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Abstract:    In video applications, real-time image scaling techniques are often required. In this paper, an efficient implementation 
of a scaling engine based on 4×4 cubic convolution is proposed. The cubic convolution has a better performance than other tra-
ditional interpolation kernels and can also be realized on hardware. The engine is designed to perform arbitrary scaling ratios with 
an image resolution smaller than 2560×1920 pixels and can scale up or down, in horizontal or vertical direction. It is composed of 
four functional units and five line buffers, which makes it more competitive than conventional architectures. A strict fixed-point 
strategy is applied to minimize the quantization errors of hardware realization. Experimental results show that the engine provides 
a better image quality and a comparatively lower hardware cost than reference implementations. 
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1  Introduction 
 

As various kinds of digital display devices have 
become popularized, several types of image formats 
have been utilized. The resolution of a digital display, 
for example, LCD, is fixed according to product 
specifications. It is necessary to convert various res-
olutions of input images to adapt them to a display 
device. Thus, image interpolation becomes an im-
portant image processing operation applied in such 
diverse fields as consumer electronics, medical im-
aging, and military applications. When the image is 
interpolated from a lower resolution to a higher 
resolution, it is traditionally called image scaling up 
or up-scaling. Similarly, image scaling down or 
down-scaling means interpolation from a higher 
resolution to a lower resolution. Images are usually 
provided at a fixed size and need to be scaled either up 

or down for a variety of uses as mentioned above. 
Interpolation functions can be used to generate 

interpolated images (Hou and Andrews, 1978; Keys, 
1981; Lehmann et al., 1999; Shi and Reichenbach, 
2006). Most published interpolation methods have 
been developed by interpolating the pixels based on 
the characteristics of local features, such as edge in-
formation (Hong et al., 1996) or neighboring pixel 
information. Therefore, according to these differ-
ences, interpolation methods can be classified into 
two categories: adaptive and non-adaptive methods. 
Adaptive interpolation algorithms (Li and Orchard, 
2001; Shi and Ward, 2002; Arandiga et al., 2003; 
Chen et al., 2009) rely on the image features of the 
source image, and the computational logic is also 
dependent on the image features. As a result, these 
methods need more complex computational logic and 
heavy loading to a real-time system that is usually 
realized on software. The non-adaptive algorithms do 
not rely on the image features, and the same compu-
tational logic is repeated in every pixel or group of 
local pixels irrespective of the image features. Thus, 
certain computations are performed indiscriminately 
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to the whole image. The non-adaptive algorithms are 
easy to implement on hardware, especially on real- 
time display devices. 

The complexity and performance of scaling en-
gines vary depending on the interpolation algorithm 
used. Several non-adaptive interpolation algorithms 
have been compared (Parker et al., 1983; Lehmann et 
al., 1999). The simplest and fastest algorithm is 
nearest neighbor (NN) interpolation, but it incurs the 
largest error. Bilinear interpolation has been applied 
on some hardware implementations (Kim et al., 2003; 
Aho et al., 2007). The bilinear algorithm is simple 
enough that it needs only four (2×2) neighboring 
points for interpolating. Although the quality of the 
bilinear algorithm is much better than that of NN 
interpolation, it still has the undesirable features of 
block and blur effects. Winscale (Kim et al., 2003) is 
a modified linear scaling algorithm which scales us-
ing an area pixel model. Hou and Andrews (1978) 
proposed the cubic spline method for image scaling. 
These interpolation kernels are based on the basis 
spline (B-spline) function. The B-spline interpolation 
has an excellent performance for image scaling, but 
the coefficients for B-spline interpolation kernels are 
infinite. Thus, it is difficult to implement on hard-
ware. Hou and Andrews (1978) also developed the 
cubic spline approximation. This approximation 
kernel is easy to realize on hardware but causes strong 
blur effects on the image (Her and Yuan, 1994). Keys 
(1981) developed a 4×4 cubic convolution interpola-
tion algorithm, which is a little more complex than the 
NN and bilinear interpolations, but much simpler than 
B-spline interpolation. Clearly, this higher order 
model may provide a better quality of interpolation. 
Furthermore, it is feasible to be realized on hardware 
(Nuno-Maganda and Arias-Estrada, 2006; Lin et al., 
2008). Thus, cubic convolution provides a relatively 
accurate interpolation, as required for the modern 
display devices (Parker et al., 1983).  

