labeled. Parameters in SmSCluster are set to
the default values, which are: Clusters=50 (number of
clusters), ChunkSize=5000 (number of examples in
each chunk), L=1 (ensemble size) represents the sin-
gle classifier, and L=8 represents the ensemble clas-
sifier. The evaluation strategy is interleaved test-then-
train. Each example is used for testing the model
before being used for training. It assures that the
model is always being tested on examples it has not
seen. Seven synthetic datasets comprising up to 106
examples and two real-world datasets are used in the
evaluation. We disable memory management during
the training to evaluate the memory requirements.

Table 5 is the summary of the experiment results,
where three metrics of accuracy, training and classi-
fication time, and memory usage are compared.
Amongst all the algorithms, HT-NBA is apparently
the most accurate, efficient, and space saving over all
datasets. However, as a supervised method, it
achieves 2.13% higher accuracy on average than
CFDT by learning four times more labeled examples.

CFDT has comparable accuracy to HT-NBA and
ensemble SmSCluster. There are three reasons for this.
First, with a great amount of unlabeled data involved
in training, more information can be learned from

them, which makes the boundary of examples from
different classes more accurate. Second, by using a
micro-clustering approach, CFDT can group exam-
ples not only by their class labels or by the value of a
single attribute, but also by their overall similarity.
Therefore, the count nijk in CFDT is more accurate
and representative than that in VFDT. Then the heu-
ristic evaluation function derived from nijk can choose
more appropriate attributes and cut-points. Third, the
micro-cluster classifiers in leaves ensure a better
exploitation of the available information of examples
compared with the majority voting strategy in VFDT.

CFDT also has moderately lower evaluation
runtime and memory requirements than ensemble
SmSCluster on all datasets. The runtime of single
SmSCluster is close to that of ensemble SmSCluster,
yet the accuracy is much lower. The most time con-
suming operation in SmSCluster is creating clusters
using the EM approach, especially the operation
where data points in one cluster are reassigned to
others in the expectation step. On average, a data
chunk having 2000 examples requires approximately
14 EM iterations to converge (Masud et al., 2008). In
CFDT, however, there is no iteration when creating
micro-clusters. The number of micro-clusters in a leaf
of CFDT is not fixed. This is greatly affected by
threshold Rmax. If the number of micro-clusters in one

Table 5 Comparison of accuracy, training and classification time, and memory usage among the algorithms
Accuracy (%)

Algorithm
GAUSS Hyper R-RBF R-Tree SEA WAVE21 WAVE40 CovT KDD-99

HT-NBA 99.85 89.39 88.76 97.42 89.01 83.09 82.85 80.45 99.19
CFDT 98.63 86.68 86.27 94.97 87.84 80.90 81.27 76.35 97.86
SmSC-S 98.94 65.73 66.13 78.59 65.54 61.90 55.76 65.44 85.15
SmSC-E 99.82 85.69 86.23 95.43 88.78 85.42 84.75 75.77 95.32

Evaluation time (s) Algorithm
GAUSS Hyper R-RBF R-Tree SEA WAVE21 WAVE40 CovT KDD-99

HT-NBA 14.48 14.02 15.01 8.60 5.23 31.21 61.23 36.63 33.41
CFDT 20.87 19.09 27.47 18.77 12.65 69.73 143.57 73.91 65.12
SmSC-S 730.00 703.00 6957.00 684.00 402.00 2420.00 4280.00 3090.00 2670.00
SmSC-E 815.00 758.00 7385.00 811.00 536.00 2709.00 4900.00 3750.00 2910.00

Memory (KB) Algorithm
GAUSS Hyper R-RBF R-Tree SEA WAVE21 WAVE40 CovT KDD-99

HT-NBA 271 925 1060 292 368 1169 2073 1152 154
CFDT 932 1469 2227 688 673 2731 3540 1846 780
SmSC-S 11 937 13 794 14 735 9473 5230 21 584 23 716 18 304 11 046
SmSC-E 19 868 22 781 26 379 16 561 6871 29 473 31 050 24 281 14 384
SmSC-S: SmSCluster (single); SmSC-E: SmSCluster (ensemble). Hyper: Hyperplane; R-RBF: Random RBF; R-Tree: Random Tree; CovT:
Covertype

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 626

leaf is eventually larger than W, Rmax is adjusted so
that the number of micro-clusters in the next leaf will
be smaller. Moreover, micro-clusters represented by
CF vectors can be calculated incrementally and effi-
ciently, so the approach also ensures a low runtime.
Third, all numerical attribute values of an example
can be discretized simultaneously by finding an ap-
propriate micro-cluster. This operation can also
greatly reduce runtime. For the above reasons, the
training and classification time of CFDT can be much
lower than that of SmSCluster.

Fig. 2 shows the learning curves of four algo-
rithms on the Random RBF dataset. When more ex-
amples are learned, Hoeffding tree based algorithms
can slowly improve their accuracy, while SmSCluster
remains almost constant if there is no concept drift in
datasets. This is because the ensemble strategy always
keeps limited numbers of base models in memory and
discards the previous useful models.

