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Abstract:    Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data. 
Such approaches are impractical since labeled data are usually hard to obtain in reality. In this paper, we build a clustering feature 
decision tree model, CFDT, from data streams having both unlabeled and a small number of labeled examples. CFDT applies a 
micro-clustering algorithm that scans the data only once to provide the statistical summaries of the data for incremental decision 
tree induction. Micro-clusters also serve as classifiers in tree leaves to improve classification accuracy and reinforce the any-time 
property. Our experiments on synthetic and real-world datasets show that CFDT is highly scalable for data streams while gener-
ating high classification accuracy with high speed. 
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1  Introduction 
 

Historically, machine learning has concentrated 
on learning models from small numbers of examples. 
More recently, the need to process larger amounts of 
data has motivated the field of data mining. Nowa-
days, we are faced with a tremendous number of data 
streams from sensor networks, social networks, Web 
applications, scientific experiments, and financial 
activities, etc. In most cases, such data are massive, 
temporally ordered, fast changing, and potentially 
infinite (Domingos and Hulten, 2000). Mining from 
data streams is a research topic of growing interest. 

Most approaches in classifying data streams 
assume that a major portion of the data streams are 
labeled, which can be used in training to build 
classification models; the remaining small amount of 

unlabeled data can then be classified with the models. 
However, data streams are not inherently accompanied 
by class labels in real-world applications. They are 
usually labeled manually. Such operations are both 
costly and time consuming. Therefore, in a streaming 
environment, labeled examples that can be used in 
training may be very scarce, leading to poorly trained 
classifiers. In comparison with the supervised 
algorithms that use only labeled examples, one can 
hope for a more accurate prediction by taking into 
account the unlabeled examples. Semi-supervised 
learning from data streams has emerged as an exciting 
direction in machine learning research. 

In a streaming environment the algorithms run 
under time and space constraints. With the fast and 
continuous supply of data, the algorithms could not 
obtain all data at the beginning of training. Moreover, 
the algorithms have no control over the order of the 
data seen, so they must update incrementally when-
ever an example is inspected. In other words, the fresh 
knowledge derived from new examples must be in-
corporated without repeating the entire training 
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processes. Therefore, the fundamental problem to 
solve in the context of data streams is that: given an 
infinite amount of continuous data examples, how to 
model them in order to capture their trends and pat-
terns, and make time-critical predictions (Wang et al., 
2003). 

With regard to semi-supervised learning, sup-
pose that the examples of each class tend to form a 
cluster; therefore, the unlabeled data could assist in 
finding the boundary of each cluster. The motivation 
behind this approach is the cluster assumption. If two 
examples are in the same cluster, they are likely to be 
of the same class (Chapelle et al., 2006). This as-
sumption should be reasonable on the basis of the 
sheer existence of classes. If there is a densely popu-
lated continuum of objects, it may seem unlikely that 
they are ever distinguished into different classes. 
Moreover, the assumption does not imply that each 
class forms a single compact cluster. It addresses that 
usually one does not observe objects of two distinct 
classes in the same cluster. With more examples in a 
cluster, labeled or unlabeled, the boundary can be 
more accurate, so is the classification model. 

Motivated by the assumption, we propose CFDT, 
an acronym for the clustering feature decision trees, 
learning from data streams having both unlabeled and 
a small amount of labeled examples. Very fast deci-
sion tree (VFDT) is one of the most successful and 
prominent algorithms designed specifically for su-
pervised classification of data streams. CFDT applies 
an efficient semi-supervised clustering algorithm on 
VFDT, and is able to scan the data only once to pro-
vide the statistical summaries of the data in the form 
of micro-clusters for incremental decision tree  
induction.  

Micro-clusters also serve as classifiers in tree 
leaves to improve classification accuracy and reinforce 
the any-time property. The classification is performed 
with the decision tree to seek an appropriate leaf and 
then the nearest neighbor (NN) algorithm in the leaf. 

We have made three contributions. First, we 
propose an efficient semi-supervised classification 
algorithm for data streams based on the micro-  
clustering technique. Second, we provide an exten-
sion to the state-of-the-art VFDT algorithm with the 
ability to deal with numeric attributes for data streams. 
Third, we apply more powerful classifiers in leaves of 
VFDT, which can improve its accuracy and reinforce 

its any-time property on data streams. Evaluations on 
both synthetic and real-world datasets comprising up 
to one million examples show that our approach can 
achieve better classification accuracy than other 
stream classification approaches, using only a frac-
tion of the labeled examples. 
 
 
2  Related works 
 

A classification algorithm for data streams must 
meet several different requirements from the tradi-
tional setting (Bifet et al., 2009). The most significant 
are the following. First, process one example at a time, 
and inspect it at most once. The data examples flow in 
and out of a system one after another. Each example 
must be accepted in the order in which it arrives. Once 
inspected or ignored, the example is discarded with 
no way to retrieve it. Second, use a limited amount of 
memory. Memory will be easily exhausted without 
limiting its allocation since the amount of the data is 
potentially infinite. Third, work in a limited amount 
of time. Though most conventional algorithms are 
fast enough when classifying examples, the training 
processes are time consuming. For an algorithm to 
scale comfortably to any number of examples, its 
training complexity must be linear to the number of 
examples, such that online learning is possible. 
Fourth, be ready to perform classification at any time. 
This is the so-called any-time property, which indi-
cates that the induction model is ready to be applied at 
any point between training examples. 

Our work is related to both decision tree induc-
tion algorithms and semi-supervised classification 
techniques on data streams. We briefly discuss both of 
them. 

2.1  Decision tree induction algorithms on data 
streams 

Decision tree is one of the most often used 
techniques in the data mining literature. Each node of 
a decision tree contains a test on an attribute. Each 
branch from a node corresponds to a possible out-
come of the test and each leaf contains a class pre-
diction. A decision tree is constructed by recursively 
replacing leaves by test nodes, starting at the root. The 
attribute to test in a leaf is chosen by comparing  
all available attributes and choosing the best one  
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according to some heuristic evaluation function. 
Classic decision tree learners like ID3, C4.5, and 
CART assume that all training examples can be stored 
simultaneously in memory, and thus are severely 
limited in the number of examples from which they 
can learn. 

