
Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

743

Efficient implementation of a cubic-convolution based
image scaling engine*

Xiang WANG†, Yong DING†‡, Ming-yu LIU, Xiao-lang YAN

(Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China)
†E-mail: {wangxiang, dingy}@vlsi.zju.edu.cn

Received Feb. 18, 2011; Revision accepted June 30, 2011; Crosschecked Aug. 22, 2011

Abstract: In video applications, real-time image scaling techniques are often required. In this paper, an efficient implementation
of a scaling engine based on 4×4 cubic convolution is proposed. The cubic convolution has a better performance than other tra-
ditional interpolation kernels and can also be realized on hardware. The engine is designed to perform arbitrary scaling ratios with
an image resolution smaller than 2560×1920 pixels and can scale up or down, in horizontal or vertical direction. It is composed of
four functional units and five line buffers, which makes it more competitive than conventional architectures. A strict fixed-point
strategy is applied to minimize the quantization errors of hardware realization. Experimental results show that the engine provides
a better image quality and a comparatively lower hardware cost than reference implementations.

Key words: Cubic-convolution, Hardware implementation, Interpolation, Engine
doi:10.1631/jzus.C1100040 Document code: A CLC number: TN79+1; TP752

1 Introduction

As various kinds of digital display devices have
become popularized, several types of image formats
have been utilized. The resolution of a digital display,
for example, LCD, is fixed according to product
specifications. It is necessary to convert various res-
olutions of input images to adapt them to a display
device. Thus, image interpolation becomes an im-
portant image processing operation applied in such
diverse fields as consumer electronics, medical im-
aging, and military applications. When the image is
interpolated from a lower resolution to a higher
resolution, it is traditionally called image scaling up
or up-scaling. Similarly, image scaling down or
down-scaling means interpolation from a higher
resolution to a lower resolution. Images are usually
provided at a fixed size and need to be scaled either up

or down for a variety of uses as mentioned above.
Interpolation functions can be used to generate

interpolated images (Hou and Andrews, 1978; Keys,
1981; Lehmann et al., 1999; Shi and Reichenbach,
2006). Most published interpolation methods have
been developed by interpolating the pixels based on
the characteristics of local features, such as edge in-
formation (Hong et al., 1996) or neighboring pixel
information. Therefore, according to these differ-
ences, interpolation methods can be classified into
two categories: adaptive and non-adaptive methods.
Adaptive interpolation algorithms (Li and Orchard,
2001; Shi and Ward, 2002; Arandiga et al., 2003;
Chen et al., 2009) rely on the image features of the
source image, and the computational logic is also
dependent on the image features. As a result, these
methods need more complex computational logic and
heavy loading to a real-time system that is usually
realized on software. The non-adaptive algorithms do
not rely on the image features, and the same compu-
tational logic is repeated in every pixel or group of
local pixels irrespective of the image features. Thus,
certain computations are performed indiscriminately

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project supported by the National High-Tech R & D Program (863)
of China (No. 2009AA011706) and the Fundamental Research Funds
for the Central Universities (No. KYJD09012)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

744

to the whole image. The non-adaptive algorithms are
easy to implement on hardware, especially on real-
time display devices.

The complexity and performance of scaling en-
gines vary depending on the interpolation algorithm
used. Several non-adaptive interpolation algorithms
have been compared (Parker et al., 1983; Lehmann et
al., 1999). The simplest and fastest algorithm is
nearest neighbor (NN) interpolation, but it incurs the
largest error. Bilinear interpolation has been applied
on some hardware implementations (Kim et al., 2003;
Aho et al., 2007). The bilinear algorithm is simple
enough that it needs only four (2×2) neighboring
points for interpolating. Although the quality of the
bilinear algorithm is much better than that of NN
interpolation, it still has the undesirable features of
block and blur effects. Winscale (Kim et al., 2003) is
a modified linear scaling algorithm which scales us-
ing an area pixel model. Hou and Andrews (1978)
proposed the cubic spline method for image scaling.
These interpolation kernels are based on the basis
spline (B-spline) function. The B-spline interpolation
has an excellent performance for image scaling, but
the coefficients for B-spline interpolation kernels are
infinite. Thus, it is difficult to implement on hard-
ware. Hou and Andrews (1978) also developed the
cubic spline approximation. This approximation
kernel is easy to realize on hardware but causes strong
blur effects on the image (Her and Yuan, 1994). Keys
(1981) developed a 4×4 cubic convolution interpola-
tion algorithm, which is a little more complex than the
NN and bilinear interpolations, but much simpler than
B-spline interpolation. Clearly, this higher order
model may provide a better quality of interpolation.
Furthermore, it is feasible to be realized on hardware
(Nuno-Maganda and Arias-Estrada, 2006; Lin et al.,
2008). Thus, cubic convolution provides a relatively
accurate interpolation, as required for the modern
display devices (Parker et al., 1983).

