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Abstract: An efficient search method is desired for calligraphic characters due to the explosive growth of calligraphy
works in digital libraries. However, traditional optical character recognition (OCR) and handwritten character
recognition (HCR) technologies are not suitable for calligraphic character retrieval. In this paper, a novel shape
descriptor called SC-HoG is proposed by integrating global and local features for more discriminability, where
a gradient descent algorithm is used to learn the optimal combining parameter. Then two efficient methods,
keypoint-based method and locality sensitive hashing (LSH) based method, are proposed to accelerate the retrieval
by reducing the feature set and converting the feature set to a feature vector. Finally, a re-ranking method is
described for practicability. The approach filters query-dissimilar characters using the LSH-based method to obtain
candidates first, and then re-ranks the candidates using the keypoint- or sample-based method. Experimental results
demonstrate that our approaches are effective and efficient for calligraphic character retrieval.
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1 Introduction

Chinese calligraphy works are a valuable part of
Chinese culture heritage. As more and more callig-
raphy images are digitized, preserved, and exhibited
in digital libraries, it is urgent to provide an efficient
approach for calligraphic character retrieval. How-
ever, traditional optical character recognition (OCR)
and handwritten character recognition (HCR) tech-
nologies do not work well for calligraphic characters
due to:

1. Complexity: Different writing styles exist
in Chinese calligraphy, such as seal script, clerical
script, standard script, semi-cursive script, and cur-
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sive script (Fig. 1). Moreover, XingKai and XingCao
mix different styles together, which makes recogni-
tion more difficult. In addition, authors tend to write
the same character in different shapes even for the
same style (Fig. 2).

2. Deformation: Strokes are not regular in cal-
ligraphic characters, in that some strokes are con-
nected with each other and some are broken. Taking
Fig. 2 as an example, the first stroke in the first char-
acter is broken, but it is connected with the second
stroke in the fifth character.

3. Degradation: Calligraphic works tend to be
degraded by natural changes, which makes charac-
ters more noisy.

We tried to use commercial software Hanvon
(http://www.hanvon.com/en/) to recognize calli-
graphic characters, but this failed. The optical char-
acter recognition (OCR) results of characters in Figs.
1 and 2 are shown in Fig. 3.
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Fig. 1 Five main styles of one character. From left
to right: seal script, clerical script, standard script,
semi-cursive script, and cursive script

Fig. 2 Characters written by Xi-zhi WANG. Al-
though written by the same author and with the same
style, they are quite different

Fig. 3 OCR results of Fig. 1 and Fig. 2 through
commercial software Hanvon

Shape feature is robust and would be less af-
fected by complexity, deformation, and degradation.
Thus, it can be used for calligraphic character re-
trieval. Various shape features have been designed,
including skeletal representations (Luo et al., 2001;
Sebastian et al., 2004; Torsello and Hancock, 2004;
Aslan and Tari, 2005; van Eede et al., 2006; Torsello
et al., 2007; Bai and Latecki, 2008), shape signa-
ture (Yankov et al., 2008), shape context (Belongie
et al., 2000), and statistical features (Brandt et al.,
2002). We have implemented a calligraphic character
retrieval system based on shape matching (Zhuang
et al., 2004; 2005). In this system, each character
is described by approximate point context (APC),
which is based on shape context. When calculat-
ing the shape similarity between two characters, a
correspondence based shape matching method is ap-
plied through point-to-point matching. APC de-
scribes each contour point by its relationships with
the remaining points. However, it treats all the re-
maining points equally, while neglecting the fact that
the points nearby the reference point are much more
important and should be described in more detail.
Meanwhile, each point should find its corresponding
point for matching, which will take considerable time
for a large number of contour points. Thus, it is im-
practical because of its low accuracy and expensive
computation in shape matching.

To address the low accuracy and low efficiency
problem in our previous implementation (Zhuang et

al., 2004; 2005), here we propose a novel shape rep-
resentation by integrating global and local features
to enhance the shape discriminability. Then two ef-
ficient matching methods, keypoint-based matching
and locality sensitive hashing (LSH) based match-
ing, are proposed to accelerate the method. Finally,
a re-ranking method is described by combining these
two efficient methods to ensure the retrieval quality
and speed.