Several non-adaptive interpolation algorithms 
are reported to have been implemented in very-large- 
scale integration (VLSI) design. Aho et al. (2007) 
proposed an implementation for dealing with large 
resolution color videos in real-time. The design is 
based on bilinear interpolation, and is only able to 
scale down the image. The VLSI realization of Win-
scale (Kim et al., 2003) has a better performance than 
bilinear interpolation. The computational complexity 

of the algorithm is as low as that of bilinear interpola-
tion but it needs four line buffers for vertical scaling, 
which is much more than that required for conven-
tional bilinear design, thus making it more expensive. 
The cubic and bisigmoidal interpolation method (Feng 
et al., 2001) uses cubic convolution interpolation in 
horizontal scaling and bisigmoidal interpolation in 
vertical scaling. It has been shown to give slightly 
better quality than bilinear interpolation with scaling 
up ratios restricted to 4/5, 9/10, and 24/25. Lin et al. 
(2008; 2010) proposed a novel implementation, called 
first-order polynomials convolution, in which both 
cubic convolution interpolation and its improved al-
gorithm are realized. Although this structure has the 
best performance of all of these VLSI designs, the 
realization is too complex. It uses too many multipli-
ers, which results in a huge hardware cost. 

This paper presents an efficient real-time im-
plementation of a scaling engine with a 4×4 cubic 
convolution interpolation kernel. The engine is de-
signed to process source and destination images that 
are smaller than 2560×1920 pixels. It can perform 
scaling up or down for arbitrary scaling ratios in 
horizontal and vertical directions. It is composed of 
only two interpolation filters, two control modules, 
and five line buffers. Moreover, the truncated error 
between the hardware implementation and software 
floating simulation is no larger than one for each 
pixel. There is also no cumulative error, as it proc-
esses the image pixel by pixel. 
 
 
2  Interpolation filter 

2.1  Cubic convolution interpolation 

The proposed cubic interpolation, a 2D interpo-
lation method, uses 4×4 neighboring pixels for in-
terpolating. It is usually composed of two 1D inter-
polations, a horizontal and a vertical interpolation, to 
reduce the complexity. Eq. (1) shows the 1D inter-
polation kernel of four-point cubic convolution: 
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Fig. 1 illustrates the 2D interpolation process in 
which pixels are abstracted into points located in the 
center of grids. The destination image (Fig. 1b) is 
interpolated from the source image (Fig. 1a), so the 
border pixels of the two images must coincide with 
each other, as shown in Fig. 1c. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To obtain the destination pixel of s(x,y), two 
steps of interpolation are taken. Firstly, 1D interpola-
tion is executed in the horizontal direction with four 
hollow diamond points (Fig. 1d), and the intermediate 
results denoted as s(x0), s(x1), s(x2), and s(x3) are 
calculated. Then they are interpolated in the vertical 
direction to obtain the final destination pixel signal 
s(x,y) (Fig. 1e). Note that the interpolating sequence 
between the horizontal direction and vertical direction 
has no effect on the final result. Thus, the order of 
interpolation in the two directions can be adjusted to 
meet the requirements of the architecture. 

2.2  Cubic convolution interpolation 

The processes of interpolation in both the hori-
zontal and vertical directions are similar. Here, we 

discuss only the structure of the 1D interpolation 
filter. There are four source pixels f(x0), f(x1), f(x2), 
and f(x3), and a destination pixel s(x) of 1D interpo-
lation. As the space between two neighboring sam-
pled points is 1, according to Eq. (1), the interpolation 
formula is derived by 
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(2) 
 

where α is the offset between the second source pixel 
f(x1) and the destination pixel s(x). 

