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Abstract:
more reliable training of the object classifiers; this is cost-expensive since it requires hiring professionals to label

For automatic object detection tasks, large amounts of training images are usually labeled to achieve

large-scale training images. When a large number of object classes come into view, the issue of obtaining a large
enough amount of the labeled training images becomes more critical. There are three potential solutions to reduce
the burden for image labeling: (1) allowing people to provide the object labels loosely at the image level rather
than at the object level (e.g., loosely-tagged images without identifying the exact object locations in the images);
(2) harnessing large-scale collaboratively-tagged images that are available on the Internet; and, (3) developing
new machine learning algorithms that can directly leverage large-scale collaboratively- or loosely-tagged images for
achieving more effective training of a large number of object classifiers. Based on these observations, a multi-task
multi-label multiple instance learning (MTML-MIL) algorithm is developed in this paper by leveraging both inter-
object correlations and large-scale loosely-labeled images for object classifier training. By seamlessly integrating
multi-task learning, multi-label learning, and multiple instance learning, our MTML-MIL algorithm can achieve
more accurate training of a large number of inter-related object classifiers (where an object network is constructed
for determining the inter-related learning tasks directly in the feature space rather than in the label space). Our
experimental results have shown that our MTML-MIL algorithm can achieve higher detection accuracy rates for
automatic object detection.

Key words: Object network, Loosely tagged images, Multi-task learning, Multi-label learning, Multiple instance
learning
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1 Introduction labels accurately at the region level, it is more at-

tractive to develop new machine learning algorithms
For many machine learning tasks, large amounts

of training samples are labeled to achieve more reli-
able classifier training. For automatic object detec-

that are able to leverage large-scale loosely-tagged
images (i.e., object labels are provided loosely at the
image level without identifying the exact locations of

tion tasks, large amounts of training images should  ¢he objects in the images) for object classifier train-

be labeled for object classifier training, but identi-
fying the object regions accurately from the images
and providing the object labels precisely at the re-
gion level could be extremely labor-intensive. On the
other hand, people may be willing to provide the ob-
ject labels loosely at the image level rather than at
the region level (e.g., loosely-tagged images without
identifying the exact object locations in the images).
Rather than requiring people to provide the object
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ing. With these machine learning tools, we can easily
harness large-scale social images such as Flickr im-
ages, for training a large number of object classifiers,
and can effectively tackle the challenging issue of au-
tomatic object detection.

Large-scale loosely-tagged images, which are
available on the Internet, can have multiple advan-
tages: (1) They can represent various visual proper-
ties of the object classes more sufficiently. (2) They
can be obtained easily by leveraging the collabora-
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tive efforts of a large number of Internet users. Our
fundamental belief is that a large group of Internet
users with diverse backgrounds can do better job
than a small team of professionals, as illustrated by
Wikipedia. (3) Both their tags and their visual prop-
erties are diverse, thus giving a real-world point of
departure for object detection. Therefore, it is very
attractive to develop new machine learning frame-
works that can leverage the loosely-tagged images
for object classifier training.

By treating each image as a bag of instances
(image regions), multiple instance learning (MIL) is
a well-accepted candidate that can be used to lever-
age loosely-tagged images for object classifier train-
ing, and many wonderful techniques have been de-
veloped in the last few decades (Maron and Ratan,
1998; Zhang et al., 2002; Chen et al., 2006; Zhu and
Zhang, 2006; Vijayanarasimhan and Grauman, 2008;
Zha et al., 2008). All these existing MIL works can
be categorized into two groups: (1) given the labels
at the bag level (i.e., image level), automatically de-
termining the instance labels and transforming the
MIL problem into a traditional supervised learning
problem at the instance level; and (2) treating each
bag of instances as a single training sample and train-
ing the relevant classifiers directly at the bag level.
Note that both are attempting to transform the MIL
task into a traditional supervised learning task.

For the first group of MIL tools (i.e., determin-
ing the instance labels automatically by using the
bag labels), most existing works have made some
hidden assumptions on the distributions of the pos-
These hidden
assumptions may be incorrect in many real-world
practices. For the second group of MIL tools (i.e.,
learning the bag-level classifiers directly), the bag-
level classifiers may not be reliable for automatic
object detection because the image instances in the

itive instances in the positive bags.

same positive bags could be very diverse (i.e., they
may belong to different object classes), and it is un-
fair to treat each bag of instances (which may belong
to different object classes) as a single training sample
(one uniform training sample for one certain object
class), especially when the image instances in the
positive bags are diverse. Thus, it is very attractive
to develop new algorithms for assigning multiple la-
bels which are given at the image level to the most
relevant image instances automatically.