2 Related work

Computer aided calligraphy research has at-
tracted an increasing amount of interest recently,
and several novel approaches have been proposed to
address calligraphic problems, including calligraphy
processing and analysis (Wang and Lee, 2001; Wong
et al., 2006; Zhang et al., 2006), calligraphy retrieval
(Zhuang et al., 2005; 2007), calligraphic character
recognition (Yu et al., 2008), visualization (Wu et al.,
2006), specific style rendering (Zhang et al., 2010),
calligraphy automatic generation or synthesis (Xu
et al., 2005; Yu and Peng, 2005; Wong et al., 2008),
style relationships discovery (Lu et al., 2009; Zhuang
et al., 2009), calligraphy grading (Chou et al., 2005;
Xu et al., 2007), and verification (Zhang and Zhuang,
2007).

Calligraphic character retrieval is quite crucial
in calligraphy research, and it can involve shape-
based approaches. Shape is an important visual fea-
ture for describing image content, and can be classi-
fied into two categories: skeleton-based representa-
tion and contour-based representation.

Skeleton-based recognition is widely used for
shape description and matching (Luo et al., 2001;
Sebastian et al., 2004; Torsello and Hancock, 2004;
Aslan and Tari, 2005; van Eede et al., 2006; Torsello
et al., 2007; Bai and Latecki, 2008), and has of-
ten been represented as a tree or graph. Many
researchers have developed several matching ap-
proaches for graph- or tree-based representation,
such as graph edit distance (Sebastian et al., 2004;
Torsello and Hancock, 2004) or shortest path similar-
ity (Bai and Latecki, 2008). Unfortunately, tree- or
graph-based representation is available only for sim-
ple objects. Thus, we cannot apply it for calligraphic
characters which have complex shapes. Although we
have proposed a skeleton-based Chinese calligraphic
character recognition method (Yu et al., 2008), we
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did not represent characters by trees or graphs.

Contour is also a discriminative feature for
shape, and several methods have been proposed for
shape description and matching, such as shape con-
text (SC) (Belongie et al., 2000), inner distance
shape context (IDSC) (Ling and Jacobs, 2007), dy-
namic aligned shape descriptor (D-Shape) (Fornes
et al., 2010), structural feature histogram matrix
(SFHM) (Zhang and Liu, 2009), and multiple ref-
erences histogram matrix (MRHM) (Wang et al.,
2010). SC characterizes each point by the spatial
distribution of the other points relative to the refer-
ence point, and has been widely used in many appli-
cations (Kortgen et al., 2003; Mori and Malik, 2003;
Mortensen et al., 2005; Zhu et al., 2008). For ex-
ample, a shape detection framework called contour
context selection was proposed in Zhu et al. (2008)
for detecting objects in cluttered images. Kortgen
et al. (2003) extended shape context for 3D shape
retrieval and matching. SC was also used to iden-
tify words in adversarial clutter for breaking a visual
completely automated public turing test to tell com-
puters and humans apart (CAPTCHA) (Mori and
Malik, 2003). D-Shape encodes the spatial proba-
bility of appearance of the shape pixels and their
context information, and then uses a cyclic version
of the dynamic time warping algorithm to match two
shapes. However, D-Shape considers only the local
context information of the voting points located in
concentric circles, which has less information than
the SC descriptor. SFHM is generated by statisti-
cally gathering the length-ratio histogram and an-
gel histogram for the centroid of a shape. However,
it takes only one fixed reference point to compute
the histograms; thus, it is too rigid to represent
shape. MRHM extends SFHM by using multiple
references, and it would be more robust than SFHM
for calligraphic character retrieval. IDSC extends SC
by replacing Euclidean distance with inner distance,
which is defined as the length of the shortest path
within the shape boundary. Thus, it is not suitable
for shapes with several segments. In other words,
it cannot be used for character retrieval, which con-
sists of disconnected radicals commonly. Moreover,
because inner distance is sensitive to shape topology,
coherent and broken strokes in calligraphic charac-
ters would cause IDSC matching problems. Thus, we
implement a shape context based calligraphic char-
acter retrieval system, as mentioned before.