In our proposed architecture, the Farrow struc-
ture is employed, which is very useful for a polyno-
mial based interpolation filter (Farrow, 1988; Erup et 
al., 1993; Gardner, 1993). It is very well suited for 
high-speed real-time implementation because it uses a 
small number of multiplications and greatly reduces 
the complexity of hardware implementation.  

To fit our Farrow based structure of the inter-
polation filter, Eq. (2) can be rewritten as 
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The Farrow coefficients can be derived from 
Eq. (3). Our proposed Farrow based interpolation 
filter consists of four columns of finite impulse re-
sponse (FIR) transversal filters, and each FIR column 
has four taps. The tap coefficients are listed in Table 1. 

The coefficients of the filter are all integrals of 
1/2, so they can be performed by plus, left shift, and 
right shift operations. Fig. 2 shows the filter imple-
mentation structure. The inputs are the four sampled 
data points f(x0), f(x1), f(x2), f(x3), and the offset α, and 

Fig. 1  Illumination of 2D interpolation at point (x,y) 
(a) Grid of the source image; (b) Grid of the destination im-
age, whose resolution is different from that of the source 
image, where x1 and x2 are the grid widths of the source and 
destination pixels, respectively; (c) Comparison between 
source and destination images; (d) Snapshot of (c), where αH 
is the horizontal offset between the second column source 
pixels and intermediate results; (e) 1D interpolation in the 
vertical direction, where αV is the vertical offset between the 
second source pixel s(x1) and the destination pixel s(x,y) 
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the output is the interpolated result s(x). With three 
multiplications, five shifters and ten adders are re-
quired in the pipelining of the structure. The interpo-
lation filter needs seven clocks to accomplish the 
function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3  Fixed-point strategy on hardware 

3.1  Fixed-point strategy of offset 

The Farrow structure needs to transfer only the 
offset α for each interpolation. Thus, to improve the 
precision of our proposed scaling engine, a strict 
fixed-point of offset α should be used.  

The offset is derived by accumulating the hori-
zontal scaling factor αH or vertical scaling factor αV. 
The scaling factors can be derived as follows: 

 
Src

H
Des

1 ,
1

H
H

α −
=

−
                          (4) 

Src
V

Des

1 ,
1

V
V

α −
=

−
                           (5) 

 
where HSrc and VSrc are the horizontal and vertical 
resolutions of the source image, respectively, and 
HDes and VDes are the horizontal and vertical resolu-
tions of the destination image, respectively. 

The proposed engine is designed to process 
images smaller than 2560×1920 pixels, so two 33 bits 
registers are used to store the horizontal and vertical 
offsets.  

Three variables are stored in the horizontal offset 
register (Fig. 3). The relationship between these var-
iables and the horizontal scaling factor αH is given as 

 

9 9Src

Des

1 2 Integer 2 H_step
1

H_comp / H_des,

H
H

−
× = × +  

−
                       +

        (6) 

 
where Integer represents the integral result of the 
division (HSrc−1)/(HDes−1). 

 
 
 
 
 
The divisor HDes−1 is stored in the first 12 bits 

([32:21]) of the register named H_des, and the trun-
cated value for calculating the offset α is kept in the 
neighboring 12 bits ([20:9]) of the register named 
H_comp. The value of offset α is stored in the last 9 
bits ([8:0]) of the register named H_step.  

Initially, H_comp and H_step are set to 0. When 
the accumulator works, H_comp and H_step will be 
calculated in turn, and the results will be written in the 
corresponding positions. The integer part and the 
offset α are exported as the outputs of the accumulator.  

In our proposed method, the truncated error of 
offset α is O(2−9). The truncate value of the offset, 
which is smaller than 2−9, is kept in H_comp when the 
scaling process is running, so there is no cumulative 
error. 