Another critical issue for the automatic object
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detection task is that there are a large number of ob-
ject classes and some of them are dependent. Such
inter-object correlations may further bring two crit-
ical issues: (1) the computational cost for training a
large number of object classifiers grows non-linearly
as the number of object classes increases; and (2) the
relationships among these object classes cannot be
ignored because completely ignoring the inter-object
correlations may seriously affect the discrimination
power of the object classifiers.

To address the loose tags and inter-object corre-
lations issues jointly, a multi-task multi-label multi-
ple instance learning (MTML-MIL) algorithm is de-
veloped to leverage both large-scale loosely-tagged
images and the inter-object correlations for achiev-
ing more effective training of a large number of
inter-related object classifiers. Our MTML-MIL al-
gorithm contains three key components (Fig. 1):
(1) automatic tag-instance correspondence identifi-
cation by determining the instance labels when mul-
tiple labels are loosely given at the image level;
(2) object network construction for determining the
inter-related learning tasks directly in the feature
space rather than in the label space; (3) multi-
task structured support vector machine (SVM) by
incorporating the object network, structured SVM
(Tsochantaridis et al., 2005; Joachims et al., 2009),
and multi-task learning (Torralba et al., 2004; Evge-
niou et al., 2005; Jiang et al., 2007; Fan et al., 2008a)
to model the inter-task relatedness more precisely
and leverage the inter-object correlations for train-
ing a large number of inter-related object classifiers
jointly.

{ Multi-task multi-label multiple instance learning (MTML-MIL) ]

==

Object network

Multi-task
f structured
SVM
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Fig. 1 Flowchart of our MTML-MIL algorithm

2 Related work

Some pioneering work has been done on multi-
ple instance learning (Maron and Ratan, 1998; Zhang
et al., 2002; Chen et al., 2006; Vijayanarasimhan and
Grauman, 2008). Chen et al. (2006) developed an in-
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teresting approach called MILES (multiple instance
learning via embedded instance selection) to enable
region-based image annotation when the labels are
available only at the image level. Vijayanarasimhan
and Grauman (2008) developed a multi-label multi-
ple instance learning approach to achieve more effec-
tive learning from the loosely-labeled images. Maron
and Ratan (1998) and Zhang et al. (2002) incorpo-
rated multiple instance learning (MIL) techniques to
learn the object detectors from the loosely-labeled
images.

In order to incorporate multi-label images for
classifier training, some pioneering work has been
done by dividing multi-label learning into a set of
binary classification problems or transforming multi-
label learning into a label ranking problem (Boutell
et al., 2004; Zhu and Zhang, 2006). Boutell et al.
(2004) addressed the issue of multi-label image an-
notation by learning a set of binary classifiers. Zhu
and Zhang (2006) and Zha et al. (2008) integrated
multiple instance learning with multi-label learning
for scene classification by exploiting the inter-label
correlations in the label space. Because classifier
training is performed in the feature space rather than
in the label space, it is very attractive to develop new
algorithms that can directly model the inter-object
correlations in the feature space.

Multi-task learning has widely been studied by
exploiting the correlations between multiple learning
tasks (Torralba et al., 2004; Evgeniou et al., 2005;
Kumar and Herbert, 2006; Jiang et al., 2007; Yang
et al., 2007; Fan et al., 2008a). Torralba et al. (2004)
developed a novel JointBoost algorithm to support
multi-task learning. Jiang et al. (2007) extended
the JointBoost algorithm for multi-class concept de-
tection by sharing common kernels. The boosting
algorithm can be very sensitive to data noise; thus,
it cannot directly be used to leverage the loosely-
tagged images with large tag uncertainty for classifier
training. Kumar and Herbert (2006) proposed dis-
criminative random fields (DRF) to exploit the inter-
patch correlations for object detection. Recently,
Yang et al. (2007) extended the DRF technique for
image/video concept detection. Fan et al. (2007;
2008a) constructed concept ontology for identifying
the inter-related learning tasks in the concept space
and achieved hierarchical training of a large number
of inter-related concept classifiers (Fan et al., 2008b).

The statistical rules, such as object co-
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occurrence context, have been derived from large-
scale image collections for supporting context-driven
object detection and some pioneering work has been
done recently (Liu et al., 2006; Qi et al., 2007; Zha
et al., 2008; Tang et al., 2009). Liu et al. (2006),
Qi et al. (2007), and Tang et al. (2009) exploited the
correlations between the image/video concepts to en-
hance automatic image/video annotation, and some
interesting statistical models have been developed to
leverage such inter-concept context for concept clas-
sifier training.