Previous works on scaling up decision tree 
learning algorithms are SLIQ (Mehta et al., 1996), 
SPRINT (Shafer et al., 1996), BOAT (Gehrke et al., 
1999), and RAINFOREST (Gehrke et al., 2000). 
These approaches perform static learning of decision 
trees from large data sources in limited memory by 
performing multiple passes over the data and using 
external storage. Such operations are not suitable for 
high-speed stream processing. 

Domingos and Hulten (2000) proposed an in-
cremental decision tree algorithm called the Hoeffding 
tree. For streams made up of discrete types of data, 
Hoeffding bounds guarantee that the output model is 
asymptotically nearly identical to that of a conven-
tional decision tree. The Hoeffding tree algorithm is 
the basic theoretical algorithm and represents current 
state-of-the-art for classifying high-speed data 
streams. Its implementation is VFDT which adopts 
several enhancement techniques for practical appli-
cations, such as grace period, pre-pruning, and tie 
breaking. 

Since the majority voting strategy used in the 
Hoeffding tree uses only a small part of the available 
information in leaves, Gama et al. (2003) proposed 
the VFDTc algorithm, which incorporates two main 
extensions to VFDT. These are the ability to deal with 
numeric attributes and apply naïve Bayes classifiers 
in tree leaves. In this way, there is a much better ex-
ploitation of the available information. VFDTc can 
obtain a performance similar to that of the C4.5 al-
gorithm even on medium size datasets. 

Furthermore, the CVFDT proposed by Hulten et 
al. (2001) induces a decision tree from concept 
drifting data streams based on VFDT. It can keep the 
latest knowledge by growing a sub-tree from new 
examples and replacing the old when the new be-
comes more accurate. 

Hoeffding option tree (Pfahringer et al., 2007) is 
a regular Hoeffding tree containing extra option 
nodes besides the internal decision nodes and leaves. 
The structure makes it possible for an example to 
travel down multiple paths and arrive at multiple 

leaves. An adaptive Hoeffding option tree (Bifet et al., 
2009) is a Hoeffding option tree with several im-
provements. Each leaf stores an estimation of the 
current classification error and the weight of each 
node in the major voting process which is propor-
tional to the square of the inverse of the error. A 
Hoeffding perceptron tree (Bifet et al., 2010) is a 
Hoeffding tree that has a perceptron in each leaf. 

Bifet et al. (2009) also proposed two new en-
semble learning strategies, adaptive window bagging 
and adaptive size Hoeffding tree bagging, which 
combine Hoeffding trees into ensemble classifiers to 
achieve better accuracy. 

In all the extensions mentioned above, the 
structure of the Hoeffding tree is not modified. Only 
some extra features are appended to the nodes, such as 
features to deal with numeric attributes, additional 
option nodes, and more sophisticated classifiers in 
leaves (e.g., naïve Bayes, perceptron). However, to 
build such classifiers from the examples in leaves is 
time consuming, especially when there are enormous 
leaves. 

2.2  Semi-supervised classification algorithms on 
data streams 

The supervised classification problem is gener-
ally defined as follows. A set of Nl training examples 
Sl={(xi, yi)|i=1, 2, …, Nl} of the form (x, y) is given, 
where x=(x1, x2, …, xJ) is a value vector of 
J-dimensional attributes, each of which may be dis-
crete or numerical. The attributes are represented as 
X=(X1, X2, …, XJ). yi is a nominal class label, yi∈{c1, 
c2, …, cK}. In addition to labeled examples, the algo-
rithm of semi-supervised learning is provided with a 
set of unlabeled examples Su={(xi, yi)|i=Nl+1, Nl+2, …, 
N}, where N>>Nl and yi=φ indicates the example is 
unlabeled. Therefore, the training examples are 
S=Sl∪Su={(xi, yi)|i=1, 2, …, N} and yi∈{φ, c1, c2, …, 
cK}. The semi-supervised learning in this work is to 
build a model y=f(x) from these examples that can 
predict the class labels of future examples with high 
accuracy. 

There have been several works in semi- 
supervised stream data classification, most of which 
are based on clustering techniques. The self-training 
strategy is adopted in the cluster-training algorithm, 
which applies k-prototype clustering to select confi-
dently unlabeled examples and uses them to retrain the 
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classifier iteratively (Wu et al., 2006). Though the 
unlabeled data can be fully exploited in cluster-training, 
the retraining operation is time consuming, which may 
be undesirable in a high speed streaming environment. 
SmSCluster is an ensemble classification model spe-
cialized for concept drifting data streams (Masud et al., 
2008), which can be trained from a dataset having 
both unlabeled and a small number of labeled exam-
ples. Each base model in SmSCluster is built as  
micro-clusters using the semi-supervised k-means 
clustering technique, and classification is performed 
with the k-nearest neighbor algorithm. Such models 
are combined together to classify the unlabeled data. 
SmSCluster is a moderately practical approach to 
handling the real-world stream classification problem; 
yet the runtime of the expectation maximization ap-
proach used in clustering could be reduced. SUN is a 
semi-supervised classification algorithm for data 
streams with concept drifts (Li et al., 2010), based on 
an evolved decision tree. The k-mode clustering al-
gorithm is developed to generate concept clusters in 
leaves of the decision tree to detect concept drifts, and 
an unlabeled example is labeled with the majority 
class of the cluster to which it belongs. Though 
unlabeled examples are exploited in SUN, they are 
used not for training the model but for detecting 
concept drifts. Therefore, only a small portion of the 
information obtained from them is used. 

 
 

3  Very fast decision tree and clustering fea-
ture decision trees 

3.1  Very fast decision tree 

The Hoeffding tree algorithm is a classification 
model that constructs a decision tree model from data 
streams incrementally with no need to store them or 
repeat the entire induction process on all of the ob-
served examples. The only information needed in 
memory is the tree itself, which stores sufficient sta-
tistics in its leaves in order to grow. 