To evaluate the performance of our proposed 
fixed-point strategy of offset α, we used the LIVE 
image quality assessment database (Wang et al., 
2004; Sheikh et al., 2006; 2010). The images were 
interpolated with 6, 7, 8, 9, 10, and 11 bits of offset α. 
We also give the floating calculating results as ref-
erence. To obtain the peak signal-to-noise ratio 
(PSNR) in Table 2, these images were scaled in four 
different ways with the same scale factor, 4/3. The 
orders of the four different ways were as follows: 
scaling up in both the horizontal (H up) and vertical 
directions (V up); scaling up in the horizontal direc-
tion and scaling down in the vertical direction (V  

Table 1  Coefficients of Farrow based interpolation 
filter 

i l=0 l=1 l=2 l=3 
0 0 −1/2 1 −1/2 
1 1 0 −5/2  3/2 
2 0 1/2 2 −3/2 
3 0 0 −1/2  1/2 

i: tap number; l: column number 

Fig. 3  Horizontal offset register read/write (R/W) 

×

×+

+

+

×

+

+ + +
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+

Fig. 2  Structure of the interpolation filter 
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down); scaling down in the horizontal direction (H 
down) and scaling up in the vertical direction; scaling 
down in both the horizontal and vertical directions. 
To determine the accuracy of the experiment, we 
chose 4/3 as the scaling factor since it is indivisible by 
2n. We then rescaled these images back to their 
original size to compare with the reference. 

Table 2 shows PSNR comparisons of luminance 
of the offset α under different fixed-point strategies. 
Simulations show that with the increase in bits of the 
offset α, the processing results are more accurate. 
However, when the bits of the offset α are greater than 
9, the improvement in PSNR is negligible. Consid-
ering the tradeoff between the cost of registers and 
performance, we chose 9 bits data to represent the 
offset α. 

3.2  Fixed-point process of interpolation filter 

The luminance component and two channels of 
chrominance components all consist of 8 bits data 
(0–255) whereas the offset α is 9 bits data. Thus, if all 
the fractional bits of the intermediate calculation data 
are kept, 36 bits data will be derived before exporting. 
Although keeping the fractional bits to the end of the 
filter and rounding them together (global rounding) 
are more accurate, it needs much wider registers to 
retain the unimportant information and a larger area to 
implement the filter. Thus, there should be a fixed- 
point process for the intermediate calculation of the 
interpolation filter. Considering the tradeoff between 
the computational accuracy and the design cost, we 
propose to keep only 4 bits of fraction when the in-
termediate data are written into the flip-flops during 
each cycle of calculation and to finally round the 
result before exporting it. Under the premise of ac-
curacy, shorter registers can be taken to store the 
intermediate data in the calculations. 

To evaluate the performance of our proposed 
fixed-point method of the interpolation filter, the test  

 
 
 
 
 
 
 
 

 
images in the database were processed with different 
fixed-point methods including keeping 0, 2, 4, 6, and 
8 bits fractions of the intermediate data in the inter-
polation filter. To obtain the reference, we also ran a 
group of simulations which calculates with the float-
ing method and uses global rounding before the out-
put of the filter. To obtain the performance of a single 
interpolation filter, these images were scaled up or 
down in only one direction with the factor 4/3. In this 
way, the mean square error (MSE) of a single inter-
polator could be estimated.  

Fig. 4 shows the MSE values obtained from 
comparisons of the test images. Note that the pixel 
errors of all the images do not exceed 1, which is 
attributed to the accurate fixed-point strategy of offset 
α. Compared with the global rounding method, if we 
adopt a no-fraction method (0 bit fraction shown in 
Fig. 4) or a 2 bits fraction method, the MSE is so large 
that nearly 20% of pixels of the processed image are 
error pixels, which may badly affect the quality of 
image. If the fixed-point strategy of keeping 4 bits to 
store the fraction is chosen, the percentage of error 
pixels in the images falls sharply to below 5%. 
Therefore, retaining 4 bits fractions of the intermedi-
ate data in the interpolation filter gives a better 
tradeoff between the image quality and the hardware 
cost. 