Several non-adaptive interpolation algorithms
are reported to have been implemented in very-large-
scale integration (VLSI) design. Aho et al. (2007)
proposed an implementation for dealing with large
resolution color videos in real-time. The design is
based on bilinear interpolation, and is only able to
scale down the image. The VLSI realization of Win-
scale (Kim et al., 2003) has a better performance than
bilinear interpolation. The computational complexity

of the algorithm is as low as that of bilinear interpola-
tion but it needs four line buffers for vertical scaling,
which is much more than that required for conven-
tional bilinear design, thus making it more expensive.
The cubic and bisigmoidal interpolation method (Feng
et al., 2001) uses cubic convolution interpolation in
horizontal scaling and bisigmoidal interpolation in
vertical scaling. It has been shown to give slightly
better quality than bilinear interpolation with scaling
up ratios restricted to 4/5, 9/10, and 24/25. Lin et al.
(2008; 2010) proposed a novel implementation, called
first-order polynomials convolution, in which both
cubic convolution interpolation and its improved al-
gorithm are realized. Although this structure has the
best performance of all of these VLSI designs, the
realization is too complex. It uses too many multipli-
ers, which results in a huge hardware cost.

This paper presents an efficient real-time im-
plementation of a scaling engine with a 4×4 cubic
convolution interpolation kernel. The engine is de-
signed to process source and destination images that
are smaller than 2560×1920 pixels. It can perform
scaling up or down for arbitrary scaling ratios in
horizontal and vertical directions. It is composed of
only two interpolation filters, two control modules,
and five line buffers. Moreover, the truncated error
between the hardware implementation and software
floating simulation is no larger than one for each
pixel. There is also no cumulative error, as it proc-
esses the image pixel by pixel.

2 Interpolation filter

2.1 Cubic convolution interpolation

The proposed cubic interpolation, a 2D interpo-
lation method, uses 4×4 neighboring pixels for in-
terpolating. It is usually composed of two 1D inter-
polations, a horizontal and a vertical interpolation, to
reduce the complexity. Eq. (1) shows the 1D inter-
polation kernel of four-point cubic convolution:

3 2

3 2

3 5 1, 0 1,
2 2

1 5() 4 2, 1 2,
2 2

0, otherwise.

x x x

h x x x x x

⎧ | | | | | |⎪
⎪
⎪ | | | | | | | |⎨
⎪
⎪
⎪⎩

− + < <

= − + − + < < (1)

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

745

Fig. 1 illustrates the 2D interpolation process in
which pixels are abstracted into points located in the
center of grids. The destination image (Fig. 1b) is
interpolated from the source image (Fig. 1a), so the
border pixels of the two images must coincide with
each other, as shown in Fig. 1c.

To obtain the destination pixel of s(x,y), two
steps of interpolation are taken. Firstly, 1D interpola-
tion is executed in the horizontal direction with four
hollow diamond points (Fig. 1d), and the intermediate
results denoted as s(x0), s(x1), s(x2), and s(x3) are
calculated. Then they are interpolated in the vertical
direction to obtain the final destination pixel signal
s(x,y) (Fig. 1e). Note that the interpolating sequence
between the horizontal direction and vertical direction
has no effect on the final result. Thus, the order of
interpolation in the two directions can be adjusted to
meet the requirements of the architecture.

2.2 Cubic convolution interpolation

The processes of interpolation in both the hori-
zontal and vertical directions are similar. Here, we

discuss only the structure of the 1D interpolation
filter. There are four source pixels f(x0), f(x1), f(x2),
and f(x3), and a destination pixel s(x) of 1D interpo-
lation. As the space between two neighboring sam-
pled points is 1, according to Eq. (1), the interpolation
formula is derived by

3 2
0

3 2
1

3 2
2

3 2
3

1 5() () (1) (1) 4(1) 2
2 2

3 5() 1
2 2
3 5() (1) (1) 1
2 2

1 5() (2) (2) 4(2) 2 ,
2 2

s x f x

f x

f x

f x

α α α

α α

α α

α α α

⎡ ⎤= − + + + − + +⎢ ⎥⎣ ⎦
⎛ ⎞+ − +⎜ ⎟
⎝ ⎠
⎡ ⎤+ − − − +⎢ ⎥⎣ ⎦
⎡ ⎤+ − − + − − − +⎢ ⎥⎣ ⎦

(2)

where α is the offset between the second source pixel
f(x1) and the destination pixel s(x).

In our proposed architecture, the Farrow struc-
ture is employed, which is very useful for a polyno-
mial based interpolation filter (Farrow, 1988; Erup et
al., 1993; Gardner, 1993). It is very well suited for
high-speed real-time implementation because it uses a
small number of multiplications and greatly reduces
the complexity of hardware implementation.