The Hoeffding tree is constructed by making 
recursive splits of leaves and subsequently obtaining 
internal decision nodes, such that a tree structure is 
formed. The splits are decided by heuristic evaluation 
functions to choose the best cut-point of an attribute. 
The main innovation in the Hoeffding tree is the use 
of a Hoeffding bound to decide how many examples 

are necessary to be collected for heuristic evaluation 
in each leaf. Assuming a real-valued random variable 
r whose range is Ra (e.g., for a probability, Ra=1; for 
an information gain, Ra=log2K, where K is the number 
of classes), suppose there are N independent obser-
vations of this variable whose mean value is .r  The 
Hoeffding bound indicates that, with probability 1−δ, 
the true mean of the variable is at least ,r ε−  where 

 
 

1/22
a ln(1 / ) (2 ) .R Nε δ⎡ ⎤= ⎣ ⎦  (1) 

 
Let H(·) be a heuristic evaluation function, and 

assume H is maximized. Let Xa be the attribute with 
the highest H  observed after observing N examples, 
and Xb be the second highest attribute. Let 

a b( ) ( )H H X H XΔ = −  be the difference between the 
two best observed heuristic values. Then, given a 
desired δ, the Hoeffding bound guarantees that Xa is 
the correct choice with probability 1−δ if N examples 
have been observed in this node and H εΔ > . That is, 
if the observed ,H εΔ >  then the Hoeffding bound 

guarantees that the true value 0H H εΔ ≥ Δ − >  with 
probability 1−δ, and therefore Xa is indeed the best 
attribute with probability 1−δ. At this point, the leaf 
can be split using the current best attribute, and is 
transformed into an internal decision node. 

Each leaf stores only the sufficient statistics 
about attribute values, instead of the whole example. 
When an example traverses to a leaf, the statistics at 
the leaf are updated, and the heuristic measure is 
evaluated to check whether or not to split the leaf. 
Assuming the heuristic function is the information 
gain, the statistics are the counts nijk, representing the 
number of examples of class ck that reach the leaf, 
where the attribute Xj takes the value i. Then H(Xj) for 
attribute Xj is calculated using 
 
 ( ) Info(examples) Info( ),j jH X X= −  (2) 
 
where Info(examples) is the information of the ex-
amples that reach the leaf, and 
 

 2Info( ) logj i ik ik
i k

X P P P⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ ∑  (3) 

 
is the information of attribute Xj. In Eq. (3), 
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 ik ijk tjk
t

P n n= ∑  (4) 

 
is the probability of the observed value i of attribute Xj 
given class ck, and 

 

 i ijt sjt
t s t

P n n=∑ ∑∑  (5) 

 
is the probability of the observed value i of attribute 
Xj. 

The Hoeffding tree algorithm uses the majority 
voting strategy in classification. When classifying an 
unlabeled test example, the example is filtered down 
to an appropriate leaf and classified with the majority 
class of the training examples in the leaf. 

VFDT applies several extensions, such as the 
grace period, pre-pruning, and tie breaking, to en-
hance the basic Hoeffding tree algorithm. 

3.2  Clustering feature decision trees 

We present a decision tree induction algorithm 
CFDT, an acronym for the clustering feature decision 
tree for the semi-supervised learner, which is the 
extension of VFDT. By using micro-clustering and 
clustering feature techniques, CFDT has the ability of 
learning from data streams having both labeled and 
unlabeled examples. Micro-clusters are used in cal-
culating and storing the statistics used in the heuristic 
evaluation function for splits of leaves, as well as in 
making classification on testing examples. 

The micro-clustering technique was originally 
exploited by Zhang et al. (1996). The concept of 
‘micro-cluster’ in this paper is similar to those in 
Zhang et al. (1996), Jin et al. (2001), and Yu et al. 
(2003), and denotes a statistically summarized rep-
resentation of a group of examples with the same 
class label which are so close together that they are 
likely to belong to the same cluster. 

3.3  Clustering feature vector 

A clustering feature (CF) vector is a tuple that 
summarizes the sufficient information of a cluster. 
The concept of CF and its characteristic make the 
clustering incremental without expensive computa-
tions. Given N examples {xi|i=1, 2, …, N} in a cluster, 
the CF vector of the cluster is a tuple CF=(N, LS, SS), 

where 
1

N
ii=

= ∑ xLS  is the linear sum of the examples, 

and 2
1

N
ii=

= ∑ xSS  is the square sum of the examples 

(Zhang et al., 1996). 
The additivity of the CF vector indicates that if 

CF1=(N1, LS1, SS1) and CF2=(N2, LS2, SS2) are the 
CF vectors of two disjoint clusters, the CF vector of 
the cluster formed by merging the two disjoint clus-
ters is 
 

1 2 1 2 1 2 1 2( , , ).N N+ = + + +CF CF LS LS SS SS   (6) 
 

The centroid C and radius R of the cluster are 
defined as follows: 
 

 
1

1 ,
N

i
iN =

= ∑C x  (7) 

 
1/2

2

1

1 ,
N

i
i

R
N =

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ x C  (8) 

 
where R is the average distance from the cluster 
member to the centroid. A pure cluster is the cluster 
that contains only examples with the same class label 
and unlabeled examples. 

From the CF definition and additivity charac-
teristic, we know that the CF vector of a cluster can be 
calculated incrementally and accurately as new ex-
amples are incorporated. The centroid C and the ra-
dius R of a cluster can be calculated from the CF 
vector of the cluster using the following equations: 
 
 / ,N=C LS   (9) 

 
1/2

2
2

1 1

1 1SS (LS ) .
J J

j j
j j

R
N N= =

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑ ∑  (10) 

 
One usually thinks of a cluster as a set of data 

points, but the CF vector is stored only as a statistical 
summary. Managing the CF vector is efficient and 
accurate, saves space significantly, and is sufficient 
for calculating all the information to build a decision 
tree. Therefore, the CF vector serves as the micro- 
cluster in this paper. 

A CFDT is a decision tree with two parameters 
for leaves, the threshold Rmax and the maximum 
number of micro-clusters W. Rmax is a constraint for 
micro-clusters to ensure that the radius of each  
micro-cluster has to be less than Rmax. Each leaf of the 
CFDT consists of at most K entries of the form  
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[ck, m-clusterk], with K being the number of classes, 
and each entry consists of at most W micro-clusters 
whose members are from ck or φ, i.e., m-clusterk= 
{CFik|i=1, 2, …, W}. 