 
 
 
 
 
 
 
 
 
 
 
 

0 2 4 6 8
0

0.05

0.10

0.15

0.20

0.25

Bit width

M
S

E

 H up 
 H down
 V up
 V down

Fig. 4  Mean square error (MSE) under different fixed-
point methods with different sizes 

Table 2  Peak signal-to-noise ratio (PSNR) of offset under different fixed-point methods 

PSNR (dB) 
Scaling way 

6 bits 7 bits 8 bits 9 bits 10 bits 11 bits Floating
H up & V up 45.79 46.08 46.19 46.22 46.23 46.24 46.24 
H up & V down 39.55 39.66 39.69 39.70 39.71 39.71 39.71 
H down & V up 38.95 39.04 39.07 39.09 39.09 39.09 39.09 
H down & V down 36.82 36.89 36.91 36.92 36.92 36.92 36.92 
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4  Architecture of scaling engine 
 

In total, there are four logic units (including two 
combinational units and two control units) and five 
line buffers in the scaling engine. The four logic units 
are a source clock domain data read/write controller 
(Src_Ctrl), a destination clock domain data read con-
troller (Des_Ctrl), a horizontal interpolator (H_Intp), 
and a vertical interpolator (V_Intp). The line buffers 
are dual-port static random access memory (SRAM).  

The inputs and outputs of the scaling engine 
work at different operating frequencies. The scaling 
engine needs to deal with the problem of the data that 
cross clock domains. Thus, all the functional units are 
divided into two parts, one part working in the source 
clock cycle (TSrc), and the other part working in the 
destination clock (TDes). TDes is determined by TSrc and 
the ratio of source resolution to destination resolution, 
given by 

 

Src Src
Des Src

Des Des
.H VT T

H V
⋅=                    (7) 

 
To realize the arbitrary scaling ratios up/down in 

the horizontal and vertical directions, four different 
cases need to be discussed (Fig. 5). 

Generally, the number of destination pixels 
generated by the scaling down interpolation is smaller 
than the number of source pixels. The scaling down 
interpolation takes a few clock cycles to produce a 
destination pixel, so it can work in the source clock 
domain. In contrast, the number of destination pixels 
generated by the scaling up interpolation is greater 
than the number of source pixels. As it is impossible 
to output more than one destination pixel in one 
source clock cycle, the scaling up interpolation must 
be arranged in the destination clock cycle. In the dif-
ferent cases as shown in Fig. 5, H_Intp and V_Intp are 
arranged in different clock domains. The principle is: 
to execute scaling down interpolation in the source 
clock domain, to cross the clock domain before exe-
cuting the scaling up interpolation, and to arrange the 
corresponding interpolation filter to work in the des-
tination clock. 

To control the read and write of the line buffers 
more flexibly, dual-port SRAM is used instead of 
first in first out (FIFO). The write control signal of 
the line buffer is provided by Src_Ctrl and the read 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

control signal by Src_Ctrl or Des_Ctrl, according to 
the case. If the line buffer offers data to the interpo-
lator in the source clock domain, the read control 
signal is provided by Src_Ctrl. Otherwise, it is pro-
vided by Des_Ctrl. 

In the case of horizontal scaling up and vertical 
scaling up (Fig. 5a), both H_Intp and V_Intp work in 
the destination clock domain. The horizontal offset 
and vertical offset are provided by Des_Ctrl. The five 
line buffers cross the clock domain together. Src_Ctrl 
sends a control signal to write source image pixel data 
into the line buffer. When the line buffers have stored 
enough data, Des_Ctrl sends a control signal to read 
the data from line buffers for interpolating. The ver-
tical interpolation executes first, and data from the 
line buffers are read in parallel.  

Fig. 6 shows the data loading for V_Intp. The 
four vertical neighboring pixels are sent to V_Intp in 
the order shown on the left side of Fig. 6. At the same 
time, the fifth line buffer (shaded in Fig. 6) receives 
the source pixel data. When a line of interpolation has 
been finished, the integer part of the accumulating 
result of the vertical offset register is used as a switch. 
If the output is 1, it means that the vertical position of 
the next destination pixel crosses a source line from 
the current line. Thus, the data loading changes from 
Lines A, B, C, and D to Lines B, C, D, and E. The 

Fig. 5  Data flow of the scaling engine 
(a) Horizontal up and vertical up; (b) Horizontal up and ver-
tical down; (c) Horizontal down and vertical up; (d) Hori-
zontal down and vertical down  
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preparing line buffer (shaded) also changes from Line 
E to Line A. If the integer output of the accumulation 
is still 0, it means that the next destination pixel is still 
located between the current source lines. Thus, 
Des_Ctrl reloads the data from the same four line 
buffers, that is Lines A, B, C, and D. 