3 Multiple instance learning

Multiple instance learning is defined as follows:
for each given label of interest, its positive bags refer
to those sets of instances that are associated with
the given label, in which at least one instance in
each bag is responsible to the given label, while its
negative bags refer to those sets of instances that are
not associated with the given label, and none of these
instances are responsible to the given label.

3.1 Instance clustering

In our current implementation, a new scheme
is developed for ambiguous image representation by
using ‘bags of instances’: (1) each loosely-tagged im-
age is first partitioned into a set of image regions by
using JSEG (Deng and Manjunath, 1999) and mul-
tiple segmentations are integrated to obtain more
meaningful image regions (image instances) for ob-
ject detection (Russell et al., 2006); (2) each image
region is treated as one instance; and, (3) multi-
modal visual features are extracted from each image
instance to characterize its various visual properties
more sufficiently. These visual features include color
histograms, edge histograms, Tamura textures, and
region shape.

Our mixture-of-kernels algorithm is further used
to integrate multi-modal visual features and their
base kernels for instance similarity characterization
(Fan et al., 2008a). For two image instances u and
v, their visual similarity context is defined as

T T
K(u,v) = Zaml(u,v), Zal =1,
I=1 =1

where 7 is the number of feature subsets (i.e., the
number of base kernels), oy > 0 is the importance
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factor for the lth base kernel x;(u,v) and can be
obtained automatically.

Because the instance labels are loosely given at
the bag level, we need to develop new algorithms
for assigning the bag labels to the most relevant in-
stances automatically. To obtain the exact corre-
spondences between the image instances and the bag
labels, an instance clustering algorithm is first used
to partition the image instances in the positive bags
into multiple clusters. To achieve automatic instance
clustering, an instance similarity graph is first estab-
lished where each node represents one image instance
and the weights on the edges are used to character-
ize the visual similarity context between the relevant
image instances. Then the affinity propagation al-
gorithm (Frey and Dueck, 2007) is used to partition
the instance similarity graph. By passing messages
between the nodes, all these image instances in the
positive bags are grouped into multiple clusters ac-
cording to their visual similarity context.

We further define ‘relevant clusters’ as the in-
stance groups that are responsible to the given label,
and the number of relevant clusters and the number
of their image instances could be arbitrary. Thus,
we still need another step to identify the relevant
clusters.

3.2 Relevant cluster identification

When large amounts of positive bags are avail-
able, it makes sense that the relevant clusters may
have larger sizes. However, this assumption is not
always true when the positive instances possess only
a small part of the positive bags. When the loosely-
tagged images are completely tagged (i.e., each im-
age instance is atomic and has one and only one most
relevant label), an irrelevant cluster for one given tag
(label) should be a relevant cluster for the other la-
bel. For those loosely-tagged images with complete
tags, and for each particular label, its relevant clus-
ter should be far away from its negative instances in
the irrelevant clusters, and the irrelevant clusters can
appear in both the positive and the negative bags.

Given an instance cluster G; (which could be
either a relevant cluster or an irrelevant cluster) in
the positive bags 2 and an instance cluster G; in the
negative bags (2, their inter-cluster visual similarity
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context is defined as

1 N _
(G, Gy) = m Z Z [(u,v) + R(u,v)],

u€G; vEG)
(1)

where |G;| and |G| are the total numbers of the im-
age instances for the clusters G; and G, respectively,
k(u,v) is the pairwise similarity context between im-
age instance u from G; and image instance v from
Gj, k(u,v) and R(u,v) are the pairwise visual simi-
larity context between image instance u from G; and
image instance v from G; by using the kernel weights
for the instance clusters G; and G, respectively. All
these kernel weights are automatically provided dur-
ing the instance clustering process.

The best-matched cluster pair (G;, Gj) between
the positive and the negative bags is determined by

S(Gz,Gk) = HlaX{(S(G“G]”Gz S Q,Gj (S Q} . (2)

This process for best-matched cluster pair determi-
nation is continued until all these instance clusters
(which could be either relevant clusters or irrelevant
clusters) in the positive bags have found the best-
matched negative cluster in the negative bags.

The instance clusters in the positive bags are
then partitioned into two groups according to their
pairwise inter-cluster visual similarity context with
the irrelevant clusters in the negative bags: positive
groups versus negative groups. The relevant clusters
in the positive bags should be far away from the neg-
ative clusters in the negative bags (i.e., with small
values of §(-,-)) (Maron and Ratan, 1998; Fan et al.,
2010). In contrast, the irrelevant clusters in the pos-
itive bags may be close to the negative clusters in the
negative bags (i.e., with large values of (-, -)), and
they can be assigned into the negative groups.