Each example is inspected by CFDT only once 
to obtain information. The process that an example  
(x, y) is inserted into a micro-cluster of a leaf is as 
follows: 

1. Identify an appropriate leaf. The example 
traverses the CFDT from the root to a leaf, testing the 
appropriate attribute at each internal node and fol-
lowing the branch corresponding to the attribute value 
of the example. 

2. Seek an entry. Two situations should be con-
sidered. For a labeled example (i.e., y≠φ), an entry is 
chosen whose class label is also y, and then a micro- 
cluster is selected whose centroid is the closest. For an 
unlabeled example (i.e., y=φ), a micro-cluster is se-
lected whose centroid is the closest from all entries in 
the leaf. In this way, information obtained from la-
beled and unlabeled examples is absorbed by micro- 
clusters. 

3. Modify the leaf. If the micro-cluster can in-
corporate the example without violating the threshold 
Rmax condition, update the micro-cluster, i.e., the CF 
vector. If not, construct a new one for the example. 
Then the example is discarded to leave memory for 
future examples. 

If we treat the example (x, y) as a new cluster, the 
CF vector of this cluster is represented as CFx. Add-
ing an example to a cluster at the (r+1)th step is 
equivalent to merging two disjoint clusters. That is, 
 

1

2

( ,  ,  )

( 1,  ,  ).

r r

r r r

r r r

N N

N

+ = +

= + + +

= + + +

x

x x x

x x

CF CF CF
LS LS SS SS

LS SS
 (11) 

 
After the entries of a leaf are constructed, ex-

amples in a micro-cluster can be substituted by the 
centroid of the cluster to simplify the calculation. 
Moreover, the numerical attribute values are discre-
tized, so that the counts nijk can be derived directly. 
Note that a micro-cluster is excluded from the com-
putation of the heuristic evaluation function if it 
contains no labeled examples. 

The value of threshold Rmax will greatly affect 
the number of micro-clusters in an entry. The initial 
value 0

maxR  can be set conservatively, which may 

produce more than W micro-clusters in an entry. 0
maxR  

is determined at the very beginning of the model 
training process, which can be achieved using an 
offline process. A standard k-means clustering algo-
rithm is employed on a batch of examples to create 
W·K clusters. Once these clusters have been estab-
lished, the minimum value of the radii of all clusters 
can be assigned to 0

maxR . When new blank leaves are 
constructed, Rmax should be adjusted to produce an 
appropriate number of micro-clusters. We use 

1 1/
max max ( / ) ,i i J

iR R W W+ = ⋅  where Wi is the minimum 
number of micro-clusters among all entries in the 
previous leaf. 

3.4  Heuristic evaluation function 

Fig. 1 shows the structure of CFDT. In CFDT a 
leaf that contains a heuristic evaluation function for 
continuous attributes creates two descendant leaves. 
For an attribute Xj of the vector x, which is numerical, 
the heuristic evaluation function is a condition of the 
form Xj<cutpj to determine if the attribute value xj of 
an example x is less than cutpj or not. Then the 
cut-point cutpj divides the training dataset into two 
subsets, which correspond to the values TRUE (sub-
set A) and FALSE (subset B) for the function. What 
needs to be determined is how to split subsets of X to 
produce the best tree-structured classifier. CFDT uses 
the recursive binary partition strategy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At each stage in the recursive split, we use an 
exhaustive method. All attributes X of the examples 
and all possible cut-points for each attribute are 
evaluated, and the class distributions at both sides of 
the cut-point are calculated. 

A leaf node

c1 c2 cK

…

…

…

unlabeled

Fig. 1  Structure of the clustering feature decision trees 
(CFDT) model 
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To calculate the class distribution of the exam-
ples, for each possible cut-point, we compute the 
information of the two partitions using the following 
heuristic function (Gama et al., 2003): 
 

 
Info( ) ( cutp ) Less( )

( cutp ) Great( ),

t t
j j jt j

t
j jt j

X P X X

P X X

= < ⋅

+ > ⋅
 (12) 

 
where Info( )t

jX is the information for attribute Xj and 

cutpjt, cutpjt is the tth possible cut-point for attribute Xj, 
Less( )t

jX  is the information of Xj<cutpjt, and 

Great( )t
jX  is the information of Xj>cutpjt, which are 

calculated by 
 

 1

2

Less( ) ( | cutp )

log ( | cutp ) ,

K
t
j i j jt

i

i j jt

X P y c X

P y c X
=

⎡=− = <⎣

⎤⋅ = < ⎦

∑
      (13) 

 1

2

Great( ) ( | cutp )

log ( | cutp ) .

K
t
j i j jt

i

i j jt

X P y c X

P y c X
=

⎡=− = >⎣

⎤⋅ = > ⎦

∑
      (14) 

 
The fundamental variables for calculating all 

these necessary statistics are the counts nijk, which can 
be derived directly from the micro-clusters in leaves 
as presented above. 

Without loss of generality, we consider cases 
where each entry has an equal number of W micro- 
clusters for convenience of explanation. Suppose  
[ck, m-clusterk] is an entry in a leaf corresponding to 
class ck, and m-clusterk={CFik|i=1, 2, …, W}. There-
fore, the centroids of the micro-clusters are {Cik|i=1, 
2, …, W}, and the numbers of examples in the  
micro-clusters are {Nik|i=1, 2, …, W}. Since examples 
in a micro-cluster can be substituted by the centroid of 
the cluster, the number of examples that have the 
value Cik is Nik. Moreover, since we have Cik=(ci1k, 
ci2k, …, cijk, …, ciJk) where cijk is the attribute value of 
Cik corresponding to attribute Xj, the number of ex-
amples that have the value cijk is Nik, i.e., nijk=Nik. 

To calculate the class distribution of the exam-
ples in a leaf, the attribute values of the centroids of 
all the micro-clusters need to be sorted for every at-
tribute. The operation is time saving since the number 
of centroids is much smaller than that of examples, 
which are J groups with W·K examples in each group. 