Note that no line buffer is used between the two 
interpolation filters in Fig. 5a, because they are both 
in the destination clock domain. The output of V_Intp 
enters Des_Ctrl, in which four D-flip-flops are em-
ployed as the time delay generators to buffer the data 
(Fig. 7). The four horizontal neighboring pixel data 
are then sent to H_Intp in parallel.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 5b, the vertical direction is scaling down, 
so V_Intp works in the source clock domain and the 
vertical offset is provided by Src_Ctrl. Four line 
buffers are arranged in the source clock domain. The 
read and write of these four line buffers are in the 
same clock domain. The fifth line buffer (shaded in 
Fig. 5b) crosses the clock domain. H_Intp works in 
the destination clock domain. Des_Ctrl reads data 
from the fifth line buffer and uses the four-D-flip-flop 
block to send the data to H_Intp. It also provides the 
horizontal offset to H_Intp.  

The crossing clock domain pattern of the case in 
Fig. 5c is similar to the case in Fig. 5a. Because it is 
scaling down in the horizontal direction, the engine 
executes the horizontal interpolation first, and then 
uses the five line buffers to cross the clock domain 
and executes the vertical interpolation. 

The case in Fig. 5d is scaling down in both di-
rections, so the two interpolation filters and four line 
buffers work in the source clock domain. After the 
vertical and horizontal interpolations finish, Des_Ctrl 
controls the read of data from the fifth line buffer 
(shaded) and finally exports them as the output of the 
engine in the destination clock domain. In this case, 
there are no data passing through Des_Ctrl, and 
Des_Ctrl provides only the control signal, so it is not 
shown in Fig. 5.  

The architecture of the scaling engine is shown 
in Fig. 8. As well as the units mentioned above, a few  
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Fig. 6  Data loading for V_Intp 
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Fig. 8  Architecture of the scaling engine 
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multiplexers (MUXs) are employed. These MUXs are 
controlled by the signals h_up_down or v_up_down. 
If an image is scaled up in the horizontal direction, 
h_up_down is 0, and vice versa. Likewise for 
v_up_down. These MUXs control the engine so as to 
work following one of the four data flow charts 
shown in Fig. 5.  
 
 
5  Experimental results 
 

The simulation result of the proposed scaling 
engine was compared with the results from NN in-
terpolation, linear interpolation, Kim’s Winscale 
method (Kim et al., 2003), B-spline approximation, 
and B-spline interpolation (Hou and Andrews, 1978). 
The test images in the LIVE database were used. The 
PSNR comparisons and the normalized cross- 
correlation coefficients (CCC) (Lehmann et al., 1997) 
of luminance are listed in Table 3.  

The CCC was used to assess image similarity 
and was calculated as follows: 
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where s(k,l) and r(k,l) denote the original and the 
twice interpolated values in the point (k,l), respec-
tively, and s  and r  denote the means of the original 
and the twice interpolated images of dimension KL, 
respectively. 

The test images were processed in four groups. 
The scaling factor was 4/3, and the four different 
ways of scaling were the same as those described in 
Section 3.1. Since the NN interpolation simply rep-
licates the nearest neighboring pixel, the images in 
Table 3 using the NN interpolation with respect to H 
up and V up are the same as the original images. Thus, 
the PSNR of the NN interpolation makes no sense and 
the mean of the CCC is 1, and the standard deviation 
(SD) is 0. As shown in the table, in terms of PSNR, 
Kim’s Winscale, which is a method using an area 
pixel model, performs better than NN and linear in-
terpolations. As an approximate kernel, B-spline ap-
proximation is slightly better than NN interpolation. 
Our proposed engine is slightly inferior to B-spline 
interpolation. However, the latter is too difficult to 
realize on hardware, because the coefficients of the 
B-spline interpolation kernel are achieved by prefil-
tering the data samples. Moreover, because the coef-
ficients are theoretically infinite, it is impossible to 
implement. Our proposed engine performed much 
better than the other four methods. The mean value of 
the CCC was also verified by the PSNR evaluation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Peak signal-to-noise ratio (PSNR) of different test images scaled by factor 4/3 
PSNR (dB)* 