To fit our Farrow based structure of the inter-
polation filter, Eq. (2) can be rewritten as

0 1 2 3

0 1 2 3

0 2 1

1 3 3 1() () () () ()
2 2 2 2

5 1() () 2 () ()
2 2

1 1() () ().
2 2

s x f x f x f x f x

f x f x f x f x

f x f x f x

α

α

α

⎧⎡⎛ ⎞= − + − +⎨ ⎜ ⎟⎢⎝ ⎠⎣⎩
⎤⎛ ⎞+ − + −⎜ ⎟⎥⎝ ⎠⎦

⎫⎛ ⎞+ − + +⎬⎜ ⎟
⎝ ⎠⎭

(3)

The Farrow coefficients can be derived from
Eq. (3). Our proposed Farrow based interpolation
filter consists of four columns of finite impulse re-
sponse (FIR) transversal filters, and each FIR column
has four taps. The tap coefficients are listed in Table 1.

The coefficients of the filter are all integrals of
1/2, so they can be performed by plus, left shift, and
right shift operations. Fig. 2 shows the filter imple-
mentation structure. The inputs are the four sampled
data points f(x0), f(x1), f(x2), f(x3), and the offset α, and

Fig. 1 Illumination of 2D interpolation at point (x,y)
(a) Grid of the source image; (b) Grid of the destination im-
age, whose resolution is different from that of the source
image, where x1 and x2 are the grid widths of the source and
destination pixels, respectively; (c) Comparison between
source and destination images; (d) Snapshot of (c), where αH
is the horizontal offset between the second column source
pixels and intermediate results; (e) 1D interpolation in the
vertical direction, where αV is the vertical offset between the
second source pixel s(x1) and the destination pixel s(x,y)

...

...

...

...

...

... ...

...

...

...

...

...

(x,y)

(),x y

x1 x2

x1

x2

Hα
(a) (b)

(c)

(d)

(e)

s(x,y)

s(x0)
s(x1)

s(x2)
s(x3)

Vα

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

746

the output is the interpolated result s(x). With three
multiplications, five shifters and ten adders are re-
quired in the pipelining of the structure. The interpo-
lation filter needs seven clocks to accomplish the
function.

3 Fixed-point strategy on hardware

3.1 Fixed-point strategy of offset

The Farrow structure needs to transfer only the
offset α for each interpolation. Thus, to improve the
precision of our proposed scaling engine, a strict
fixed-point of offset α should be used.

The offset is derived by accumulating the hori-
zontal scaling factor αH or vertical scaling factor αV.
The scaling factors can be derived as follows:

Src

H
Des

1 ,
1

H
H

α −
=

−
 (4)

Src
V

Des

1 ,
1

V
V

α −
=

−
 (5)

where HSrc and VSrc are the horizontal and vertical
resolutions of the source image, respectively, and
HDes and VDes are the horizontal and vertical resolu-
tions of the destination image, respectively.

The proposed engine is designed to process
images smaller than 2560×1920 pixels, so two 33 bits
registers are used to store the horizontal and vertical
offsets.

Three variables are stored in the horizontal offset
register (Fig. 3). The relationship between these var-
iables and the horizontal scaling factor αH is given as

9 9Src

Des

1 2 Integer 2 H_step
1

H_comp / H_des,

H
H

−
× = × +

−
 +

 (6)

where Integer represents the integral result of the
division (HSrc−1)/(HDes−1).

The divisor HDes−1 is stored in the first 12 bits

([32:21]) of the register named H_des, and the trun-
cated value for calculating the offset α is kept in the
neighboring 12 bits ([20:9]) of the register named
H_comp. The value of offset α is stored in the last 9
bits ([8:0]) of the register named H_step.

Initially, H_comp and H_step are set to 0. When
the accumulator works, H_comp and H_step will be
calculated in turn, and the results will be written in the
corresponding positions. The integer part and the
offset α are exported as the outputs of the accumulator.

In our proposed method, the truncated error of
offset α is O(2−9). The truncate value of the offset,
which is smaller than 2−9, is kept in H_comp when the
scaling process is running, so there is no cumulative
error.

To evaluate the performance of our proposed
fixed-point strategy of offset α, we used the LIVE
image quality assessment database (Wang et al.,
2004; Sheikh et al., 2006; 2010). The images were
interpolated with 6, 7, 8, 9, 10, and 11 bits of offset α.
We also give the floating calculating results as ref-
erence. To obtain the peak signal-to-noise ratio
(PSNR) in Table 2, these images were scaled in four
different ways with the same scale factor, 4/3. The
orders of the four different ways were as follows:
scaling up in both the horizontal (H up) and vertical
directions (V up); scaling up in the horizontal direc-
tion and scaling down in the vertical direction (V

Table 1 Coefficients of Farrow based interpolation
filter

i l=0 l=1 l=2 l=3
0 0 −1/2 1 −1/2
1 1 0 −5/2 3/2
2 0 1/2 2 −3/2
3 0 0 −1/2 1/2

i: tap number; l: column number

Fig. 3 Horizontal offset register read/write (R/W)

×

×+

+

+

×

+

+ + +

+ +

+

Fig. 2 Structure of the interpolation filter

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

747

down); scaling down in the horizontal direction (H
down) and scaling up in the vertical direction; scaling
down in both the horizontal and vertical directions.
To determine the accuracy of the experiment, we
chose 4/3 as the scaling factor since it is indivisible by
2n. We then rescaled these images back to their
original size to compare with the reference.