Letting cj(1)<cj(2)<…<cj(W·K) be the ordered dis-
tinct values of c1j1, c2j1, …, cWj1, …, c1j2, …, cWj2, …, 
cWjK in a leaf, then the tth possible cut-point can be 
 

( )( ) ( 1)cutp 2,   1,2,..., 1.jt j t j tc c t WK+= + = −    (15) 
 

Therefore, even if there are a large number of 
examples, there are a finite number of possible 
cut-points to be considered. 

Let nj(1), nj(2), …, nj(WK) be the numbers of ex-
amples corresponding to cj(1), cj(2), …, cj(WK), and N be 
the total number of examples in the leaf. Therefore, 
 

 ( )
1

1( cutp ) ,
t

j jt j i
i

P X n
N =

< = ∑  (16) 

 ( ) ( )
1 1

( | cutp ) .

i i

t WK

i j jt j d j d
d d
y c y c

P y c X n n
= =
= =

= < = ∑ ∑  (17) 

 

( )t
jH X  for attribute Xj at cutpjt is calculated as 

 

 ( ) Info(examples) Info( ).t t
j jH X X= −  (18) 

 
Therefore, we can use the same method as in the 

induction of the Hoeffding tree to choose the appro-
priate attribute and the correct cut-point. 

3.5  Discrete attributes 

We create one independent ‘1–0’ feature for each 
value of the discrete attributes such that ‘1’ indicates 
the existence of the value and ‘0’ indicates the ab-
sence of the value. The method for dealing with dis-
crete attributes is not the optimal one for building a 
decision tree or clustering, but a general one for 
categorical attributes, discrete ordinal attributes, and 
ratio-scaled attributes. Using more sophisticated ap-
proaches could further improve the performance, yet 
may take too much runtime for calculation to be 
suitable for classification of data streams. 

3.6  Construction of CFDT 

The complete algorithm of CFDT is presented in 
Algorithm 1. The construction process of a CFDT is 
similar to that of a VFDT. With the continuous supply 
of data stream examples, the first ones are used to 
choose the root test. Once the root attribute is chosen, 
the succeeding examples are passed down to the 
corresponding leaves and used to choose the appro-
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priate attributes there, and so on, recursively. Anno-
tations are added to the pseudo code of the algorithm. 

 
Algorithm 1    CFDT algorithm 
Inputs: 
S a sequence of examples, 
X a vector of attributes, 
H(·) a heuristic evaluation function, 
δ one minus the desired probability of choosing 
 the correct attribute at any given node, 
Rmax the initial threshold, 
W the maximum number of micro-clusters. 
Output: 
T a decision tree. 

1 Procedure CFDT(S, X, H(·), δ, Rmax , W) 
// Start from a tree with one blank root 

2  Let T be a tree with a root; 
3  /* build the tree by making recursive splits of 

leaves and subsequently obtaining internal  
decision nodes */ 
for each example (x, y) in S      // y=ck or y=φ 
/* filter the example into a leaf and assign it to a 
cluster */ 

4  Filter the example into a leaf l using T; 
5  if y=ck 
6  Seek a proper entry having the same class 

label and a closest micro-cluster to incor-
porate the example; 

7  end if 
8  if y=φ 
9  Seek a closest micro-cluster to incorporate 

the example; 
10  end if 
11  if the micro-cluster cannot absorb the example
12  Construct a new micro-cluster; 
13  end if 
14  // update the statistics of the cluster 

Update the CF vector of the micro-cluster in 
the entry; 

15  /* If a specific number of examples are accu-
mulated, try to calculate the heuristic function 
and find the best cut-point. Nl is the number of 
examples seen at leaf l */ 
if (Nl mod nmin=0) and the examples seen so far 
at l are not all of the same class 

16  Sort the attribute values of the centroids of 
all the micro-clusters for every attribute; 

17  Compute ( )t
l jH X  for each attribute and each 

possible cut-point using Eqs. (12) and (18); 
18  Compute the Hoeffding bound; 
19  Let Xa be the attribute with the highest lH ;
20  Let Xb be the attribute with the second 

highest lH ; 
21  /* If the condition of split is satisfied, turn 

the leaf into an internal node, and add new 
leaves to it */ 
if a b( ) ( )H X H X ε− >  or ε τ<  

22 Replace l with an internal node that splits 
on Xa and the corresponding cut-point; 

23 Adjust Rmax using 
1 1/

max max ( / )i i J
iR R W W+ = ⋅ ; 

24 for the two branches of the split 
25 Add a new leaf with initialized suffi-

cient statistics; 
26 end for 
27 end if 
28 end if 
29 end for 
30 end Procedure 

 

3.7  Functional tree leaves 

One of the innovations of our algorithm is that 
the current micro-clusters in tree leaves can be reused 
and serve as classification models. The majority class 
strategy of VFDT uses only the information about 
class distributions and does not consider the attribute 
values. It uses only a small part of the available in-
formation, a crude approximation to the distribution 
of the examples. In contrast, micro-clusters of CFDT 
take into account not only the class distribution, but 
also the attribute values given the class. By this 
method, there is a much better exploitation of the 
available information in leaves. 

To predict the class label of a testing example x, 
the example traverses the tree from the root to a leaf, 
testing the appropriate attribute at each internal node 
and following the branch corresponding to the attrib-
ute value of the example. After x falls into a leaf, two 
cases are considered. For a leaf having only one entry  
[ck, m-clusterk], ck is the predicted label for x. For a 
leaf having different entries, the nearest neighbor 
algorithm is applied to find the nearest micro-cluster 
from all micro-clusters in the leaf and the corre-
sponding class label is the predicted value for x. 

 
 

4  Experimental evaluation 
 

We applied CFDT on both synthetic datasets and 
real-world datasets to evaluate its performance in six 
aspects. These were the ability to handle numeric 
attributes, accuracy in semi-supervised classification, 
memory cost, training and classification speed, scal-
ability, and sensitivity to parameters. We compare 
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CFDT with the supervised baseline method Hoeffding 
Tree Naïve Bayes Adaptive (HT-NBA) and the semi- 
supervised method SmSCluster. 