4.4 Runtime and scalability

Figs. 3 and 4 report the scalability of CFDT on
high-dimensional and multi-class data. The size of the
tree including internal nodes and leaves and runtime
on the GAUSS dataset comprising 106 examples are
measured. The tree size curves for a different number
of attributes (J) with a different number of classes (K)
are plotted in Fig. 3. We observe that a higher value of
K leads to a larger size of tree. This could occur be-
cause when K is larger, Less()t

jX and Great()t
jX

tend to be larger according to Eqs. (13) and (14), and
consequently the value of Info()t

jX is enlarged

according to Eq. (12), as are the values of ()t
jH X from

Eq. (18) and HΔ from Eq. (2). Therefore, H εΔ >
can be true when fewer examples are involved in
training. Since fewer examples are used in one leaf
split, more splits can be made with a fixed number of
training examples, leading to a decision tree with
more internal nodes and leaves. However, the size of
the tree keeps almost invariable with different values
of J for a particular value of K. This is due to the fact
that increasing J does not change the values of
Less()t

jX and Great()t
jX . The number of examples

needed for one leaf split is not changed either, re-
sulting in a constant size of the tree.

Fig. 4 shows how the runtime varies with the

number of attributes and the number of classes. For
example, the runtime is 76.14 s when J=40 and K=20.
The runtime increases linearly with the number of
attributes. This is because the runtimes of construct-
ing CF vectors, computing the heuristic evaluation
function, and classifying unlabeled examples are all
linear with the number of attributes. Also, note that
the runtime increases almost linearly with the number
of classes. This is because the runtimes of construct-

20 40 60 80
0

50

100

150

200

250

300

R
un

tim
e

(s
)

Number of attributes

 K=10
 K=20
 K=30
 K=40

Fig. 4 Runtime curves for a different number of attrib-
utes with a different number of classes (K) on the GAUSS
dataset

20 40 60 80
60

80

100

120

140

160

180

200

Tr
ee

 s
iz

e

Number of attributes

 K=10 K=20 K=30 K=40

Fig. 3 The tree size curves for a different number of
attributes with a different number of classes (K) on the
GAUSS dataset

Fig. 2 Learning curves of HT-NBA and CFDT (a) and
SmSCluster-Single and SmsCluster-Ensemble (b) on the
Random RBF dataset

0 2 4 6 8 10
60

65

70

75

80

85

90

 Number of examples (×105)

SmS-Ensemble

(b)

A
cc

ur
ac

y
(%

)

(a)

SmS-Single

0 2 4 6 8 10 70

75

80

85

90

 Number of examples (×105)

A
cc

ur
ac

y
(%

)

 HT-NBA
 CFDT

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 627

ing CF vectors, computing the heuristic evaluation
function, and classifying unlabeled examples are also
all linear with the number of class labels. This is de-
sirable. Therefore, we can conclude that CFDT scales
linearly to higher dimensionality and higher per-
centage of class labels.

4.5 Sensitivity to parameters

Fig. 5 shows how the classification accuracy
varies for CFDT with the percentage of labeled data
(P) in the dataset and the number of micro-clusters
(W). The results are obtained from the GAUSS data-
set comprising 106 examples with 10 class labels and
20 attributes. Higher values of W lead to higher ac-
curacies. This is due to the fact that when W is larger,
micro-clusters are getting smaller and purer, leading
to an accurate computation of the heuristic evaluation
function for leaf split and finer-grained classifiers in
leaves. However, there is no significant improvement
for accuracy after W reaches 10. The accuracy im-
proves with an increasing number of labeled data in
the dataset. The reason is evident. With more labeled
data, the boundary of each micro-cluster can be more
accurate, resulting in the improvement of the
performance.

5 Conclusions

This paper presents a new algorithm called

CFDT that integrates a scalable micro-clustering
method into the state-of-the-art algorithm VFDT and
runs effectively and efficiently for semi-supervised
classification of data streams. CFDT also incorpo-
rates another two extensions to VFDT. These are the
ability to deal with numeric attributes and apply more
elaborate classifiers in leaves. CF vectors which serve

as micro-clusters are the basic structure in CFDT
besides the decision tree, and play different roles at
different phases. Micro-clusters in leaves are con-
structed to discretize numeric attributes and store the
sufficient statistics of examples for calculating the
heuristic evaluation function at the training phase.
Moreover, unlabeled examples are assigned into
micro-clusters based on the similarity to the centroids
of clusters, enabling knowledge driven by them to be
learned. Whenever a testing example arrives, the
nearest neighbor algorithm is applied on the micro-
clusters in a leaf to obtain the predicted class label at
the classification phase. By efficiently constructing
micro-clusters and with no extra constructing classi-
fiers in leaves, CFDT can be very fast. Our experi-
ments on synthetic and real-world datasets show that
CFDT is a very competitive algorithm in accuracy,
training and classification time, and scalability.

Mining from concept drifting data streams is
another core issue (Hulten et al., 2001). Ensembles of
classifiers are the most ideal and promising methods
for this. Several ensemble strategies on VFDT have
been proposed (Bifet et al., 2009). Since CFDT
maintains all the desirable properties of VFDT, it can
be incorporated directly into such strategies.