Due to the problem of incomplete tagging, i.e.,
some image components may not be tagged, some
irrelevant clusters in the positive bags may not have
strong correlations with the negative clusters in the
negative bags (i.e., they may belong to different ob-
ject classes). Thus, those irrelevant clusters may also
be far from the irrelevant clusters in the negative
bags. However, those irrelevant clusters in the pos-
itive bags should be small in size as compared with
the relevant clusters. Thus, they can further be sep-
arated from the relevant clusters according to their
size differences. The relevant clusters in the positive
bags may have significant differences with the irrele-
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vant clusters in the positive bags, either on their cor-
relations with the irrelevant clusters in the negative
bags or on their sizes. Thus, it is easy to separate the
relevant clusters from the irrelevant clusters in the
positive bags. When the relevant clusters are identi-
fied from the irrelevant clusters in the positive bags,
the given tag is treated as the ground-truth label for
all their image instances in the relevant clusters. The
F score is used to evaluate the performance of our
tag-instance correspondence identification algorithm
and some experimental results are given in Fig. 2.
By performing inter-cluster correlation analysis, our
tag-instance correspondence identification algorithm
can support more effective multiple instance learning
by determining the instance labels more precisely.
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Fig. 2 The F scores for our multiple instance
learning (instance label identification) algorithm
on the MSRC image set using ground truth seg-
mentation

4 Object network

After the instance labels are determined au-
tomatically, we can generate large-scale image in-
stances for each tag (label) of interest and each label
is used to interpret the semantics of one certain ob-
ject class. Thus, these image instances can further be
used to determine the inter-object correlations and
construct an object network. Our object network
consists of two key components: object classes and
their inter-object correlations.

Given two object classes C; and C}, their inter-
object visual similarity context v(Cj, C;) is deter-
mined by

’Y(Civcj) = m Z Z [/%(u,v) + fi(u,v)],

ueC; vel;
(3)

where |C;| and |C}| are the total numbers of the im-
age instances for the object classes C; and C}; respec-
tively, #(u,v) and R(u,v) are the kernel-based simi-
larity context between two image instances u and v
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by using the kernel weights for the object classes C;
and C}, respectively. All these kernel weights are au-
tomatically provided during the instance clustering
process.

The co-occurrence correlation p(C;, C;) between
two object classes C; and C} is defined as

P(C;,Cj)
p(Ci,Cj) = —P(Ci,Cj)logm, (4)
where P(C;, C;) is the co-occurrence probability for
two object classes C; and C; in our image collections,
and P(C;) and P(Cj) are the occurrence probabili-
ties for C; and C}, respectively.

Given two object classes C; and Cj, their visual
similarity context «(C;, C;) and their co-occurrence
correlation p(Cj,C;) are first normalized into the
same interval. The inter-object correlation ¢(C;, C;)

between C; and Cj is finally defined as

where 7 is the weighting factor and it is deter-
mined through cross-validation, and %(C;, C;) and
p(C;, C;) are the normalized visual similarity con-
text and co-occurrence correlation, respectively. The
weighting factor is set as n = 0.6 in our current im-
plementation because the visual similarity context is
more important than the co-occurrence correlations
for inter-object correlation characterization.

Some experimental results for the inter-object
correlations ¢(+,-) are given in Table 1. Part of our
object network for our image sets is shown in Fig. 3.
Our object network may have multiple advantages:
(1) Tt can characterize the inter-object correlations
explicitly and provide a good environment to identify
the inter-related learning tasks directly in the fea-
ture space. (2) It can provide a good environment to
integrate the training instances from multiple inter-
related object classes for training their inter-related
classifiers jointly and can bring more powerful in-
ference schemes to enhance their discrimination and
adaptation power significantly.

5 Multi-task structured learning

When a large number of object classes come into
view, direct modeling of the inter-object correlations
over the whole graph (object network) becomes com-
putationally intractable. In this work, a multi-task
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Table 1 Inter-object correlations