4.1  Datasets and experiment setup 

The synthetic datasets include GAUSS, Hyper-
plane, Random RBF, Random Tree, SEA, and 
Waveform. The approach to generating the GAUSS 
dataset follows the way in Masud et al. (2008). In this 
work, the number of class labels is 5, and the number 
of attributes is 15. Examples belonging to each class 
are generated by following a normal distribution 
having a different mean within (−5.0, 5.0), and vari-
ance within (0.5, 9) for different classes. Hyperplane 
was used to compare CVFDT with VFDT under the 
environment of concept drift, where the number of 
attributes can be assigned by users (Hulten et al., 
2001). Random RBF generates examples from a fixed 
number of random centroids. Each time a centroid is 
selected at random, a data point around the centroid is 
drawn randomly. The centroid determines the class 
label of the example, and the data point determines 
the attributes of the example. Examples in Random 
Tree are generated by assigning random values to 
each attribute first and the class label is determined 
via a pre-constructed decision tree (Domingos and 
Hulten, 2000). SEA generates examples with three 
attributes and two class labels, where the first two 
attributes are relevant (Street and Kim, 2001). For the 
waveform dataset, there are two versions in massive 
online analysis (MOA). The first has 21 numeric 
attributes and 3 class labels. The second introduces 19 
additional irrelevant attributes, which can be viewed 
as noises. The real-world datasets include Forest 
Covertype and KDD-99. The Forest Covertype data-
set is taken from the UCI repository. It contains 
581 012 examples, 54 attributes, and 7 class labels. 
The classification goal is to predict the forest cover 
type from cartographic variables. The KDD-99 
training dataset is from the UCI KDD archive, con-
sisting of 41 attributes, 23 class labels, and approxi-
mately five million examples. We use 10% (i.e., 
494 021) examples of KDD-99, and 34 numeric at-
tributes in our evaluation. All attribute values are 
normalized into [0, 1], divided by their maximum 
values. We assume that no concept drift exists in these 
datasets. The basic properties of each dataset and the 
initial Rmax for every dataset are listed in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MOA (Bifet et al., 2007) is a software environ-
ment for stream data mining, including evaluation 
measures and a collection of implemented Hoeffding 
tree based algorithms, such as VFDT and HT-NBA. 
The CFDT algorithm was integrated into MOA. 
SmSCluster was implemented in RapidMiner, which 
is another open source data mining system. The ex-
periments were performed on a 2.0 GHz Intel Core 
Duo PC with 2 GB RAM, running Windows XP. 
Parameter settings are: τ=0.05, nmin=1000, δ=5×10−6 
for both HT-NBA and CFDT, W=8 for CFDT. 

4.2  Comparison of approaches handling numeric 
attributes 

Several approaches handling numeric attributes 
when constructing Hoeffding trees have been pro-
posed in the data stream literature. Examples include 
VFML (very fast machine learning) implementation 
(Hulten and Domingos, 2003), Exhaustive Binary 
Tree (Gama et al., 2003), Quantile Summaries 
(Greenwald and Khanna, 2001), and Gaussian  
Approximation (Pfahringer et al., 2008). Pfahringer 
et al. (2008) investigated these methods and com-
pared them empirically to eight algorithm configura-
tions. From the results of the experimental compari-
son, GAUSS-10 and VFML-10 are highly competi-
tive on most testing configurations. Since CFDT has 
the natural ability to deal with numeric attributes by 
using the micro-clustering technique, we compare it 
against two representative methods, Gaussian Ap-
proximation and VFML implementation, to evaluate 
its performance. 

GAUSS-10 and VFML-10 are tested based on 
the HT-NBA classification algorithm. HT-NBA 

Table 1  Properties of the datasets 

Dataset nnom nnum K 0
maxR  

GAUSS 0 15 5 13.0 
Hyperplane 0 10 2   1.1 
Random RBF 0 10 2   1.8 
Random Tree 0 10 2   1.1 
SEA 0   3 2   4.0 
WAVE21 0 21 3   7.0 
WAVE40 0 40 3   8.5 
Covertype 44 10 7 60.0 
KDD-99 0 34 23 15.0 

nnom: number of nominal attributes; nnum: number of numeric at-
tributes; K: number of classes 
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contains Naïve Bayes learners in the leaves, making it 
more accurate than the basic Hoeffding Tree Majority 
Class algorithm. Seven synthetic datasets are used in 
the evaluation, and learning is limited to a maximum 
memory of 32 MB. We use a holdout evaluation 
strategy similar to that in Pfahringer et al. (2008). 
Each classifier is trained for 1 hr and then testing is 
conducted on a holdout dataset comprising up to 106 
examples. All training datasets in this subsection are 
100% labeled. 

Tables 2–4 list the experiment results of the three 
algorithms on seven synthetic datasets. Under the 
predefined setting, GAUSS-10 is the most accurate on 
all datasets, and builds the deepest trees with the most 
nodes and leaves amongst the three algorithms. There 
are two reasons for this. First, GAUSS-10 is faster 
than the other two algorithms, which means that 
GAUSS-10 can learn more examples under the same 
training time constraint. Second, GAUSS-10 needs 
less space for numeric approximation since only a few 
statistics are stored in the leaves, permitting the 
growth with a maximum number of active tree nodes 
in memory. CFDT and VFML-10 achieve similar 
accuracy in most cases but smaller accuracy than 
GAUSS-10, while the training speed of CFDT is a 
little higher than that of VFML-10 except on Random 
Tree. Without iteration, micro-clustering is much 
more efficient than conventional clustering methods. 
This makes CFDT fast enough to handle high-speed 
data streams. CFDT tends to create more nodes than 
VFML-10, suggesting that fewer examples are 
needed to determine a split point during the tree 
growth. The depths of CFDT are on average smaller 
than those of the other two algorithms, suggesting that 
the splits on all attributes are even, not on some spe-
cific attributes. 