Table 2 shows PSNR comparisons of luminance
of the offset α under different fixed-point strategies.
Simulations show that with the increase in bits of the
offset α, the processing results are more accurate.
However, when the bits of the offset α are greater than
9, the improvement in PSNR is negligible. Consid-
ering the tradeoff between the cost of registers and
performance, we chose 9 bits data to represent the
offset α.

3.2 Fixed-point process of interpolation filter

The luminance component and two channels of
chrominance components all consist of 8 bits data
(0–255) whereas the offset α is 9 bits data. Thus, if all
the fractional bits of the intermediate calculation data
are kept, 36 bits data will be derived before exporting.
Although keeping the fractional bits to the end of the
filter and rounding them together (global rounding)
are more accurate, it needs much wider registers to
retain the unimportant information and a larger area to
implement the filter. Thus, there should be a fixed-
point process for the intermediate calculation of the
interpolation filter. Considering the tradeoff between
the computational accuracy and the design cost, we
propose to keep only 4 bits of fraction when the in-
termediate data are written into the flip-flops during
each cycle of calculation and to finally round the
result before exporting it. Under the premise of ac-
curacy, shorter registers can be taken to store the
intermediate data in the calculations.

To evaluate the performance of our proposed
fixed-point method of the interpolation filter, the test

images in the database were processed with different
fixed-point methods including keeping 0, 2, 4, 6, and
8 bits fractions of the intermediate data in the inter-
polation filter. To obtain the reference, we also ran a
group of simulations which calculates with the float-
ing method and uses global rounding before the out-
put of the filter. To obtain the performance of a single
interpolation filter, these images were scaled up or
down in only one direction with the factor 4/3. In this
way, the mean square error (MSE) of a single inter-
polator could be estimated.

Fig. 4 shows the MSE values obtained from
comparisons of the test images. Note that the pixel
errors of all the images do not exceed 1, which is
attributed to the accurate fixed-point strategy of offset
α. Compared with the global rounding method, if we
adopt a no-fraction method (0 bit fraction shown in
Fig. 4) or a 2 bits fraction method, the MSE is so large
that nearly 20% of pixels of the processed image are
error pixels, which may badly affect the quality of
image. If the fixed-point strategy of keeping 4 bits to
store the fraction is chosen, the percentage of error
pixels in the images falls sharply to below 5%.
Therefore, retaining 4 bits fractions of the intermedi-
ate data in the interpolation filter gives a better
tradeoff between the image quality and the hardware
cost.

0 2 4 6 8
0

0.05

0.10

0.15

0.20

0.25

Bit width

M
S

E

 H up
 H down
 V up
 V down

Fig. 4 Mean square error (MSE) under different fixed-
point methods with different sizes

Table 2 Peak signal-to-noise ratio (PSNR) of offset under different fixed-point methods

PSNR (dB)
Scaling way

6 bits 7 bits 8 bits 9 bits 10 bits 11 bits Floating
H up & V up 45.79 46.08 46.19 46.22 46.23 46.24 46.24
H up & V down 39.55 39.66 39.69 39.70 39.71 39.71 39.71
H down & V up 38.95 39.04 39.07 39.09 39.09 39.09 39.09
H down & V down 36.82 36.89 36.91 36.92 36.92 36.92 36.92

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

748

4 Architecture of scaling engine

In total, there are four logic units (including two
combinational units and two control units) and five
line buffers in the scaling engine. The four logic units
are a source clock domain data read/write controller
(Src_Ctrl), a destination clock domain data read con-
troller (Des_Ctrl), a horizontal interpolator (H_Intp),
and a vertical interpolator (V_Intp). The line buffers
are dual-port static random access memory (SRAM).

The inputs and outputs of the scaling engine
work at different operating frequencies. The scaling
engine needs to deal with the problem of the data that
cross clock domains. Thus, all the functional units are
divided into two parts, one part working in the source
clock cycle (TSrc), and the other part working in the
destination clock (TDes). TDes is determined by TSrc and
the ratio of source resolution to destination resolution,
given by

Src Src
Des Src

Des Des
.H VT T

H V
⋅= (7)

To realize the arbitrary scaling ratios up/down in

the horizontal and vertical directions, four different
cases need to be discussed (Fig. 5).

Generally, the number of destination pixels
generated by the scaling down interpolation is smaller
than the number of source pixels. The scaling down
interpolation takes a few clock cycles to produce a
destination pixel, so it can work in the source clock
domain. In contrast, the number of destination pixels
generated by the scaling up interpolation is greater
than the number of source pixels. As it is impossible
to output more than one destination pixel in one
source clock cycle, the scaling up interpolation must
be arranged in the destination clock cycle. In the dif-
ferent cases as shown in Fig. 5, H_Intp and V_Intp are
arranged in different clock domains. The principle is:
to execute scaling down interpolation in the source
clock domain, to cross the clock domain before exe-
cuting the scaling up interpolation, and to arrange the
corresponding interpolation filter to work in the des-
tination clock.