Object pair 10} H Object pair 10} H Object pair 1) H Object pair 10}
road-building 0.72 || road-sign 0.59 || boat-aeroplane  0.73 || mountain-road 0.62
sign-building 0.63 || sheep-horse 0.66 || body-dog 0.83 || body-cat 0.79
cat-grass 0.03 || tree-cat 0.72 || book-grass 0.06 || sky-book 0.02
boat-sky 0.06 || aeroplane-mountain 0.43 || mountain-water 0.75 || body-sky 0.06
grass-building  0.04 || horse-cow 0.31 || cat-dog 0.85 || car-bicycle 0.53
bird-aeroplane  0.54 || car-aeroplane 0.55 || boat-grass 0.02 || dog-cow 0.51
Tt PO /P08 e nent, this common prediction component can be es-
¥ i Y timated more accurately by considering these inter-
= related learning tasks together (Evgeniou et al., 2005;
e\ " Fan et al., 2008a). Structured SVM (Tsochantaridis
" B . et al., 2005; Joachims et al., 2009) has been pro-
L/ L posed to exploit the inter-label correlations in the
- VA e " label space for supporting structure prediction.
e g b " L 5 y plants
. o . S = ’ market
k Mo\ omie \ . s sport
co.ral
Fig. 3 Part of our object network. Each object fruit
class is linked with multiple most relevant object buildings bridge
classes with larger values of inter-object correla-
tion
people
structured SVM scheme is developed by incorporat- vegetable
ing the first-order nearest neighbors (i.e., clique for painting

each object class on the object network), multi-task
learning, and structured SVM to leverage the inter-
object correlations to achieve more accurate training
of a large number of inter-related object classifiers.
For a given object class ‘bridge’, its first-order
nearest neighbors on the object network are shown in
Fig. 4. One can observe that the first-order nearest
neighbors on the object network are strongly corre-
lated and their training instances may share some
common visual properties in the feature space. It is
not appropriate to train the classifiers for these inter-
related object classes independently. To leverage the
inter-object correlations for training the inter-related
classifiers jointly, multi-task learning is used in our
structured learning framework. The idea behind
multi-task learning is that if multiple inter-related
learning tasks share a common prediction compo-

Fig. 4 The inter-related object classes for the
object class ‘bridge’

In this work, a multi-task structured SVM
scheme is developed by incorporating the object net-
work, multi-task learning, and structured SVM to
enhance the discrimination power of a large num-
ber of inter-related object classifiers: (1) The object
network is used to identify the inter-related learning
tasks directly in the feature space, e.g., training mul-
tiple inter-related object classifiers jointly; (2) The
inter-task relatedness is characterized explicitly by
using the strengths of the inter-object correlations
#(+,+), and a common prediction component is used
to model the inter-task relatedness, which is shared
among these inter-related object classifiers; (3) The
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structured SVM is integrated with multi-task learn-
ing to model the inter-task relatedness more pre-
cisely and estimate the common prediction compo-
nent more accurately. By seamlessly integrating
multi-task learning with structured SVM, our multi-
task structured SVM algorithm can exploit the inter-
object correlations explicitly in the input space (i.e.,
the common space for classifier training and object
detection). Thus, it can provide a new approach for
inter-related classifier training and address the issue
of multiple tags more effectively.

In our multi-task structured SVM scheme, a
common regularization term Wy of the SVM classi-
fier is used to model the inter-task relatedness among
multiple SVM classifiers for the inter-related object
classes. Given an object class Cj, its classifier is
defined as

fey(@) =D 1(Wo + Vi)' (), (6)
CreT

where Wy is the common regularization term shared
among the classifiers for multiple inter-related ob-
ject classes centered at C; (Fig. 4), V; is the individ-
ual regularization term for the classifier between the
given object class C; and its neighbor Cy, 4 is the
weight related to how the object class C; contributes
to the classification of the object class C;, and & (z)
is a sign indicating whether x could be mapped to
some kernel space.

Wy can be estimated more reliably by minimiz-
ing their joint objective function .J for T inter-related
learning tasks:

T
1
J = §<|W0||2+Z/\t||vt|2>
t=1
T ny T

tao Y D &Gi+ > Y mi (1)
i=1

t=1 i=1 t=1

where &; > 0, ny; > 0, and n; and n; are the total
numbers of training instances for the object classes
C; and C4, respectively.

To solve the joint optimization problem, we use
the Lagrangian Principle. We add a dual set of vari-
ables, one for each constraint, and obtain the La-
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grangian L of the optimization problem:

T nj
J - ZZﬁm‘ ((Wo + Vi, @e(ji)) + & — 1)

L =
t=1 i
T ny
+ Z Zﬁm ((Wo + Vi, @i(24i)) — 1 + 1)
t;l l:jl .
— Z Z otilti — Z Z TiMti-
t=1 i=1 t=1 i=1

We now seek a saddle point of the Lagrangian
L. For example, the partial difference of L satisfies

oL T n
W = WO—ZZ@@t(%‘i)

t=1 i—1

T ng .