Shape matching based on shape context is essen-
tially a feature-set matching problem. Each shape is
described by a set of features, and then the simi-
larity between two shapes is computed by compar-
ing the two corresponding sets of features. Many
studies have focused on efficient feature-set match-
ing recently. Pyramid match kernel (Grauman and
Darrell, 2005) and random projection (Dong et al.,
2008) were proposed for scale-invariant feature trans-
form (SIFT) feature set matching. In Grauman and
Darrell (2005), feature sets were mapped to multi-
resolution histograms, and then the histograms were
compared with a weighted histogram intersection
measure to approximate the feature-set matching.
Dong et al. (2008) presented a randomized algo-
rithm to embed a set of features into a single high-
dimensional vector by LSH to simplify the feature-set
matching problem.

To address the shape context set matching prob-
lem, two algorithms were proposed in Mori et al.
(2005) for rapid shape retrieval: the representative
shape contexts by performing comparisons based on
a small amount of shape contexts, and the shapemes
by using vector quantization to obtain prototypical
shape pieces. However, it is much difficult to select
the representative shape contexts and to determine
the number of shapemes.

Many have tried to use other approaches to
speed up calligraphic character retrieval. An in-
teractive partial-distance-map (PDM) based high-
dimensional indexing scheme was designed by
Zhuang et al. (2007) specifically to speed up the
retrieval. However, it still resorts to shape con-
text feature, and it is difficult to select the reference
points when indexing. Meanwhile, there is only a fo-
cus on reducing the amount of one-to-one matching,
without speeding up the matching method. Zhang
et al. (2007) sped up character retrieval by filter-
ing out some characters in advance, according to the
knowledge of calligraphic characters, such as charac-
ter complexity, stroke density, and stroke protrusion.
However, the method is much more sensitive with
shape deformation, which is common in calligraphic
characters.

3 Shape representation

In this section, we integrate a global de-
scriptor and a local descriptor as an SC-HoG
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descriptor for shape matching, and then use a gradi-
ent descent algorithm to determine the optimal com-
bining parameter.

3.1 SC-HoG descriptor

The SC-HoG descriptor integrates the SC de-
scriptor and the HoG (histogram of oriented gradi-
ents) descriptor to describe shape. Thus, it considers
both the positions of points in the whole scope and
the direction of nearby points.

The SC descriptor is similar to that described
in our previous work (Zhuang et al., 2004), and
we use a polar coordinate system to describe each
pixel in the character shape. For direction, we use
eight bins in the same degree to divide the whole
space into eight regions. Then four bins are ob-
tained for each region by dividing the radius with
the value of r = {R,R/2, R/4, R/8}, where R is
the radius of image, and the radii are determined
relative to the image size. In our case, the charac-
ter images are scaled to 128 × 128; thus, R = 64

and r = {64, 32, 16, 8}. Finally, we obtain a to-
tal of 32 bins. By using polar coordinate for each
pixel, the SC feature for pixel pi can be repre-
sented as sci =< wi(1), wi(2), · · · , wi(K) >, where
wi(k) = #{qj �= pi : qj ∈ bini(k)}, k = 1, 2, · · · ,K,
and K = 32 is the number of bins. Fig. 4a shows an
example of how these bins are built and computed
for a calligraphic character.

The gradient can describe points more accu-
rately than using location only. Thus, we use HoG
to describe the nearby points. Although HoG was
initially proposed for human detection (Dalal et al.,
2005), it has also been used for object recognition
(Suard et al., 2006; Bosch et al., 2007). The HoG
descriptor accumulates a weighted vote for an edge
orientation histogram channel based on the orien-
tation gradient for each pixel in each bin. The
circular region was divided into five bins, as in
Fig. 4b where the central cell is not divided, called
C-HoG (Dalal et al., 2005). In our case, the radii
of the central and the surrounding bins are 16 and
32, respectively. In each bin, the gradient orien-
tation is evenly divided into B = 8 parts. Thus,
we can obtain the HoG feature for bin k of pixel
pi as hi(k) =< hik(1), hik(2), . . . , hik(B) >, where
hik(b) =

∑
(x,y)∈bini(k),360A(x,y)/B=bG(x, y). Here

G(x, y) and A(x, y) are the gradient value and gradi-
ent orientation of point (x, y), respectively. Finally,

we concatenate the HoG feature of each bin and ob-
tain a total KB-dimensional feature for pixel pi as
hgi =< hi(1), hi(2), · · · , hi(K) >, where K = 5 is
the number of bins.