To control the read and write of the line buffers
more flexibly, dual-port SRAM is used instead of
first in first out (FIFO). The write control signal of
the line buffer is provided by Src_Ctrl and the read

control signal by Src_Ctrl or Des_Ctrl, according to
the case. If the line buffer offers data to the interpo-
lator in the source clock domain, the read control
signal is provided by Src_Ctrl. Otherwise, it is pro-
vided by Des_Ctrl.

In the case of horizontal scaling up and vertical
scaling up (Fig. 5a), both H_Intp and V_Intp work in
the destination clock domain. The horizontal offset
and vertical offset are provided by Des_Ctrl. The five
line buffers cross the clock domain together. Src_Ctrl
sends a control signal to write source image pixel data
into the line buffer. When the line buffers have stored
enough data, Des_Ctrl sends a control signal to read
the data from line buffers for interpolating. The ver-
tical interpolation executes first, and data from the
line buffers are read in parallel.

Fig. 6 shows the data loading for V_Intp. The
four vertical neighboring pixels are sent to V_Intp in
the order shown on the left side of Fig. 6. At the same
time, the fifth line buffer (shaded in Fig. 6) receives
the source pixel data. When a line of interpolation has
been finished, the integer part of the accumulating
result of the vertical offset register is used as a switch.
If the output is 1, it means that the vertical position of
the next destination pixel crosses a source line from
the current line. Thus, the data loading changes from
Lines A, B, C, and D to Lines B, C, D, and E. The

Fig. 5 Data flow of the scaling engine
(a) Horizontal up and vertical up; (b) Horizontal up and ver-
tical down; (c) Horizontal down and vertical up; (d) Hori-
zontal down and vertical down

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

749

preparing line buffer (shaded) also changes from Line
E to Line A. If the integer output of the accumulation
is still 0, it means that the next destination pixel is still
located between the current source lines. Thus,
Des_Ctrl reloads the data from the same four line
buffers, that is Lines A, B, C, and D.

Note that no line buffer is used between the two
interpolation filters in Fig. 5a, because they are both
in the destination clock domain. The output of V_Intp
enters Des_Ctrl, in which four D-flip-flops are em-
ployed as the time delay generators to buffer the data
(Fig. 7). The four horizontal neighboring pixel data
are then sent to H_Intp in parallel.

In Fig. 5b, the vertical direction is scaling down,
so V_Intp works in the source clock domain and the
vertical offset is provided by Src_Ctrl. Four line
buffers are arranged in the source clock domain. The
read and write of these four line buffers are in the
same clock domain. The fifth line buffer (shaded in
Fig. 5b) crosses the clock domain. H_Intp works in
the destination clock domain. Des_Ctrl reads data
from the fifth line buffer and uses the four-D-flip-flop
block to send the data to H_Intp. It also provides the
horizontal offset to H_Intp.

The crossing clock domain pattern of the case in
Fig. 5c is similar to the case in Fig. 5a. Because it is
scaling down in the horizontal direction, the engine
executes the horizontal interpolation first, and then
uses the five line buffers to cross the clock domain
and executes the vertical interpolation.

The case in Fig. 5d is scaling down in both di-
rections, so the two interpolation filters and four line
buffers work in the source clock domain. After the
vertical and horizontal interpolations finish, Des_Ctrl
controls the read of data from the fifth line buffer
(shaded) and finally exports them as the output of the
engine in the destination clock domain. In this case,
there are no data passing through Des_Ctrl, and
Des_Ctrl provides only the control signal, so it is not
shown in Fig. 5.

The architecture of the scaling engine is shown
in Fig. 8. As well as the units mentioned above, a few

Line E
Line buffer Line buffer

1

2

3

4

1

2

3

4

Line D

Line C

Line B

Line A

Fig. 6 Data loading for V_Intp

Reg Reg RegReg

s(x3)

s(x1)

s(x2)

s(x0)
s(x)

Fig. 7 Data loading for H_Intp

01

v_
up

_d
ow

n

Fig. 8 Architecture of the scaling engine

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

750

multiplexers (MUXs) are employed. These MUXs are
controlled by the signals h_up_down or v_up_down.
If an image is scaled up in the horizontal direction,
h_up_down is 0, and vice versa. Likewise for
v_up_down. These MUXs control the engine so as to
work following one of the four data flow charts
shown in Fig. 5.

5 Experimental results

The simulation result of the proposed scaling
engine was compared with the results from NN in-
terpolation, linear interpolation, Kim’s Winscale
method (Kim et al., 2003), B-spline approximation,
and B-spline interpolation (Hou and Andrews, 1978).
The test images in the LIVE database were used. The
PSNR comparisons and the normalized cross-
correlation coefficients (CCC) (Lehmann et al., 1997)
of luminance are listed in Table 3.