D) Bubi(wn),

=1 i—1
oL - L
G AV — Z Bri®e(x4i) + Z B P (x4i),

t i=1 i=1
OL oL — _
= ¢o— Bt — Ot, 77— = ¢ — By — Tu,

96, 0 — Bt 5 B + — By t

and we obtain

T nj T ny
Z Z Bei®i(xj;) — Z Z B (1),

Wo =

t=1 i=1 t=1 i=1

1 n; ng .
Vi = /\—t (; 5tiq§t($g‘i) - ;ﬁtiét(xti)> ,
co = Bu+ou, c=PBy+0u.

The dual form of the problem is then simplified as

T nj T ng
2. Bt D B

L =
t=1 i=1 t=1 i=1
1 T
2 2
-5 <|Wo|| + v )

Given the training image instances for 7" inter-
related object classes on the object network, the mar-
gin maximization process for joint classifier training



Shen et al. / J Zhejiang Univ-Sci C (Comput & Electron)

is then transformed into a quadratic problem:

T nj T n¢
ZZBM—FZZB“

t=1 i=1 t=1 i=1

max L =
Bti,Bti

T n; ny
_%[ Z ZZﬁtiﬁlets(xji,sz)
t,s=14i=1 =1
T nj ng
- Z ZZﬁtileKts(xji7xsl)
ts=1i=1 I=1
T ny nj B
- Z ZZﬁtiﬁsths(Iti,xkj)
ts=1i=1 k=1

ng MNs

T
+ Z ZZEtiEsths(ﬂ?ti,xsk)

t,s=11i=1 k=1

T nj
+ ; )\it( > BuBuKi (i xj1)

il=1

nj  ne
-2 Z Z 6tiBtht(xjiv le)

=1 [=1

33
+ Z BtiBtIKt(xti7xtl)):|
il=1
subject to: Vi, Vt, By >0, B, >0.

To deal with the structured prediction problem,
it is very attractive to construct a joint kernel func-
tion that is better suited to joint-space support es-
timation. In this work, a tensor product is incor-
porated to define the joint kernel ((x;, y:), (z;,y;))
as

k(i Yi)s (75,95)) = 5(@i, 25)Ks(Yi, v5),  (8)

where k(z;,x;) is the kernel for the similarity be-
tween x; and x;, and k,(y;,y;) is the semantic ker-
nel to characterize the semantic similarity context
between the labels y; and y; of two object classes
(i.e., inter-class correlation on the label space).

By learning from a joint training instance set
2 ={(zi,y)i =1, 2, ..y n;t =1, 2, ..., T} for
T inter-related object classes on the object network,
the classifier for the given object class C; can be
determined as

fe;(z) =

T n; nh

Z Yiks(t, h) <Z Brik(wji, ) — Zghi&(xhiax)>
h,t=1 i=1 i=1

4

T s
+ ; Z—i (Z Brik(wji, ) — ;Btm(fcm x)) .

i=1
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One can observe that our classifiers for inter-
related object classes consist of two components: (1)
individual prediction component, and (2) common
prediction component.

By learning two different sets of the weights
and 3 for the training instances simultaneously, our
multi-task structured SVM algorithm can automati-
cally establish two independent decision boundaries
for both the common prediction component (shared
among the inter-related discriminant functions) and
the individual prediction component of the discrim-
inant function for each particular object class. The
training instances, which are used to construct the
common prediction component for multiple inter-
related object classifiers (i.e., support vectors with
large values of 3), are less important for the indi-
vidual prediction components for these inter-related
object classifiers (i.e., with smaller values or even
zero values of ().

By integrating the training instances for mul-
tiple inter-related object classes to learn a com-
mon prediction component, and separating it from
their individual prediction components, our multi-
task structured SVM algorithm can significantly en-
hance the discrimination power and the generaliza-
tion ability of the inter-related classifiers. When all
these inter-related classifiers are available, they are
used for detecting the objects from the images. Some
object detection results are given in Fig. 5.

6 Algorithm evaluation

Our  experiments were performed on
two sets of loosely-tagged images: (1) 3814
MSRC  image instances (image  regions)

(http://research.microsoft.com/) and 30k Corel
images (Fan et al., 2004); (2) one million loosely-
tagged images which are collected from Flickr
(http://www.flickr.com; Fan et al., 2010). Because
MSRC images and Corel images are easy to obtain,
we use them as our test image sets, so that other
researchers can easily assess the real performances
Moreover, Flickr allows us
to collect large-scale and realistic loosely-tagged
images.

of our algorithms.

It is very attractive to use such realistic
loosely-tagged images for developing new algorithms
that can tackle the issue of tag uncertainty and
learn the object classifiers reliably. Thus, the Flickr
image set was used as the training image set in our
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Fig. 5 Some object detection results using our MTML-MIL algorithm

experiments.