(a) (b)

Fig. 4 SC-HoG descriptor, which integrates the SC
descriptor (a) and HoG descriptor (b)

Finally, the SC-HoG descriptor can be repre-
sented as < sc, hg >.

3.2 Shape matching

Since points are described with the SC-HoG de-
scriptor, the cost of matching two points pi and pj
can be calculated by the following linear equation:

D(pi, pj , λ) = λf1(pi, pj) + (1 − λ)f2(pi, pj), (1)

where f1(pi, pj) = (2K)−1
∑K

k=1{[wi(k) − wj(k)]
2 ·

[wi(k)+wj(k)]
−1} denotes the cost of matching with

the SC descriptor and f2(pi, pj) denotes the cost of
matching with the HoG descriptor, which is also cal-
culated like the SC descriptor. λ is the combining
parameter, and when λ equals 1 or 0, it degrades
to the SC descriptor or HoG descriptor. The shape
similarity between two characters Ii and Ij with pa-
rameter λ is

d(Ii, Ij , λ) =

|Ii|∑

s=1

D(ps, pπ(s), λ)

=

|Ii|∑

s=1

(λf1(ps, pπ(s)) + (1 − λ)f2(ps, pπ(s)))

= λ

|Ii|∑

s=1

f1(ps, pπ(s)) + (1− λ)

|Ii|∑

s=1

f2(ps, pπ(s))

= λF1(Ii, Ij) + (1 − λ)F2(Ii, Ij),

(2)

where π(s) = argmint D(ps, pt, λ), ps ∈ Ii, pt ∈ Ij .
That is, for each point ps ∈ Ii, we should find the
‘best’ matching point pt ∈ Ij , and then obtain the
total cost by accumulating all the matching costs.
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With the orientation property of Chinese character,
two match points should be adjacent to each other.
Thus, ps and pt should be subject to the constraint

||ps − pt||2 ≤ IMAGESIZE/4. (3)

This accelerates the matching by reducing the search
scope. Meanwhile, some noisy matching pairs will
occur, whose matching cost is larger than the average
cost. Therefore, we filter some matching pairs whose
matching cost is larger than one half the average
matching cost, thereby reducing the impact of noise.
Since the global feature is too coarse and the local
feature lacks a global view, using only one feature will
bring incorrect matches. Thus, these two features
can be integrated to improve the matching accuracy.
Fig. 5 shows some incorrect matches with global and
local features.

(a) (b)

Fig. 5 Match results with different λ, where colored
lines indicate the incorrect matches. (a) Local fea-
ture, λ = 0.0; (b) Global feature, λ = 1.0

3.3 Parameter learning

As described in Section 3.2, the parameter λ is
much important for shape matching. Thus, we focus
on the λ optimization in this subsection.

Given a query q, let l∗(q) be the optimal rank
list and l(q, λ) be the rank list generated by Eq. (2).
The similarity between these two rank lists can be
measured by Kendall’s τ , which is defined as

τ(l∗(q), l(q)) =
X − Y

X + Y
= 1− 4Y

M(M − 1)
, (4)

where X and Y are the numbers of concordant and
discordant pairs in two rank lists, respectively, M is
the number of characters in the dataset, and we will
obtainX+Y = M(M−1)/2. Thus, the optimization

problem is as follows:

λ = argmax
λ

∑

q∈Q

τ(l∗(q), l(q))

= argmax
λ

∑

q∈Q

(

1− 4Y

M(M − 1)

)

= argmin
λ

∑

q∈Q

Y.

(5)

We modify the optimization object by introduc-
ing a loss function:

λ = argmin
λ

∑

q∈Q

∑

Ii,Ij∈l∗(q)

f(d(q, Ii, λ)− d(q, Ij , λ)),

(6)
where f(y) is a Huber penalty function that is
everywhere-differentiable, as follows:

f(y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, y ≤ 0,

y2

2W
, y ∈ (0,W ],

y − W

2
, y > W.

(7)

To minimize the penalty mentioned in Eq. (6),
the gradient descent algorithm can be adopted.
Thus, ∂f(d(q,Ii,λ)−d(q,Ij ,λ))

∂λ = f ′(d(q, Ii, λ) −
d(q, Ij , λ))(d

′(q, Ii, λ) − d′(q, Ij , λ)) should be calcu-
lated, and they can be easily obtained using Eq. (7)
and Eq. (2).