The CCC was used to assess image similarity
and was calculated as follows:

,

2 2 2 2

, ,

(,) (,)
CCC ,

(,) (,)

k l

k l k l

s k l r k l KLsr

s k l KLs r k l KLr

−
=

⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑

∑ ∑
 (8)

where s(k,l) and r(k,l) denote the original and the
twice interpolated values in the point (k,l), respec-
tively, and s and r denote the means of the original
and the twice interpolated images of dimension KL,
respectively.

The test images were processed in four groups.
The scaling factor was 4/3, and the four different
ways of scaling were the same as those described in
Section 3.1. Since the NN interpolation simply rep-
licates the nearest neighboring pixel, the images in
Table 3 using the NN interpolation with respect to H
up and V up are the same as the original images. Thus,
the PSNR of the NN interpolation makes no sense and
the mean of the CCC is 1, and the standard deviation
(SD) is 0. As shown in the table, in terms of PSNR,
Kim’s Winscale, which is a method using an area
pixel model, performs better than NN and linear in-
terpolations. As an approximate kernel, B-spline ap-
proximation is slightly better than NN interpolation.
Our proposed engine is slightly inferior to B-spline
interpolation. However, the latter is too difficult to
realize on hardware, because the coefficients of the
B-spline interpolation kernel are achieved by prefil-
tering the data samples. Moreover, because the coef-
ficients are theoretically infinite, it is impossible to
implement. Our proposed engine performed much
better than the other four methods. The mean value of
the CCC was also verified by the PSNR evaluation.

Table 3 Peak signal-to-noise ratio (PSNR) of different test images scaled by factor 4/3
PSNR (dB)*

Method
H up & V up H up & V down H down & V up H down & V down

NN 32.15 31.35 28.78
Linear 36.98 34.61 34.29 32.91
Winscale 37.72 35.23 34.89 33.47
B-spline approximation 33.44 31.91 31.70 30.67
B-spline interpolation 48.52 40.07 39.48 37.30
Proposed 46.24 39.71 39.09 36.92

Cross-correlation coefficient
H up & V up H up & V down H down & V up H down & V downMethod

Mean SD Mean SD Mean SD Mean SD
NN 1 0 0.9791 0.0416 0.9781 0.0415 0.9608 0.0725
Linear 0.9933 0.0129 0.9855 0.0331 0.9852 0.0331 0.9784 0.0501
Winscale 0.9927 0.0152 0.9848 0.0365 0.9844 0.0366 0.9776 0.0544
B-spline approximation 0.9797 0.0443 0.9726 0.0599 0.9722 0.0598 0.9659 0.0729
B-spline interpolation 0.9996 0.0009 0.9914 0.0272 0.9910 0.0273 0.9841 0.0489
Proposed 0.9986 0.0033 0.9906 0.0277 0.9902 0.0277 0.9834 0.0478

*
 Mean value. SD: standard deviation

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

751

From the statistical data of the CCC, especially from
the SD of the six methods, we conclude that our
proposed engine and the B-spline interpolation can
give more stable scaling performance in all four
scaling situations, because the SD of the cubic con-
volution and the B-spline interpolation are much
smaller than those of the other four methods. There-
fore, in our hardware implementation, we chose cubic
convolution as the interpolation kernel.

To evaluate the proposed application specific
integrated circuit (ASIC) implementation of the scal-
ing engine, the MSEs from software based imple-
mentation and field-programmable gate array (FPGA)
based implementation of test sequences were com-
pared (Fig. 9). The test sequences used were Fore-
man, Tempete, and Mobile. In experiments, MSE
comparisons of the luminance component Y and the
chrominance components U and V were calculated.
MSEs were all below 0.1 in these three test se-
quences. The results show that there was almost no
difference between software simulation and hardware
implementation of the proposed scaling engine.

It is difficult to measure the scaling performance
exactly using only the PSNR, CCC, and MSE. Thus,
in addition, we used subjective image quality evalua-
tion to give an accurate evaluation. Fig. 10 shows the
comparison of a subjective view processed by soft-
ware based implementation and FPGA based imple-
mentation. Fig. 10a is the 16th frame of the Foreman
test sequence which is 352×288 in YUV 4:2:0 CIF
format. In the experiments, Fig. 10a is scaled up to
1024×768 through the proposed scaling engine.
Fig. 10b is the snapshot of Fig. 10a. The image in
Fig. 10c was processed by software based imple-
mentation with floating calculation. Fig. 10d was
produced by the FPGA based scaling engine. Little
difference can be seen between Figs. 10c and 10d.
Thus, the proposed architecture and its hardware
implementation of the scaling engine work very
well according to the cubic-convolution scaling
algorithm.

These experiments show that our proposed al-
gorithm and its hardware implementation have theo-
retically better performance than the conventional
algorithms, and that the image quality of our hard-
ware implementation is nearly the same as that of our
proposed algorithm.