To assess the effectiveness of our proposed al-
gorithms, the algorithm evaluation work focused on
comparing the performance differences between var-
ious approaches for object classifier training: (1) our
MTML-MIL algorithm versus the structured SVM
algorithm by exploiting the inter-label correlations
in the output space (Tsochantaridis et al., 2005;
Joachims et al., 2009); (2) our MTML-MIL algo-
rithm versus the MILES without exploiting the inter-
label correlations explicitly (Chen et al., 2006), and
(3) our MTML-MIL algorithm versus the multi-label
MIL (MLMIL) technique developed by Zha et al.
(2008). In this work, AUC (area under the receiver
operating characteristic curve) was adopted to eval-
uate the classification performance (Hanley and Mc-
neil, 1982), describing the probability that a ran-
domly chosen positive image is ranked higher than a
randomly chosen negative image.

Using the same set of multi-modal visual fea-
tures for image content representation, we compared
the performance differences between two approaches
to integrating loosely-tagged images for object clas-
sifier training: the MILES approach (Chen et al.,
2006) versus our MTML-MIL algorithm (Figs. 6-8).
Our MTML-MIL algorithm significantly improved
the accuracy for detecting the inter-related object
classes. The significant improvement on the detec-
tion accuracy benefits from two components:

1. The object classifiers for the inter-related
object classes are trained jointly by leveraging their
inter-object correlations for object classifier train-
ing. Thus, our MTML-MIL algorithm can address
the issue of multiple tags more effectively. Our
MTML-MIL algorithm can address the issue of vi-
sual ambiguity more effectively by learning the inter-
related classifiers for the inter-related object classes

jointly. It can also enhance the discrimination and
adaptation power of the inter-related object classi-
fiers significantly by learning from the training in-
stances for other inter-related object classes on the
object network. Incorporating the training instances
from other inter-related object classes for classifier
training will significantly enhance the generalization
ability of their classifiers, especially when the avail-
able training instances for the given object class may
not be representative for large amounts of unseen
test images. In contrast, MILES does not consider
the inter-object (inter-label) correlations explicitly,
which may result in lower accuracy rates for detect-
ing some inter-related object classes.

2. Through an instance clustering and inter-
cluster correlation analysis process, our MTML-MIL
algorithm can address the issue of loose tags more
effectively, which is crucial for leveraging the loosely-
tagged images for object classifier training.

1.0

—— Structural SVM
—— MILES

—— MLMIL

0.2 —— MTML-MIL

0 01 02 03 04 05 06 07 08 09 10
False positive rate
Fig. 6 ROC curves for performance comparison

between our MTML-MIL algorithm and other
most relevant algorithms

Two existing approaches, the structured SVM
algorithm (Tsochantaridis et al., 2005; Joachims
et al., 2009) and the MLMIL algorithm (Zha et al.,
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2008), have considered the inter-label (inter-object)
correlations for classifier training. Our MTML-MIL
algorithm is somewhat similar in spirit to these two
approaches for object classifier training, but signifi-
cantly different in multiple important aspects. Com-
pared with both the structured SVM algorithm and
the MLMIL algorithm, our MTML-MIL algorithm
has multiple advantages: (1) It can explicitly model
the inter-object correlations and the inter-task re-
latedness in the inter-related object classifiers (i.e.,
common regularization component Wy), which may
provide a good environment to leverage the inter-
object correlations and the inter-task relatedness for
inter-related classifier training and enhance their dis-
crimination power significantly; (2) It can save the
cost for object detection by exploiting the inter-
object correlations in the feature space. In contrast,
both the structured SVM algorithm and the MLMIL
algorithm model the inter-object correlations in the
output (label) space rather than in the input (fea-
ture) space. In average, our MTML-MIL algorithm
has better performance than the structured SVM al-
gorithm and the MLMIL algorithm (Table 2).

Table 2 Average AUC (area under the ROC
curve) scores on MSRC

Algorithm Average AUC score
Structural SVM 0.6952
MILES 0.7304
MLMIL 0.7539
Our MTML-MIL 0.7965

By generalizing the multi-class SVM algorithm,
the structured SVM algorithm focuses on support-
ing structural output prediction for a large number
of SVM object classifiers, e.g., modeling the inter-
object context in the output space and exploiting the
inter-object context in the label space rather than in
the feature space. In contrast, our MTML-MIL algo-
rithm can directly model the inter-task relatedness
in the feature (or input) space for classifier training
and testing, and explicitly exploit the inter-object
correlations to achieve a more effective training of
a large number of inter-related object classifiers. As
shown in Figs. 6-8, our MTML-MIL algorithm had a
better performance (higher AUC rates) as compared
with the structured SVM algorithm.