Method 
H up & V up H up & V down H down & V up H down & V down

NN  32.15 31.35 28.78 
Linear 36.98 34.61 34.29 32.91 
Winscale 37.72 35.23 34.89 33.47 
B-spline approximation 33.44 31.91 31.70 30.67 
B-spline interpolation 48.52 40.07 39.48 37.30 
Proposed 46.24 39.71 39.09 36.92 

Cross-correlation coefficient 
H up & V up H up & V down H down & V up H down & V downMethod 

Mean SD Mean SD Mean SD Mean SD 
NN 1 0 0.9791 0.0416 0.9781 0.0415 0.9608 0.0725
Linear 0.9933 0.0129 0.9855 0.0331 0.9852 0.0331 0.9784 0.0501
Winscale 0.9927 0.0152 0.9848 0.0365 0.9844 0.0366 0.9776 0.0544
B-spline approximation 0.9797 0.0443 0.9726 0.0599 0.9722 0.0598 0.9659 0.0729
B-spline interpolation 0.9996 0.0009 0.9914 0.0272 0.9910 0.0273 0.9841 0.0489
Proposed 0.9986 0.0033 0.9906 0.0277 0.9902 0.0277 0.9834 0.0478

*
 Mean value. SD: standard deviation 
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From the statistical data of the CCC, especially from 
the SD of the six methods, we conclude that our 
proposed engine and the B-spline interpolation can 
give more stable scaling performance in all four 
scaling situations, because the SD of the cubic con-
volution and the B-spline interpolation are much 
smaller than those of the other four methods. There-
fore, in our hardware implementation, we chose cubic 
convolution as the interpolation kernel. 

To evaluate the proposed application specific 
integrated circuit (ASIC) implementation of the scal-
ing engine, the MSEs from software based imple-
mentation and field-programmable gate array (FPGA) 
based implementation of test sequences were com-
pared (Fig. 9). The test sequences used were Fore-
man, Tempete, and Mobile. In experiments, MSE 
comparisons of the luminance component Y and the 
chrominance components U and V were calculated. 
MSEs were all below 0.1 in these three test se-
quences. The results show that there was almost no 
difference between software simulation and hardware 
implementation of the proposed scaling engine. 

It is difficult to measure the scaling performance 
exactly using only the PSNR, CCC, and MSE. Thus, 
in addition, we used subjective image quality evalua-
tion to give an accurate evaluation. Fig. 10 shows the 
comparison of a subjective view processed by soft-
ware based implementation and FPGA based imple-
mentation. Fig. 10a is the 16th frame of the Foreman 
test sequence which is 352×288 in YUV 4:2:0 CIF 
format. In the experiments, Fig. 10a is scaled up to 
1024×768 through the proposed scaling engine.  
Fig. 10b is the snapshot of Fig. 10a. The image in 
Fig. 10c was processed by software based imple-
mentation with floating calculation. Fig. 10d was 
produced by the FPGA based scaling engine. Little 
difference can be seen between Figs. 10c and 10d. 
Thus, the proposed architecture and its hardware 
implementation of the scaling engine work very  
well according to the cubic-convolution scaling  
algorithm. 

These experiments show that our proposed al-
gorithm and its hardware implementation have theo-
retically better performance than the conventional 
algorithms, and that the image quality of our hard-
ware implementation is nearly the same as that of our 
proposed algorithm. 
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Fig. 9  Comparison of image quality between software 
based implementation and FPGA based implementation
(a) Foreman; (b) Tempete; (c) Mobile 

Fig. 10  Comparison of image quality between software 
based implementation and FPGA based implementation 
(a) Original frame; (b) Snapshot; (c) Software based simula-
tion; (d) FPGA based simulation 

(a) (b) 

(c) (d) 
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In addition, our proposed scaling engine was 
verified first on FPGA with the clock frequency at 
130 MHz. Because of the limitation of the clock fre-
quency of FPGA, the maximum resolution cannot 
reach our designed resolution of 2560×1920, but it 
can meet most of the demands of display devices. The 
scaling engine was also realized on 0.13 μm ASIC 
implementation. The clock frequency of ASIC design 
can reach 312 MHz, and our designed maximum 
resolution can be achieved.  