M
S

E

(a)

(b)

M
S

E

(c)

Fig. 9 Comparison of image quality between software
based implementation and FPGA based implementation
(a) Foreman; (b) Tempete; (c) Mobile

Fig. 10 Comparison of image quality between software
based implementation and FPGA based implementation
(a) Original frame; (b) Snapshot; (c) Software based simula-
tion; (d) FPGA based simulation

(a) (b)

(c) (d)

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

752

In addition, our proposed scaling engine was
verified first on FPGA with the clock frequency at
130 MHz. Because of the limitation of the clock fre-
quency of FPGA, the maximum resolution cannot
reach our designed resolution of 2560×1920, but it
can meet most of the demands of display devices. The
scaling engine was also realized on 0.13 μm ASIC
implementation. The clock frequency of ASIC design
can reach 312 MHz, and our designed maximum
resolution can be achieved.

The hardware cost of the proposed architecture
has been compared with other FPGA based archi-
tectures (Feng et al., 2001; Kim et al., 2003; Aho et
al., 2007; Lin et al., 2008; 2010) in Table 4. Our
proposed implementation is one of the most complex
implementations (Table 4). However, with the novel
architecture, the gate count and the memory cost of
our proposed implementation do not increase in
proportion to the algorithm’s computational com-
plexity. The gate count of our proposed implemen-
tation is slightly larger than that of Aho et al. (2007),
which is based on linear interpolation and is designed
only for scaling down. The count is much smaller
than that of any other implementations listed in the
table. Aho et al. (2007) and Kim et al. (2003), whose
algorithms are based on linear interpolation, used
four line buffers to store the pixel data. Theoretically
speaking, linear interpolation uses 2×2 pixels for
interpolating, so the calculation needs two line buff-
ers to export the interpolating pixel data, which
means that their implementations need extra two line
buffers to store and pre-process data. Our proposed
implementation is based on a 4×4 cubic convolution.
The interpolation needs at least four line buffers to
deal with the vertical interpolation. Thus, except for
these four line buffers, only one extra line buffer is

used to store and pre-process data (Figs. 5 and 8). The
theoretically smallest cost of line buffers that the 4×4
cubic convolution needs, is achieved by our proposed
implementation. Other algorithms such as cubic
convolution in the horizontal direction (Feng et al.,
2001) employ more line buffers than the proposed
implementation.

A VLSI design of bi-cubic convolution was pre-
sented by Lin et al. (2008). Lin et al. (2010) also
developed a piecewise linear convolution interpola-
tion algorithm. The VLSI designs of Lin et al. (2008;
2010) are very efficient. The clock frequency of the
0.13 μm ASIC designs of Lin et al. (2008; 2010) can
also reach 275 MHz as needed by our designed
maximum resolution. However, the gate counts of
their design are nearly double those of our design.

6 Conclusions

A novel scaling engine implementation is pro-
posed in this paper, in which a 4×4 cubic convolution
is employed to achieve better image quality. The
engine is composed of only four functional units and
five line buffers, which makes it more efficient in
hardware cost than conventional methods. In ex-
periments, some detailed comparisons and analyses
indicated that the proposed implementation has a
better performance than most of the existing scaling
implementations. Furthermore, experiments showed
that the strict fixed-point strategy can avoid cumulative
errors and minimize the quantization errors in hard-
ware implementation. As a result, our proposed en-
gine is an effective image-scaling implementation for
applications that require good image quality and low
computational complexity.

Table 4 Comparison of FPGA based scaling implementation

Scaling algorithm Scaling
direction Color format Gate count Line buffer Clock frequency

(MHz)
Bilinear (Aho et al., 2007) Down YUV (4:2:0) About 10 500 4Wi 105
Wincale (Kim et al., 2003) Up/Down – About 29 000 4Wi
Cubic and bisigmoidal

(Feng et al., 2001)
Up RGB About 33 000 6Wi 46

Bi-cubic convolution
(Lin et al., 2008)

Up/Down RGB/YUV About 34 115 – 104

First-order polynomials
convolution (Lin et al., 2010)

Up/Down RGB/YUV About 28 904 – 104

Proposed Up/Down RGB/YUV About 16 000 5Wi 130
Wi: input image width

Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(9):743-753

753

References
Aho, E., Vanne, J., Hamalainen, T.D., Kuusilinna, K., 2007.