We also compared the performances of our
MTML-MIL algorithm and the MLMIL technique.

2010 11(11):860-871 869

By explicitly modeling the inter-task relatedness in
the feature space, our MTML-MIL algorithm can
provide a good environment to leverage the inter-
object correlations and the inter-task relatedness for
inter-related object classifier training, which may re-
sult in higher discrimination powers for a large num-
ber of inter-related object classifiers. Compared with
the MLMIL algorithm, our MTML-MIL algorithm
can achieve very competitive performance (Figs. 6
8). For some object classes, the MLMIL algorithm
obtained a little bit higher accuracy rates, but our
MTML-MIL algorithm achieved on average a better
accuracy rate (Table 2) for the MSRC image set with
21 object classes (http://research.microsoft.com/;
Zha et al., 2008).

Besides MSRC images, we also compared the
performances of our MTML-MIL algorithm and the
normal SVM and MLMIL on 30k Corel images for 98
concept categories (Fan et al., 2004), where the orig-
inal images were associated with totally 5k tags and
98 frequent object tags were chosen to be our distin-
guished concept categories. On average, each Corel
image may have more than 10 image regions (in-
stances). Thus, there were 300k instances, which are
too large to handle effectively (i.e., to pre-compute
and store the kernel-based similarity matrix for all
these 300k instances) by a single PC. When the size
of image instances reaches one million, some exist-
ing techniques for kernel-based image clustering and
SVM classifier training (such as LIBSVM (Fan et al.,
2005)) may take years to run out an O(m?) algorithm
on a single PC. Thus, it is very attractive to develop
a distributed computing framework to enable kernel-
based image clustering and SVM classifier training.

To address the issue of computational complex-
ity reduction more effectively, two approaches were
used: (1) only the first-order neighbors and their im-
age instances were integrated for inter-related clas-
sifier training; and (2) a cascade learning framework
was incorporated for training the SVM classifiers in
a distributed way (Graf et al., 2004). The idea of the
cascade learning framework was to equally divide the
image instances and iteratively aggregate the final
SVM classifiers. Given an object class on the object
correlation network, all the positive image instances
for the object class and its first-order neighbors are
integrated for joint classifier training. To enhance
the discrimination power of a large number of inter-
related object classifiers, the cascade framework was
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Fig. 7 Performance comparison on AUC (area under the ROC curve) rates between our MTML-MIL

algorithm and other most relevant algorithms

«s=Normal SVM ===Structural SVM

MLMIL e==MTML-MIL

1 A A PR AR

1 11 21 31 41

51 61 71 81 91

Object class index

Fig. 8 Performance comparison on 30k Corel images with 98 object classes

used to sample the positive instances from other ob-
ject classes that are not the first-order neighbors of
the given object class.

The original version of the MILES algorithm fo-
cuses on solving a 1-norm SVM problem over all the
training instances. It is too time-consuming to lever-
age the MILES algorithm for training the classifiers
for a large number of inter-related object classes.
Moreover, it is not easy to adapt the MILES algo-
rithm to the cascade learning framework. Thus, it
is hard to obtain the performance of the MILES al-
gorithm on a large number of inter-related object
classes using a large Corel image set for classifier
training. Based on this observation, we did not com-
pare the performance difference between our MTML-
MIL algorithm and the MILES algorithm on the 30k
Corel image set with 98 object classes. As shown in
Fig. 8 and Table 3, our proposed algorithm had a
significant improvement over the normal SVM (Fan
et al., 2005) and obtained on average a little higher
AUC score than MLMIL (Zha et al., 2008).

7 Conclusions

For an automatic object detection task, a multi-
task multi-label multiple instance learning (MTML-
MIL) framework is developed to leverage both

Table 3 Average AUC (area under the ROC
curve) scores on Corel images

Algorithm Average AUC score
Normal SVM 0.6438
Structural SVM 0.6512
MLMIL 0.7236
Our MTML-MIL 0.7549

the inter-object correlations and large-scale loosely-
tagged images for achieving a more effective training
of a large number of inter-related object classifiers.
By identifying the correspondences between multiple
tags at the image level and bag of instances (multi-
ple image regions) automatically, our MTML-MIL
algorithm can automatically transform the bag la-
bels into the instance labels for harnessing large-scale
loosely-tagged images for object classifier training.
By incorporating the object network for determining
the inter-related learning tasks directly in the feature
space, rather than in the label space, our MTML-
MIL algorithm can seamlessly integrate structured
SVM and multi-task learning to model inter-related
object classifiers and enhance their discrimination
power significantly. Experimental results on a large
number of object classes have provided very positive
results.
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