References
Bifet, A., Kirkby, R., Holmes, G., Pfahringer, B., 2007. MOA:

Massive Online Analysis. Available from http://moa.cs.
waikato.ac.nz/ [Accessed on Jan. 31, 2010].

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavalda, R.,
2009. New Ensemble Methods for Evolving Data Streams.
Proc. 15th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, p.139-148. [doi:10.1145/
1557019.1557041]

Bifet, A., Holmes, G., Pfahringer, B., Frank, E., 2010. Fast
perceptron decision tree learning from evolving data
streams. LNCS, 6119:299-310. [doi:10.1007/978-3-642-
13672-6_30]

Chapelle, O., Scholkopf, B., Zien, A., 2006. Semi-supervised
Learning. MIT Press, Cambridge, USA, p.5.

Domingos, P., Hulten, G., 2000. Mining High-Speed Data
Streams. Proc. 6th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, p.71-80. [doi:
10.1145/347090.347107]

Gama, J., Rocha, R., Medas, P., 2003. Accurate Decision Trees
for Mining High-Speed Data Streams. Proc. 9th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, p.523-528. [doi:10.1145/956750.956813]

Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, W., 1999.
BOAT—Optimistic Decision Tree Construction. Proc.
ACM SIGMOD Int. Conf. on Management of Data,

0 5 10 15 20
20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Percentage of labeled data (%)

 W=2
 W=5
 W=10
 W=15

Fig. 5 Sensitivity to the percentage of labeled data in the
dataset and the number of micro-clusters (W)

Xu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):615-628 628

p.169-180. [doi:10.1145/304182.304197]
Gehrke, J., Ramakrishnan, R., Ganti, V., 2000. RainForest—a

framework for fast decision tree construction of large
datasets. Data Min. Knowl. Disc., 4(2/3):127-162.
[doi:10.1023/A:1009839829793]

Greenwald, M., Khanna, S., 2001. Space-Efficient Online
Computation of Quantile Summaries. Proc. ACM
SIGMOD Int. Conf. on Management of Data, p.58-66.
[doi:10.1145/375663.375670]

Hulten, G., Domingos, P., 2003. VFML—a Toolkit for Mining
High-Speed Time-Changing Data Streams. Available
from http://www.cs.washington.edu/dm/vfml [Accessed
on Apr. 25, 2010].

Hulten, G., Spencer, L., Domingos, P., 2001. Mining Time-
Changing Data Streams. Proc. 7th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining,
p.97-106. [doi:10.1145/502512.502529]

Jin, W., Tung, A.K.H., Han, J., 2001. Mining Top-n Local
Outliers in Large Databases. Proc. 7th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining,
p.293-298. [doi:10.1145/502512.502554]

Li, P., Wu, X., Hu, X., 2010. Learning from Concept Drifting
Data Streams with Unlabeled Data. Proc. 24th AAAI
Conf. on Artificial Intelligence, p.1495-1496.

Masud, M.M., Gao, J., Khan, L., Han, J., Thuraisingham, B.,
2008. A Practical Approach to Classify Evolving Data
Streams: Training with Limited Amount of Labeled Data.
Proc. 8th IEEE Int. Conf. on Data Mining, p.929-934.
[doi:10.1109/ICDM.2008.152]

Mehta, M., Agrawal, R., Rissanen, J., 1996. SLIQ: a fast
scalable classifier for data mining. LNCS, 1057:18-32.
[doi:10.1007/BFb0014141]

Pfahringer, B., Holmes, G., Kirkby, R., 2007. New options for
Hoeffding trees. LNCS, 4830:90-99. [doi:10.1007/978-3-
540-76928-6_11]

Pfahringer, B., Holmes, G., Krikby, R., 2008. Handling
Numeric Attributes in Hoeffding Trees. Proc. 12th
Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, p.296-307. [doi:10.1007/978-3-540-68125-0_27]

Shafer, J.C., Agrawal, R., Mehta, M., 1996. SPRINT: a
Scalable Parallel Classifier for Data Mining. Proc. 22nd
Int. Conf. on Very Large Data Bases, p.544-555.

Street, W.N., Kim, Y., 2001. A Streaming Ensemble
Algorithm (SEA) for Large-Scale Classification. Proc.
7th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, p.377-382.

Wang, H., Fan, W., Yu, P.S., Han, J., 2003. Mining Concept-
Drifting Data Streams Using Ensemble Classifiers. Proc.
9th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, p.226-235. [doi:10.1145/956750.956
778]

Wu, S., Yang, C., Zhou, J., 2006. Clustering-Training for Data
Stream Mining. Proc. 6th IEEE Int. Conf. on Data Mining,
p.653-656. [doi:10.1109/ICDMW.2006.45]

Yu, H., Yang, J., Han, J., 2003. Classifying Large Data Sets
Using SVMs with Hierarchical Clusters. Proc. 9th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, p.306-315. [doi:10.1145/956750.956786]

Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: an
Efficient Data Clustering Method for Very Large
Databases. Proc. ACM SIGMOD Int. Conf. on
Management of Data, p.103-114. [doi:10.1145/235968.
233324]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