According to space complexity analysis, to store 
sufficient statistics of J numeric attributes and K class 
labels, the memory required for each leaf is 5JK for 
GAUSS-10, and 10J+10JK for VFML-10. Each leaf 
of the CFDT consists of K entries of [ck, m-clusterk], 
each entry consists of W micro-clusters, and each 
micro-cluster needs 1+2J for storage of N, LS, and SS. 
To store statistics of W micro-clusters, the memory 
required for CFDT is K(1+W(1+2J)), that is (W+1)K+ 
2WJK. Given W=8, the memory cost is 9K+16JK. 
Considering its ability for semi-supervised classifi-
cation, the space complexity is acceptable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3  Classification accuracy, runtime, and memory 
usage 

In this subsection, we compare CFDT with su-
pervised baseline method HT-NBA with GAUSS-10 
as the numeric handler and semi-supervised method 
SmSCluster. When evaluating the performance, all 
training datasets for semi-supervised CFDT and 
SmSCluster are 20% labeled, meaning that 20% of 
the examples selected at random are assumed to have 
class labels, whereas the remaining 80% examples are 

Table 2  GAUSS-10 algorithm over seven datasets 

Dataset Accuracy
(%) 

nte 
(×106) ntn nal nil 

Tree 
depth

GAUSS 99.98 132 4267 2134 0 37
Hyperplane 92.01 42 31 215 12 686 2922 21
Random RBF 95.36 52 24 923 12 462 0 44
Random Tree 99.96 202 4599 2300 0 18
SEA 89.92 72 55 919 27 960 0 28
WAVE21 85.44 38 16 435 5866 2352 31
WAVE40 85.15 28 11 105 3134 2419 33
nte: number of training examples; ntn: number of total nodes; nal: 
number of active leaves; nil: number of inactive leaves 

Table 3  VFML-10 algorithm over seven datasets 

Dataset Accuracy
(%) 

nte 
(×106) ntn nal nil 

Tree 
depth

GAUSS 99.71 70 2917 1459 0 25 
Hyperplane 86.21 36 20 001 2995 7006 25 
Random RBF 93.94 38 14 181 3049 4042 28 
Random Tree 99.97 152 1631 816 0 23 
SEA 89.86 42 34 199 9426 7674 31 
WAVE21 82.93 34 9515 1389 3439 23 
WAVE40 82.82 30 7077 734 2805 20 
nte: number of training examples; ntn: number of total nodes; nal: 
number of active leaves; nil: number of inactive leaves 

Table 4  CFDT algorithm over seven datasets 

Dataset Accuracy
(%) 

nte 
(×106) ntn nal nil 

Tree 
depth

GAUSS 99.92 52 6341 3171 0 18
Hyperplane 87.35 40 27 415 8144 5564 16
Random RBF 92.77 42 23 809 6033 5872 22
Random Tree 97.75 58 7897 3949 0 18
SEA 87.91 54 35 213 13 652 3955 15
WAVE21 82.58 38 12 373 3021 3166 17
WAVE40 82.17 34 8897 1926 2523 17
nte: number of training examples; ntn: number of total nodes; nal: 
number of active leaves; nil: number of inactive leaves 
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unlabeled. For supervised HT-NBA, we use the same 
number of training examples for comparison, which 
are all labeled. Parameters in SmSCluster are set to 
the default values, which are: Clusters=50 (number of 
clusters), ChunkSize=5000 (number of examples in 
each chunk), L=1 (ensemble size) represents the sin-
gle classifier, and L=8 represents the ensemble clas-
sifier. The evaluation strategy is interleaved test-then- 
train. Each example is used for testing the model 
before being used for training. It assures that the 
model is always being tested on examples it has not 
seen. Seven synthetic datasets comprising up to 106 
examples and two real-world datasets are used in the 
evaluation. We disable memory management during 
the training to evaluate the memory requirements. 

Table 5 is the summary of the experiment results, 
where three metrics of accuracy, training and classi-
fication time, and memory usage are compared. 
Amongst all the algorithms, HT-NBA is apparently 
the most accurate, efficient, and space saving over all 
datasets. However, as a supervised method, it 
achieves 2.13% higher accuracy on average than 
CFDT by learning four times more labeled examples. 

CFDT has comparable accuracy to HT-NBA and 
ensemble SmSCluster. There are three reasons for this. 
First, with a great amount of unlabeled data involved 
in training, more information can be learned from  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

them, which makes the boundary of examples from 
different classes more accurate. Second, by using a 
micro-clustering approach, CFDT can group exam-
ples not only by their class labels or by the value of a 
single attribute, but also by their overall similarity. 
Therefore, the count nijk in CFDT is more accurate 
and representative than that in VFDT. Then the heu-
ristic evaluation function derived from nijk can choose 
more appropriate attributes and cut-points. Third, the 
micro-cluster classifiers in leaves ensure a better 
exploitation of the available information of examples 
compared with the majority voting strategy in VFDT. 

CFDT also has moderately lower evaluation 
runtime and memory requirements than ensemble 
SmSCluster on all datasets. The runtime of single 
SmSCluster is close to that of ensemble SmSCluster, 
yet the accuracy is much lower. The most time con-
suming operation in SmSCluster is creating clusters 
using the EM approach, especially the operation 
where data points in one cluster are reassigned to 
others in the expectation step. On average, a data 
chunk having 2000 examples requires approximately 
14 EM iterations to converge (Masud et al., 2008). In 
CFDT, however, there is no iteration when creating 
micro-clusters. The number of micro-clusters in a leaf 
of CFDT is not fixed. This is greatly affected by 
threshold Rmax. If the number of micro-clusters in one  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  Comparison of accuracy, training and classification time, and memory usage among the algorithms 
Accuracy (%) 

Algorithm 
GAUSS Hyper R-RBF R-Tree SEA WAVE21 WAVE40 CovT KDD-99

HT-NBA 99.85 89.39 88.76 97.42 89.01 83.09 82.85 80.45 99.19 
CFDT 98.63 86.68 86.27 94.97 87.84 80.90 81.27 76.35 97.86 
SmSC-S 98.94 65.73 66.13 78.59 65.54 61.90 55.76 65.44 85.15 
SmSC-E 99.82 85.69 86.23 95.43 88.78 85.42 84.75 75.77 95.32 

Evaluation time (s) Algorithm 
GAUSS Hyper R-RBF R-Tree SEA WAVE21 WAVE40 CovT KDD-99

HT-NBA 14.48 14.02 15.01 8.60 5.23 31.21 61.23 36.63 33.41
CFDT 20.87 19.09 27.47 18.77 12.65 69.73 143.57 73.91 65.12
SmSC-S 730.00 703.00 6957.00 684.00 402.00 2420.00 4280.00 3090.00 2670.00
SmSC-E 815.00 758.00 7385.00 811.00 536.00 2709.00 4900.00 3750.00 2910.00