The parameter learning algorithm is shown in
Algorithm 1, where Q is the query set, Nq and Rq

are dissimilar and similar characters with the query
q, respectively, and η = 0.001.

4 Efficient matching

In this section, we propose two efficient match-
ing methods, the keypoint-based method and the
LSH-based method, and then propose a re-ranking
method as a trade-off between search speed and re-
trieval quality by combining these two methods.

4.1 Keypoint-based matching

Considerable time is required to find the ‘best’
matching point for each point in shape matching.
Although we reduce the search scope to 1/4 of the
image area, the matching speed is still too slow.
If we decrease the number of points, the matching



878 Lu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(11):873-884

Algorithm 1 Parameter learning
Input: training samples S = {(Ii, Ij)q|q ∈ Q, Ii ∈
Nq , Ij ∈ Rq}
Output: optimal parameter λ

Initialize λ by λ = 1.0;
while there is significant change in λ do

Initialize loss = 0.0 and violation number = 0;
for all (Ii, Ij)q ∈ S do

if d(Ii, q, λ) < d(Ij, q, λ) then
λ = λ− ηf ′(d(Ij, q, λ)− d(Ii, q, λ))(F1(Ij , q)−
F2(Ij , q)− F1(Ii, q) + F2(Ii, q));
Increase loss by f(d(Ij , q, λ) − d(Ii, q, λ)) ac-
cording to Eq. (6);
Increase the violation number by 1;

end if
end for

end while

speed can be significantly improved. Since two adja-
cent points have similar features and removing one
point will not affect the shape similarity, an intuitive
method can be used to sample points for some in-
tervals, as shown in Fig. 6, a sample-based method,
which has been used in our previous system (Zhuang
et al., 2004; 2005). After sampling, the average
number of points of each character is reduced from
694.1966 to about 359.6924, but the matching speed
is still too slow and we should filter more points.

Inspired by the SIFT descriptor (Lowe, 1999),
the SC-HoG feature can be extracted at keypoints.
After keypoint detection, we need only to extract
the feature at about 45.0042 points for each char-
acter, which is much less than that of the sample-
based method. Meanwhile, keypoints contain stroke
endpoints and cross-points in the character (Fig. 7).
These points play an important role in shape
recognition.

Fig. 6 Point sample Fig. 7 Keypoints match

4.2 LSH-based matching

If we can bypass the point correspondence prob-
lem, the retrieval process can be greatly accelerated.
Inspired by Dong et al. (2008), we also use LSH
functions to hash global features and local features
for buckets, and then create histograms by counting

the buckets. Thus, the SC-HoG feature set can be
mapped into two histograms (Fig. 8).

Edge 
detection SC-HoG

feature extraction

SC feature

HoG feature

LSH mapping

Fig. 8 Locality sensitive hashing (LSH) mapping pro-
cedure

We define the LSH function as

f(p) = �A · p+ b

W
� mod M, (8)

where p is an SC or HoG feature vector, A, b, and W

are as defined in Dong et al. (2008), and M makes the
hash value in range [0,M). In this way, each point
can obtain two hash values according to the SC fea-
ture and the HoG feature. When mapping all points
into range [0,M), we can create an M -dimensional
vector. In practice, we should run the mapping pro-
cedure K times to obtain K independent random
histograms and improve accuracy. Then the K his-
tograms are concatenated to form the final KM -
dimensional vector. Thus, the feature-set matching
problem is converted into a high dimensional vector
similarity calculation problem.

In our experiment, we set W = 10,M = 20,
and K = 50. Thus, each character is represented by
two 1000-dimensional vectors, and then the principal
component analysis (PCA) approach is applied for
dimensionality reduction.

4.3 Re-ranking

The LSH-based method is much faster, but
its performance is not high enough (Section 5.4).
To guarantee search speed and retrieval quality,
we propose the re-ranking method. We obtain
the top K characters with the LSH-based method
first, and then re-rank their characters with the
sample-based method (denoted as ReRank(L+S)) or
keypoint-based method (denoted as ReRank(L+K)).
We can filter dissimilar characters with the LSH-
based method to save search time, and guarantee
retrieval quality with the sample- or keypoint-based
method.