Configurable implementation of parallel memory based
real-time video downscaler. Microprocess. Microsyst.,
31(5):283-292. [doi:10.1016/j.micpro.2006.09.003]

Arandiga, F., Donat, R., Mulet, P., 2003. Adaptive interpola-
tion of images. Signal Process., 83(2):459-464. [doi:10.
1016/S0165-1684(02)00445-0]

Chen, P.Y., Lien, C.Y., Lu, C.P., 2009. VLSI implementation
of an edge-oriented image scaling processor. IEEE Trans.
VLSI Syst., 17(9):1275-1284. [doi:10.1109/TVLSI.2008.
2003003]

Erup, L., Gardner, F.M., Harris, R.A., 1993. Interpolation in
digital modems. II. Implementation and performance.
IEEE Trans. Commun., 41(6):998-1008. [doi:10.1109/26.
231921]

Farrow, C.W., 1988. A Continuously Variable Digital Delay
Element. IEEE Int. Symp. on Circuits and Systems,
3:2641-2645. [doi:10.1109/ISCAS.1988.15483]

Feng, T., Xie, W.L., Yang, L.X., 2001. An Architecture and
Implementation of Image Scaling Conversion. 4th Int.
Conf. on ASIC, p.409-410. [doi:10.1109/ICASIC.2001.
982587]

Gardner, F.M., 1993. Interpolation in digital modems. I. Fun-
damentals. IEEE Trans. Commun., 41(3):501-507. [doi:
10.1109/26.221081]

Her, I., Yuan, C.T., 1994. Resampling on a pseudohexagonal
grid. CVGIP: Graph. Models Image Process., 56(4):
336-347. [doi:10.1006/cgip.1994.1030]

Hong, K.P., Paik, J.K., Kim, H.J., Lee, C.H., 1996. An edge-
preserving image interpolation system for a digital cam-
corder. IEEE Trans. Consum. Electron., 42(3):279-284.
[doi:10.1109/30.536121]

Hou, H., Andrews, H., 1978. Cubic splines for image inter-
polation and digital filtering. IEEE Trans. Acoust. Speech
Signal Process., 26(6):508-517. [doi:10.1109/TASSP.
1978.1163154]

Keys, R., 1981. Cubic convolution interpolation for digital
image processing. IEEE Trans. Acoust. Speech Signal
Process., 29(6):1153-1160. [doi:10.1109/TASSP.1981.
1163711]

Kim, C.H., Seong, S.M., Lee, J.A., Kim, L.S., 2003. Winscale:
an image-scaling algorithm using an area pixel model.
IEEE Trans. Circ. Syst. Video Technol., 13(6):549-553.
[doi:10.1109/TCSVT.2003.813431]

Lehmann, T., Sovakar, A., Schmitt, W., Repges, R., 1997. A
comparison of similarity measures for digital subtraction

radiography. Comput. Biol. Med., 27(2):151-167. [doi:10.
1016/S0010-4825(97)83769-9]

Lehmann, T.M., Gonner, C., Spitzer, K., 1999. Survey: inter-
polation methods in medical image processing. IEEE
Trans. Med. Imag., 18(11):1049-1075. [doi:10.1109/42.
816070]

Li, X., Orchard, M.T., 2001. New edge-directed interpolation.
IEEE Trans. Image Process., 10(10):1521-1527. [doi:10.
1109/83.951537]

Lin, C.C., Sheu, M.H., Chiang, H.K., Liaw, C., Wu, Z.C.,
2008. The Efficient VLSI Design of BI-CUBIC Convo-
lution Interpolation for Digital Image Processing. IEEE
Int. Symp. on Circuits and Systems, p.480-483. [doi:10.
1109/ISCAS.2008.4541459]

Lin, C.C., Sheu, M.H., Liaw, C., Chiang, H.K., 2010. Fast
first-order polynomials convolution interpolation for real-
time digital image reconstruction. IEEE Trans. Circ. Syst.
Video Technol., 20(9):1260-1264. [doi:10.1109/TCSVT.
2010.2057017]

Nuno-Maganda, M.A., Arias-Estrada, M.O., 2006. Real-Time
FPGA-Based Architecture for Bicubic Interpolation: an
Application for Digital Image Scaling. Int. Conf. on Re-
configurable Computing and FPGAs, p.1-8. [doi:10.1109/
RECONFIG.2005.34]

Parker, J.A., Kenyon, R.V., Troxel, D.E., 1983. Comparison of
interpolating methods for image resampling. IEEE Trans.
Med. Imag., 2(1):31-39. [doi:10.1109/TMI.1983.4307610]

Sheikh, H.R., Sabir, M.F., Bovik, A.C., 2006. A statistical
evaluation of recent full reference image quality assess-
ment algorithms. IEEE Trans. Image Process., 15(11):
3440-3451. [doi:10.1109/TIP.2006.881959]

Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C., 2010.
LIVE Image Quality Assessment Database Release 2.
Available from http://live.ece.utexas.edu/research/qual-
ity/subjective.htm [Accessed on Oct. 18, 2010].

Shi, H.J., Ward, R., 2002. Canny Edge Based Image Expan-
sion. IEEE Int. Symp. on Circuits and Systems, 1:785-
788. [doi:10.1109/ISCAS.2002.1009958]

Shi, J.Z., Reichenbach, S.E., 2006. Image interpolation by
two-dimensional parametric cubic convolution. IEEE
Trans. Image Process., 15(7):1857-1870. [doi:10.1109/
TIP.2006.873429]

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004.
Image quality assessment: from error visibility to struc-
tural similarity. IEEE Trans. Image Process., 13(4):600-
612. [doi:10.1109/TIP.2003.819861]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