Memory (KB) Algorithm 
GAUSS Hyper R-RBF R-Tree SEA WAVE21 WAVE40 CovT KDD-99

HT-NBA 271 925 1060 292 368 1169 2073 1152 154 
CFDT 932 1469 2227 688 673 2731 3540 1846 780 
SmSC-S 11 937 13 794 14 735 9473 5230 21 584 23 716 18 304 11 046 
SmSC-E 19 868 22 781 26 379 16 561 6871 29 473 31 050 24 281 14 384 
SmSC-S: SmSCluster (single); SmSC-E: SmSCluster (ensemble). Hyper: Hyperplane; R-RBF: Random RBF; R-Tree: Random Tree; CovT: 
Covertype 
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leaf is eventually larger than W, Rmax is adjusted so 
that the number of micro-clusters in the next leaf will 
be smaller. Moreover, micro-clusters represented by 
CF vectors can be calculated incrementally and effi-
ciently, so the approach also ensures a low runtime. 
Third, all numerical attribute values of an example 
can be discretized simultaneously by finding an ap-
propriate micro-cluster. This operation can also 
greatly reduce runtime. For the above reasons, the 
training and classification time of CFDT can be much 
lower than that of SmSCluster. 

Fig. 2 shows the learning curves of four algo-
rithms on the Random RBF dataset. When more ex-
amples are learned, Hoeffding tree based algorithms 
can slowly improve their accuracy, while SmSCluster 
remains almost constant if there is no concept drift in 
datasets. This is because the ensemble strategy always 
keeps limited numbers of base models in memory and 
discards the previous useful models. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Runtime and scalability 

Figs. 3 and 4 report the scalability of CFDT on 
high-dimensional and multi-class data. The size of the 
tree including internal nodes and leaves and runtime 
on the GAUSS dataset comprising 106 examples are 
measured. The tree size curves for a different number 
of attributes (J) with a different number of classes (K) 
are plotted in Fig. 3. We observe that a higher value of 
K leads to a larger size of tree. This could occur be-
cause when K is larger, Less( )t

jX  and Great( )t
jX  

tend to be larger according to Eqs. (13) and (14), and 
consequently the value of Info( )t

jX  is enlarged  

according to Eq. (12), as are the values of ( )t
jH X  from 

Eq. (18) and HΔ  from Eq. (2). Therefore, H εΔ >  
can be true when fewer examples are involved in 
training. Since fewer examples are used in one leaf 
split, more splits can be made with a fixed number of 
training examples, leading to a decision tree with 
more internal nodes and leaves. However, the size of 
the tree keeps almost invariable with different values 
of J for a particular value of K. This is due to the fact 
that increasing J does not change the values of 
Less( )t

jX  and Great( )t
jX . The number of examples 

needed for one leaf split is not changed either, re-
sulting in a constant size of the tree. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 4 shows how the runtime varies with the 

number of attributes and the number of classes. For 
example, the runtime is 76.14 s when J=40 and K=20. 
The runtime increases linearly with the number of 
attributes. This is because the runtimes of construct-
ing CF vectors, computing the heuristic evaluation 
function, and classifying unlabeled examples are all 
linear with the number of attributes. Also, note that 
the runtime increases almost linearly with the number 
of classes. This is because the runtimes of construct-
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Fig. 2  Learning curves of HT-NBA and CFDT (a) and 
SmSCluster-Single and SmsCluster-Ensemble (b) on the 
Random RBF dataset 
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ing CF vectors, computing the heuristic evaluation 
function, and classifying unlabeled examples are also 
all linear with the number of class labels. This is de-
sirable. Therefore, we can conclude that CFDT scales 
linearly to higher dimensionality and higher per-
centage of class labels. 

4.5  Sensitivity to parameters 

Fig. 5 shows how the classification accuracy 
varies for CFDT with the percentage of labeled data 
(P) in the dataset and the number of micro-clusters 
(W). The results are obtained from the GAUSS data-
set comprising 106 examples with 10 class labels and 
20 attributes. Higher values of W lead to higher ac-
curacies. This is due to the fact that when W is larger, 
micro-clusters are getting smaller and purer, leading 
to an accurate computation of the heuristic evaluation 
function for leaf split and finer-grained classifiers in 
leaves. However, there is no significant improvement 
for accuracy after W reaches 10. The accuracy im-
proves with an increasing number of labeled data in 
the dataset. The reason is evident. With more labeled 
data, the boundary of each micro-cluster can be more 
accurate, resulting in the improvement of the  
performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

5  Conclusions 
 
This paper presents a new algorithm called 

CFDT that integrates a scalable micro-clustering 
method into the state-of-the-art algorithm VFDT and 
runs effectively and efficiently for semi-supervised 
classification of data streams. CFDT also incorpo- 
rates another two extensions to VFDT. These are the 
ability to deal with numeric attributes and apply more 
elaborate classifiers in leaves. CF vectors which serve 

as micro-clusters are the basic structure in CFDT 
besides the decision tree, and play different roles at 
different phases. Micro-clusters in leaves are con- 
structed to discretize numeric attributes and store the 
sufficient statistics of examples for calculating the 
heuristic evaluation function at the training phase. 
Moreover, unlabeled examples are assigned into  
micro-clusters based on the similarity to the centroids 
of clusters, enabling knowledge driven by them to be 
learned. Whenever a testing example arrives, the 
nearest neighbor algorithm is applied on the micro- 
clusters in a leaf to obtain the predicted class label at 
the classification phase. By efficiently constructing 
micro-clusters and with no extra constructing classi-
fiers in leaves, CFDT can be very fast. Our experi-
ments on synthetic and real-world datasets show that 
CFDT is a very competitive algorithm in accuracy, 
training and classification time, and scalability. 

Mining from concept drifting data streams is 
another core issue (Hulten et al., 2001). Ensembles of 
classifiers are the most ideal and promising methods 
for this. Several ensemble strategies on VFDT have 
been proposed (Bifet et al., 2009). Since CFDT 
maintains all the desirable properties of VFDT, it can 
be incorporated directly into such strategies. 
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