In addition, a graph-based transduction algo-
rithm (label propagation) (Bai et al., 2010b) is
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applied to further improve the retrieval accuracy.
In the algorithm, the affinity matrix is constructed
for the top K similar characters first, and then the
probabilistic transition matrix is defined through
the affinity matrix row-wise normalization. Finally,
the query label is propagated on the probabilistic
transition matrix for computing the new similarity
measure.

5 Experiments

5.1 Dataset

We have scanned some calligraphy books such
as “Chinese Calligraphy Collections” with 600 dpi
resolution in the China-US Million Book Digi-
tal Library Project (www.cadal.zju.edu.cn), and
then built the calligraphic character dataset (called
MBPSet) through preprocessing, which includes bi-
narization, segmentation, and character scaling. In
our work, we normalized the character image into
128× 128 in pixels. Finally, the MBPSet consists of
1648 calligraphic characters with different styles and
authors, comprising 106 Chinese characters. Fig. 9
shows the MBPSet with its number under each char-
acter, where some characters are more similar.

Fig. 9 Calligraphic character dataset—MBPSet

We also collected 80 Chinese characters in Mi-
crosoft Office to form a standard Chinese calligraphic
dataset (STDSet), where each Chinese character has
12 writing styles, including SongTi, YanTi, KaiShu,
LiShu, XingKai, ShuTi, YaoTi, YouYuan, Microsoft-
YaHei, XinWei, FangSong, and XingShu. Thus, we

collected 960 calligraphic characters with different
styles in STDSet. Some examples of STDSet are
shown in Fig. 10.

Fig. 10 Some examples of the calligraphic character
dataset from Microsoft Office—STDSet

5.2 Optimal parameter learning

As mentioned earlier, we used a gradient descent
algorithm to find the optimal parameter λ, and gen-
erated some training samples for parameter learn-
ing. To obtain some significant samples, we ran-
domly selected 10 calligraphic characters as queries,
and then retrieved top 40 characters for each query
according to the SC-HoG descriptor. In the search
result, the samples {(Ii, Ij)q|q ∈ Q, Ii ∈ Nq, Ij ∈
Rq, d(q, Ii, λ) < d(q, Ij , λ), Ii, Ij ∈ l(q, λ)} were col-
lected, and finally 200 samples were obtained as the
training dataset S.

Fig. 11a shows the loss (which is equal to
∑

q∈Q

∑
(Ii,Ij)q∈S f(d(Ij , q, λ)− d(Ii, q, λ))) and vi-

olation number (=
∑

q∈Q

∑
(Ii,Ij)q∈S δ(d(Ij , q, λ)−

d(Ii, q, λ))) changing along with the iterations for
MBPSet, where δ(x) = 1 when x > 0, or δ(x) = 0.
In the figure, we can see that the loss and violation
number gradually converge to the minimal value.

Fig. 11b shows the parameter λ calculated in
each iteration in Algorithm 1, which also converges
to a stable value gradually. The final value λ = 0.818

is the optimal parameter for MBPSet, denoted as λ∗.
Similarly, we determined λ∗ = 0.84 for STDSet.

5.3 Performance of the SC-HoG descriptor

We randomly selected 10 calligraphic characters
as queries for evaluation in each dataset. Fig. 12
shows some retrieval examples in MBPSet using the
sample-based method with different λ, where λ∗ is
the optimal parameter determined by the gradient
descent algorithm. In the figure, the characters in
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(a)

(b)

Fig. 11 Convergence of loss and violation number (a)
and λ (b) in parameter learning for MBPSet

the first column are queries and the remaining char-
acters are the search results ranked by similarity with
the query, where only top 16 results are shown and
the characters with boxes are incorrect. We can see
that when λ = λ∗, the method reaches the best per-
formance, for it integrates global and local features.
The result with λ = 1.0 is better than that with
λ = 0.0, which indicates that the global feature is
more discriminative than the local feature. Although
the search accuracy at λ = 1.0 is close to the result
with λ = λ∗, some incorrect characters with λ = λ∗

are still more similar with queries. For example, in
the second line of the results, the incorrect characters
with λ = λ∗ are also more similar with the query.