The hardware cost of the proposed architecture 
has been compared with other FPGA based archi-
tectures (Feng et al., 2001; Kim et al., 2003; Aho et 
al., 2007; Lin et al., 2008; 2010) in Table 4. Our 
proposed implementation is one of the most complex 
implementations (Table 4). However, with the novel 
architecture, the gate count and the memory cost of 
our proposed implementation do not increase in 
proportion to the algorithm’s computational com-
plexity. The gate count of our proposed implemen-
tation is slightly larger than that of Aho et al. (2007), 
which is based on linear interpolation and is designed 
only for scaling down. The count is much smaller 
than that of any other implementations listed in the 
table. Aho et al. (2007) and Kim et al. (2003), whose 
algorithms are based on linear interpolation, used 
four line buffers to store the pixel data. Theoretically 
speaking, linear interpolation uses 2×2 pixels for 
interpolating, so the calculation needs two line buff-
ers to export the interpolating pixel data, which 
means that their implementations need extra two line 
buffers to store and pre-process data. Our proposed 
implementation is based on a 4×4 cubic convolution. 
The interpolation needs at least four line buffers to 
deal with the vertical interpolation. Thus, except for 
these four line buffers, only one extra line buffer is  
 

 
 
 
 
 
 
 
 
 
 
 

used to store and pre-process data (Figs. 5 and 8). The 
theoretically smallest cost of line buffers that the 4×4 
cubic convolution needs, is achieved by our proposed 
implementation. Other algorithms such as cubic 
convolution in the horizontal direction (Feng et al., 
2001) employ more line buffers than the proposed 
implementation. 

A VLSI design of bi-cubic convolution was pre-
sented by Lin et al. (2008). Lin et al. (2010) also 
developed a piecewise linear convolution interpola-
tion algorithm. The VLSI designs of Lin et al. (2008; 
2010) are very efficient. The clock frequency of the 
0.13 μm ASIC designs of Lin et al. (2008; 2010) can 
also reach 275 MHz as needed by our designed 
maximum resolution. However, the gate counts of 
their design are nearly double those of our design.  
 
 
6  Conclusions 
 

A novel scaling engine implementation is pro-
posed in this paper, in which a 4×4 cubic convolution 
is employed to achieve better image quality. The 
engine is composed of only four functional units and 
five line buffers, which makes it more efficient in 
hardware cost than conventional methods. In ex-
periments, some detailed comparisons and analyses 
indicated that the proposed implementation has a 
better performance than most of the existing scaling 
implementations. Furthermore, experiments showed 
that the strict fixed-point strategy can avoid cumulative 
errors and minimize the quantization errors in hard-
ware implementation. As a result, our proposed en-
gine is an effective image-scaling implementation for 
applications that require good image quality and low 
computational complexity. 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Comparison of FPGA based scaling implementation 

Scaling algorithm Scaling 
direction Color format Gate count Line buffer Clock frequency

(MHz) 
Bilinear (Aho et al., 2007)  Down YUV (4:2:0) About 10 500 4Wi 105 
Wincale (Kim et al., 2003) Up/Down – About 29 000 4Wi  
Cubic and bisigmoidal  

(Feng et al., 2001) 
Up RGB About 33 000 6Wi 46 

Bi-cubic convolution 
(Lin et al., 2008) 

Up/Down RGB/YUV About 34 115 – 104 

First-order polynomials  
convolution (Lin et al., 2010) 

Up/Down RGB/YUV About 28 904 – 104 

Proposed Up/Down RGB/YUV About 16 000 5Wi 130 
Wi: input image width 
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