We used precision and recall to measure the
character retrieval performance, and they are defined
as follows:

precision =
{relevant} ∩ {retrieved}

{retrieved} , (9)

recall =
{relevant} ∩ {retrieved}

{relevant} , (10)

(a)

(b)

(c)

Fig. 12 Search results with different λ in MBPSet.
(a) λ = λ∗, SC-HoG descriptor; (b) λ = 0.0, HoG
descriptor; (c) λ = 1.0, SC descriptor. The charac-
ters in the first column are queries and the remaining
characters are the search results ranked by similarity
with the query, where only top 16 results are shown
and the characters with boxes are incorrect

where {relevant} denotes the query-relevant charac-
ters in the dataset and {retrieved} denotes the re-
turned characters. Fig. 13 shows the average pre-
cision of different top K returned results (AP@K)
under different parameter λ. From the figure, we
can see that: (1) The optimal parameter λ = λ∗

can make the SC-HoG descriptor based charac-
ter retrieval reach the maximal precision, and it
also proves that the gradient descent algorithm in-
deed learned the optimal parameter. (2) Global
and local feature integration could basically im-
prove the retrieval performance such as when λ =

0.3, 0.4, . . . , 0.9. However, if we select a parameter
poorly, such as λ = 0.1, the performance will de-
grade, and it would even be worse than that of using
only the global feature. (3) The global feature has
more discriminability power than the local feature.

Furthermore, to verify the performance of the
SC-HoG descriptor, we compared the SC-HoG de-
scriptor with SFHM, MRHM, D-Shape, SC, and
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Fig. 13 AP@K under different λ in MBPSet

HoG descriptors, which can be used for calligraphic
character retrieval, and the results are shown in Ta-
bles 1 and 2. From the tables, we can find that the
SC-HoG descriptor performs the best for calligraphic
character retrieval.

5.4 Searching performance and time cost
comparison

To validate the two efficient matching methods,
we compared their performance in terms of precision-
recall curves (Fig. 14) and search time (Table 3).
Keypoint- and LSH-based methods have a perfor-
mance similar to that of the sample-based method,
while their search speeds are about 83 and 4048 times
faster than that of the sample-based method, respec-
tively. When λ = λ∗, the methods reach peak per-
formance, but using only the global feature (λ = 1.0)
degrades the performance greatly. This observation
encourages us to integrate the global feature and the
local feature.

To verify the performance of the keypoint-
based method, we also compared the keypoint-based
method with the random-based method, which ran-
domly samples the same number of points as the
keypoint-based method, and the results are shown in
Fig. 15. From the figure, we see that the keypoint-
based method is much better than the random-based
method, which indicates that the keypoints are the
representative points in the character.

5.5 Re-ranking performance

Fig. 16 shows the performance of the re-
ranking method with different K. The performance
of the LSH-based method is much close to that
of the sample- or keypoint-based method through

0 0.2 0.4 0.6 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

on

 

 

Sample−based (λ=λ*)

Sample−based (λ=1.0)

Sample−based (λ=0.0)

Keypoint−based (λ=λ*)

Keypoint−based (λ=1.0)

Keypoint−based (λ=0.0)

(a)

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

1.0

Recall

P
re

ci
si

on

 

 

Sample−based (λ=λ*)

Sample−based (λ=1.0)

Sample−based (λ=0.0)

LSH−based (λ=λ*)

LSH−based (λ=1.0)

LSH−based (λ=0.0)

(b)

Fig. 14 Precision vs. recall with different methods in
MBPSet. (a) Keypoint-based vs. sample-based; (b)
LSH-based vs. sample-based
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Fig. 15 Keypoint-based method vs. random-based
method in MBPSet

re-ranking. Specifically, when the recall is small,
their precisions are the same. This indicates that
LSH can filter dissimilar characters efficiently.

Table 4 shows the search time of re-ranking
methods with different K. Even when K = 200,
ReRank(L+S) is about 8.25 times faster than the
sample-based method, and ReRank(L+K) is about
6.95 times faster than the keypoint-based method.
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Table 1 Average precision of different top K returned results (AP@K) of different descriptors for MBPSet

Descriptor
AP@K

K = 4 K = 8 K = 12 K = 16 K = 20

SFHM 0.67± 0.24 0.46± 0.22 0.38± 0.20 0.29± 0.16 0.27± 0.14

MRHM 0.67± 0.21 0.51± 0.23 0.41± 0.21 0.38± 0.19 0.33± 0.17

D-Shape 0.85± 0.24 0.78± 0.26 0.67± 0.22 0.54± 0.16 0.47± 0.14

SC 0.97± 0.08 0.9± 0.15 0.81± 0.17 0.72± 0.17 0.65± 0.19

HoG 0.85± 0.21 0.68± 0.21 0.58± 0.20 0.53± 0.20 0.47± 0.19

SC-HoG 0.97± 0.08 0.91± 0.19 0.85± 0.18 0.76± 0.21 0.67± 0.19

SC-HoG+LP 0.98± 0.08 0.96± 0.12 0.89± 0.20 0.83± 0.20 0.75± 0.20

Table 2 Average precision of different top K returned results (AP@K) of different descriptors for STDSet

Descriptor
AP@K

K = 4 K = 8 K = 12 K = 16 K = 20

SFHM 0.35± 0.17 0.24± 0.15 0.19± 0.11 0.16± 0.10 0.13± 0.08

MRHM 0.47± 0.22 0.28± 0.13 0.20± 0.11 0.17± 0.08 0.16± 0.06

D-Shape 0.70± 0.26 0.50± 0.18 0.40± 0.14 0.32± 0.10 0.27± 0.08

SC 0.66± 0.25 0.46± 0.17 0.37± 0.16 0.30± 0.12 0.27± 0.09

HoG 0.61± 0.26 0.45± 0.16 0.38± 0.14 0.33± 0.11 0.29± 0.09

SC-HoG 0.73± 0.26 0.52± 0.19 0.42± 0.16 0.35± 0.13 0.30± 0.10

SC-HoG+LP 0.79± 0.23 0.56± 0.20 0.43± 0.15 0.37± 0.12 0.31± 0.11

Table 3 Search time with different methods in
MBPSet

Method
Average search Average matching

time (s) time (s)

Sample-based 9084.4 5.4905
Keypoint-based 109.58 0.0665
LSH-based 2.2439 0.0014

Table 4 Search time of re-ranking methods with dif-
ferent K in MBPSet

Method
Search time (s)

K = 200 100 80 60 40

ReRank(L+S) 1100.52 551.37 441.55 331.71 221.87
ReRank(L+K) 15.76 9.14 7.61 6.29 4.93

The precisions of ReRank(L+S) and
ReRank(L+K) are similar (Fig. 17), but
ReRank(L+K) needs only about 10 s for retrieval,
which makes the method more practical.

Finally, we show the results of the graph trans-
duction algorithm in the SC-HoG+LP column in Ta-
bles 1 and 2, where the parameters were determined
empirically including K = 80, the neighborhood size
b = 14, and the adaptive parameter α = 0.3 for
MBPSet, and K = 80, b = 14, and α = 0.4 for
STDSet. From the tables, we can see that the graph
transduction algorithm indeed improves the charac-
ter retrieval accuracy.
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Fig. 16 Performance of the re-ranking methods
with different K in MBPSet. (a) ReRank(L+S)
vs. sample-based; (b) ReRank(L+K) vs. keypoint-
based
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Fig. 17 Performance with different re-ranking meth-
ods in MBPSet

6 Conclusions

In this paper, we propose a novel SC-HoG de-
scriptor for shape matching and two efficient match-
ing methods. Experiments on calligraphic character
datasets show that the proposed descriptor is effec-
tive for calligraphic character retrieval, and the two
matching methods are quick. In addition, the re-
ranking method makes our approach more practical.

The search time depends on two factors: match
speed for every two characters and the number of
characters that need to match. Our two efficient
matching methods focus on how to accelerate the
match, but all the characters in the dataset should
still be involved for the matching, which slows down
the search greatly. In the future, we will use high-
dimensional index technologies such as iDistance
(Jagadish et al., 2005), NB-tree (Fonseca and Jorge,
2003), and VA-file (Weber et al., 1998) to speed up
the search by reducing the number of matches be-
tween the query and the characters in the dataset.

Furthermore, we will try other graph transduc-
tion algorithms (Yang et al., 2009) to improve the
accuracy of calligraphic character retrieval and the
co-transduction algorithm (Bai et al., 2010a) to com-
bine different shape descriptors for calligraphic char-
acter retrieval.
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